Chung-Hua University Repository:Item 987654321/31937
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 8557/14866 (58%)
Visitors : 1990480      Online Users : 1296
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://chur.chu.edu.tw/handle/987654321/31937


    Title: 自適應機率神經網路
    Authors: 葉怡成
    Yeh, I-Cheng
    Contributors: 資訊管理學系
    Information Management
    Keywords: 類神經網路;機率神經網路;變數重要性;函數映射;分類
    artificial;network;probabilistic;network;variable;mapping;classification
    Date: 2008
    Issue Date: 2014-06-27 01:39:17 (UTC+8)
    Abstract: 本研究提出自適應機率神經網路(Adaptive Probabilistic Neural Networks, APNN),它包含三種參數:代表變數重要性的變數權值、代表樣本有效範圍的核寬倒數、及代表樣本可靠程度的資料權值。本研究提出自適應調整這些參數的演算法,藉由學習過程優化這些參數,使模型的準確度最佳化。為證明此網路的性能,本研究以三個人為的函數映射問題以及一個實際的分類問題來做測試,並與倒傳遞網路及機率神經網路做比較。結果證明自適應機率神經網路的模型準確度只略低於BPN,而遠優於PNN,且APPN的變
    This study proposes adaptive probabilistic neural networks (APNN), which include three kinds of parameters: the variable weights representing the importance of input variables, the core-width-reciprocal representing the effective range of patterns, and th
    Appears in Collections:[Department of Information Management] Journal Articles

    Files in This Item:

    File Description SizeFormat
    p_m321_0005.pdf33KbAdobe PDF30View/Open


    All items in CHUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback