Chung-Hua University Repository:Item 987654321/32002
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 8557/14866 (58%)
Visitors : 1984970      Online Users : 2008
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://chur.chu.edu.tw/handle/987654321/32002


    Title: 具自適應核形狀參數的徑向基底函數網路
    Authors: 葉怡成
    Yeh, I-Cheng
    Contributors: 資訊管理學系
    Information Management
    Keywords: 半徑基神經網路;監督式學習;核函數;分類
    Radial;function;learning;kernel function;classification
    Date: 2008
    Issue Date: 2014-06-27 01:41:27 (UTC+8)
    Abstract: 徑向基底函數網路(RBFN)常用於分類問題,它的核有形心與半徑二種參數,這二種參數可用監督式或無監督式學習來決定。但它有一個缺點是視所有自變數有同等地位,故分類邊界是圓形,但事實上每一個自變數對分類的影響力不同,分類邊界是應該是橢圓形較合理。為克服此一缺點,本文提出具自適應核形狀參數的徑向基底函數網路,並以監督式學習推導出其學習規則。為證明此一架構優於傳統的徑向基底函數網路,本研究以五個人為的與七個真實的分類例題進行比較。結果顯示,此一架構確實比倒傳遞網路及傳統的徑向基底函數網路更為準確,狀參數值的大小確
    Radial Basis Function Network (RBFN) is usually employed for classification problems, whose kernel has centroid and radius parameters determined with supervised or unsupervised learning. However, it has a shortcoming that it regards each independent varia
    Appears in Collections:[Department of Information Management] Journal Articles

    Files in This Item:

    File Description SizeFormat
    p_m321_0015.pdf35KbAdobe PDF72View/Open


    All items in CHUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback