1. Solving the following differential equations.

(a) (15%) $5x^2y'' - 2xy' - y = 0$, y(x) = ?

(b) (15%)
$$y'' + y' - 2y = e^{2x}$$
, $y(x) = ?$
(c) (15%) $y' + y = \begin{cases} 0, \ 0 \le t < \pi/2 \\ \cos t, \ t \ge \pi/2 \end{cases}$ and $y(0) = 2, \ y(t) = ?$

2. (10%) $f(t) = \begin{cases} 1 & -1 \le t < 1 \\ 0 & 1 \le t < 2 \end{cases}$ and f(t) = f(t+3), derive its Fourier series.

*** Hint:** If f(t) = f(t+T) then the Fourier series of f(t) is $f(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos \frac{2n\pi t}{T} + b_n \sin \frac{2n\pi t}{T})$

- 3. Matrix $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix}$
 - (a) (5%) Evaluate the determinant of \mathbf{A} , or det $\mathbf{A} = ?$.
 - (b) (5%) Evaluate the adjoint of **A**, or $adj \mathbf{A} = ?$
 - (c) (5%) Evaluate the inverse of **A**, or $\mathbf{A}^{-1} = ?$
 - (d) (10%) Find the eigenvalues and eigenvectors of A.
- 4. (10%) $\vec{F} = [xy^3, x^3y]$, *R* is the rectangle with vertices (0,0), (3,0), (3,2), (0,2). Please evaluate $\int_C \vec{F}(\vec{r}) \cdot d\vec{r}$ along the boundary curve *C* around the region *R* in the direction of "counterclockwise".

5.
$$f = x^2 + y^2 - z$$
, $P:(1,1,-2)$, $\vec{a} = [1,1,2]$

- (a) (5%) Find ∇f at *P*.
- (b) (5%) Find $\nabla \times \nabla f$ at *P*.