九十五學年度轉學生招生入學考試試題紙

别:電機工程學系三年級 科目:電子學 共2頁第/

科目可使用計算機*

1(25%) The circuit shown in Fig. 1 implements one form of a difference amplifier. Assuming that R_1 =5k Ω , R_2 =20k Ω , R_3 =4k Ω , R_4 =50k Ω , and all three op amps are ideal, determine the output v_0 in terms of the inputs v_{I1} and v_{I2} , then determine the differential input resistance R_{id} between v_{I1} and v_{I2} .

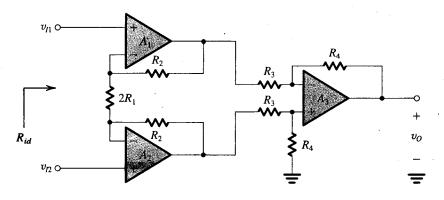
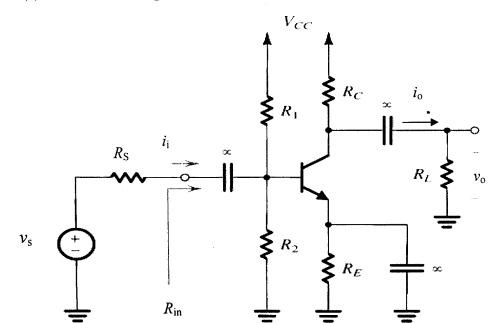



Fig. 1

- 2(25%) Please depict the circuit symbol of a diode, with a forward current i through it and the voltage drop v across it. It is known that the relationship between i and v can be expressed as i=I_sexp(v/nv_T). Depict its i-v characteristics for i>0. It is further known that a particular diode displays a forward voltage of 0.704V at a forward current of 1mA, and have a 0.096V/decade current change characteristics. Determine its voltage drop at a forward current of 0.751mA.
- 3(25%) For the common-emitter amplifier shown in Fig. 3, let $V_{\rm CC}$ = 9V, $R_{\rm S}$ = 10 k Ω , $R_{\rm L}$ = 2 k Ω , $R_{\rm I}$ = 27 k Ω , $R_{\rm Z}$ = 15 k Ω , $R_{\rm E}$ = 1.2 k Ω , and $R_{\rm C}$ = 2.2 k Ω . The transistor has β = 100 and $V_{\rm A}$ = 100 V.
 - (a) Calculate the dc emitter current I_E .
 - (b) Replace the transistor with its hybrid- π model, and draw the small-signal equivalent circuit of Fig. 3.
 - (c) Find the input resistance $R_{\rm in}$.
 - (d) Determine the voltage gain v_0/v_s .
 - (e) Find the current gain i_0/i_1 .

九十五學年度轉學生招生入學考試試題紙

: 電機工程學系三年級 科目:電子學 共2頁第2

本科目可使用計算機*

- 4(25%) Using two transistors Q_1 and Q_2 having equal lengths but widths related by $W_2/W_1 = 5$, design the circuit of Fig. 4(b) to obtain I = 0.5 mA. Let $V_{DD} = V_{SS} = 5$ V, $\mu_n C_{ox}(W/L)_1 = 0.8 \text{ mA/V}^2$, $V_t = 1 \text{ V}$, and $\lambda = 0$.
 - (a) Find the required value for R.
 - (b) What is the voltage at the gates of Q_1 and Q_2 ?
 - (c) What is the lowest voltage allowed at the drain of Q_2 while Q_2 remains in the saturation region?
 - (d) If the circuits of Fig. 4 are implemented in integrated circuit (IC) form, which transistor(s) $(Q, Q_1, \text{ or } Q_2)$ will suffer from the body effect? Why?

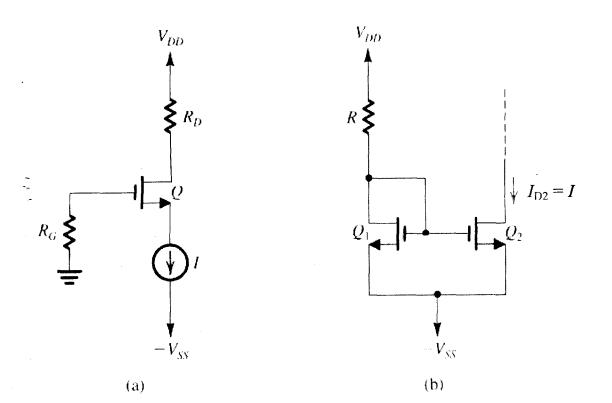


Figure 4 (a) Biasing the MOSFET using a constant-current source I.

(b) Implementation of the constant-current source I using a current mirror.