Chung-Hua University Repository:Item 987654321/32271
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 8557/14866 (58%)
Visitors : 1417273      Online Users : 1687
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://chur.chu.edu.tw/handle/987654321/32271


    Title: 一般克利金法、倒傳遞網路與分析調整綜合網路在空間內插之實證比較
    Authors: 葉怡成
    Yeh, I-Cheng
    Contributors: 資訊管理學系
    Information Management
    Keywords: 空間內插;克利金法;倒傳遞網路;分析調整綜合網路
    spatial;method;back-propagation;networks
    Date: 2008
    Issue Date: 2014-06-27 01:49:38 (UTC+8)
    Abstract: 本研究旨在比較一般克利金法、倒傳遞網路與分析調整綜合網路(Analysis-Adjustment-Synthesis Networks, AASN)等三種方法在空間內插的準確度。本研究以台灣地區的降雨分佈為研究案例。研究結果顯示:(1) 對獨立於訓練範例之外的測試範例所作的預測之誤差顯示,分析調整綜合網路最準確,倒傳遞網路次之,一般克利金法最差;且AASN遠優於後二者。(2) 克利金法能配適訓練範例的資料,產生具有幾個局部集中區的降雨量內插模型;倒傳遞網路無法配適訓練範例的資料,只能產生一組接近平行但不等
    In this research, we compared Ordinary Kriging Method, back-propagation neural networks (BPN), and Analysis-Adjustment-Synthesis Networks (AASN) in spatial interpolation applications. This research took rainfall distribution in Taiwan as research case. Th
    Appears in Collections:[Department of Information Management] Journal Articles

    Files in This Item:

    File Description SizeFormat
    p_m321_0053.pdf36KbAdobe PDF30View/Open


    All items in CHUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback