一、單選題 (50%)

- 1. Given a vector field $\vec{E}(x, y, z) = \hat{x}E_x(x, y, z)$ which satisfies the rule $\vec{\nabla} \times \vec{E} = 0$, what solution as followed is true? (A) $E_x = 2x$ (B) $E_x = 2x + y$ (C) $E_x = 3y$ (D) $E_x = 2z$ (10%)
- 2. Given a vector field $\vec{E}(r,\phi,z) = \hat{\phi} E_{\phi}(r)$ which satisfies the rule $\vec{\nabla} \times \vec{E} = 0$, what solution as followed is true? (A) $E_{\phi} = r$ (B) $E_{\phi} = 1/r$ (C) $E_{\phi} = 1/r^2$ (D) $E_{\phi} = \ln r$ (10%)
- 3. Given a vector field $\vec{E}(r,\theta,\phi) = \hat{r} E_r(r)$ which satisfies the rule $\vec{\nabla} \cdot \vec{E} = 0$, what solution as followed is true? (A) $E_r = r$ (B) $E_r = 1/r$ (C) $E_r = 1/r^2$ (D) $E_r = \ln r$ (10%)
- 4. Given a vector field $\vec{E}(r,\theta,\phi) = \hat{r} E_r(r)$ which satisfies the rule $\nabla \cdot \vec{E} = C, C = \text{constant}$, what solution as followed is true? (A) $E_r = r$ (B) $E_r = 1/r$ (C) $E_r = 1/r^2$ (D) $E_r = \ln r$ (10%)
- 5. For an inductor circuit, $V_L(t) = L \frac{dI_L(t)}{dt}$, if a current impulse $(I_L(t=0^-)=0, I_L(t=0^+)=I_0)$ passes through the inductor, what condition as followed is true? (A) $V_L(t=0)=0$ (B) $V_L(t=0)=$ constant (C) $V_L(t=0)=\infty$ (D) 以上皆非

二、計算題 (50%)

6. (10%) Find the inverse of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ -6 & 2 & 3 \end{bmatrix}$$

7. (10%) Find the determinants $|\mathbf{A}|$ and $|\mathbf{A}^{-1}|$ for the matrix

A =	2	-1	0	-2	
	-1	0	2	3	
	-1	1	0	2	
	-2	3	0	1	
	L			_	

- 8. (10%) Write the vector $\mathbf{w} = (3, 4, 6)$ as a linear combination of vectors in the set $S = \{\mathbf{v}_1 = (1, 2, 3), \mathbf{v}_2 = (0, 1, 2), \mathbf{v}_3 = (-2, 0, 1)\}.$
- 9. (10%) Find the exponential Fourier series for the periodic signal $x(t) = A\cos(2\pi f_0 t)$.
- 10. (10%) Find the Fourier transform of rect(t/T), where

$$\operatorname{rect}(t) = \begin{cases} 1 & |t| \le \frac{1}{2} \\ 0 & |t| > \frac{1}{2} \end{cases}$$