Chung-Hua University Repository:Item 987654321/32205
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 8557/14866 (58%)
Visitors : 2867184      Online Users : 4198
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://chur.chu.edu.tw/handle/987654321/32205


    Title: 以因子實驗法發掘支援向量機的重要變數與建構最小成本之診斷模型
    Authors: 葉怡成
    Yeh, I-Cheng
    Contributors: 資訊管理學系
    Information Management
    Keywords: 支援向量機;部分因子實驗法;反應曲面法;中央合成設計法;特徵選取
    support;machine;fractional;experiments;response;methodology;central;design;feature selection
    Date: 2007
    Issue Date: 2014-06-27 01:47:15 (UTC+8)
    Abstract: 本研究旨在以實驗計畫法來解決支援向量機的「變數選擇」問題,以建構精簡但準確的模型。其基本原理為:將一個輸入變數的選取與否視為一個二水準的實驗因子;將一個參數視為一個連續的噪音因子;將模型的準確度視為因變數;利用部分因子實驗設計得到實驗因子與噪音因子的組合;實驗完畢後,進行因子的效果分析,以決定最佳的實驗因子組合,即最佳的輸入變數組合。並以二個人為數值例題(分類與迴歸各一題)、二個實際應用例題(分類與迴歸各一題)加以驗證。研究結果顯示本方法確實可以找到重要的自變數,建構精簡但準確的模型。此外,本研究將此方法
    The purpose of this study is to employ design of experiments (DOE) to discover important features to build simple but accurate model for support vector machine (SVM). Its basic principle is to regard selecting or do not selecting a feature as a two-level
    Appears in Collections:[Department of Information Management] Journal Articles

    Files in This Item:

    File Description SizeFormat
    p_m321_0042.pdf36KbAdobe PDF32View/Open


    All items in CHUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback