Chung-Hua University Repository:Item 987654321/31956
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 8557/14866 (58%)
Visitors : 2464195      Online Users : 2190
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://chur.chu.edu.tw/handle/987654321/31956


    Title: 次分類神經網路在森林覆蓋類型預測的應用
    Authors: 葉怡成
    Yeh, I-Cheng
    Contributors: 資訊管理學系
    Information Management
    Keywords: 倒傳遞神經網路;森林地表覆蓋;分類;次分類
    back-propagation;cover;sub-category
    Date: 2008
    Issue Date: 2014-06-27 01:39:56 (UTC+8)
    Abstract: 雖然倒傳遞網路可以建構準確的分類模型,但無法發掘隱藏在分類中的「次分類」。為了改善倒傳遞網路不能產生次分類的缺點,在此提出次分類神經網路(Sub-Category Neural Network, SCNN)。為證明此一架構優於傳統的倒傳遞類神經網路(Back- Propagation Network, BPN),本文以二個人為的分類例題及一個真實的森林地表覆蓋類型(樹種)分類問題進行比較。由實驗結果歸納出下列結論:(1) SCNN的準確度與BPN相近。(2) SCNN可以將部份分類的「次分類」發掘出來。
    Although the back-propagation algorithm can build accurate classification models, it can not discover the sub-categories in the data set. To solve this problem, this study proposed a novel neural network model, Sub-Category Neural Network (SCNN). To prove
    Appears in Collections:[Department of Information Management] Journal Articles

    Files in This Item:

    File Description SizeFormat
    p_m321_0008.pdf34KbAdobe PDF133View/Open


    All items in CHUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback