Chung-Hua University Repository:Item 987654321/29022
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 8557/14866 (58%)
Visitors : 1990788      Online Users : 1159
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    CHUR > College of Management > Industrial Management > Seminar Papers >  Item 987654321/29022


    Please use this identifier to cite or link to this item: http://chur.chu.edu.tw/handle/987654321/29022


    Title: Model to Determine the Number of Factors for Neural Network Forecasting System
    Authors: 杜瑩美
    Tu, Ying Mei
    Contributors: 工業管理學系
    Industrial Management
    Keywords: 類神經網路;迴歸分析;預測模式;資料樣本
    Neural network;Linear regression;Forecasting model;Number of factors
    Date: 2012
    Issue Date: 2014-06-27 00:15:29 (UTC+8)
    Abstract: 類神經網路如同大多數其他預測手法,歷史資料樣本的多寡及詳細程度會嚴重影響其預測結果的優劣,若樣本太過精簡則無法表徵母體的行為模式,因此,無法得到滿意的預測品質;反之,過大的樣本雖然可以得到較佳的預測結果,卻會增加資料收集以及模式執行上的困難。因此,如何訂定一個適合的樣本大小及精確度,將會是類神經網路在執行預測的的一個關鍵。本研究以半導體晶圓廠機台群組工件到達量預測問題為例,提出一套以迴歸分析為基礎的最佳輸入因子數量決策模式。利用迴歸分析找出因子數量、預測複雜度指標以及類神經網路預測準確度之間的關係,利用此
    Neural network is a good forecasting technique for a complicated system. Nonetheless, the forecast accuracy of neural network is just like other forecasting techniques’ to be seriously impacted by both completeness and details of sample. If the number of
    Appears in Collections:[Industrial Management] Seminar Papers

    Files in This Item:

    File Description SizeFormat
    s_m515_0465.pdf29KbAdobe PDF34View/Open


    All items in CHUR are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback