- 1. Solving the following differential equations.
 - (a) (10%) $x^2y'' 2y' y = 0$, y(x) = ?
 - (b) (10%) $y'' + y' 6y = 6xe^{2x}$, $y(x) = y_h + y_p$; y_h is the general (or complementary) solution, y_p is the particular solution. Find y(x) = ?.
- 2. The definition of the "unit step function" u(t-a) is $u(t-a) = \begin{cases} 0, & 0 \le t < a \\ 1, & t \ge a \end{cases}$.
 - (c) (10%) If $F(s) = L\{f(t)\}$ and a>0, please prove that $L\{f(t-a)u(t-a)\} = e^{-as}F(s)$.
 - (d) (10%) Solve y' + y = f(t), y(0) = 2 where $f(t) = \begin{cases} 0, 0 \le t < \pi \\ \cos t, t \ge \pi \end{cases}$.
- 3. (10%) The power series $y(x) = \sum_{n=0}^{\infty} c_n x^n$ is the solution of y'' 10xy = 0. Find the coefficients c_2 , c_3 , c_4 , c_5 , c_6 , c_7 , and c_8 in values or in terms of c_0 and c_1 .
- 4. (10%) $f(t) = \begin{cases} 1 & -1 \le t < 1 \\ 0 & 1 \le t < 2 \end{cases}$ and f(t) = f(t+3), derive its Fourier series.

(Hint:
$$f(t) = f(t+T)$$
, $f(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos \frac{2n\pi t}{T} + b_n \sin \frac{2n\pi t}{T})$
where $a_0 = \frac{1}{T} \int_{-T/2}^{T/2} f(t) dt$, $a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos \frac{2n\pi t}{T} dt$, $b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin \frac{2n\pi t}{T} dt$)

- 5. (10%) $f(t) = \begin{cases} 2 & 0 \le t < 1 \\ 0 & else \end{cases}$ derive its Fourier Transform. (Hint: $F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$)
- 6. (10%) Given $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$, solve A^{100} .
- 7. y'' + 3y' + 2y = 1 with y(0) = 0, y'(0) = 0
 - (a) (5%) derive its state space representation with $x(t) = [y(t) \ y'(t)]^T$ in the form x' = Ax + Bu(t).
 - (b) (5%) calculate e^{At} . (Hint: $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$)
 - (c) (10%) solve x(t). (Hint: $x(t) = e^{At}x(0) + \int_0^t e^{A\tau}Bu(t-\tau)d\tau$)