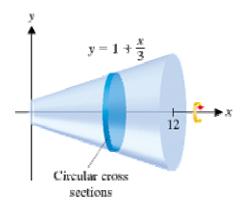

(資工系資工組二年級)

1. Determine the value of the following limits.

(a).
$$\lim_{x \to 0} \frac{x}{|x|}$$
 (7%)
(b) $\lim_{x \to 0} \frac{\sin 2x}{x}$ (8%)

- 2. Find the derivative of each function.
 - (a) $f(x) = x^5 \cos x$. (8%)
 - (b) $f(x) = e^{2x}$. (7%)
- 3. Evaluate
 - (a) $\int (3\cos x + 4x^8) dx$ (7%)
 - (b) $\int x \sin x dx$ (8%)
- 4. Find the equation of tangent line to $x^2 + 4y^2 = 8$ at x=2. (10%)
- 5. Revolve the region under the curve $y = \sqrt{x}$ on the interval [0,4] about the x axis and find the volume of the resulting solid of revolution (see the following figure). (15%)


6. Find the Taylor series expansion for $f(x)=e^x$ about x=0. (15%)

7. Evaluate
$$\int \frac{x-19}{x^2-3x-10} dx$$
 (15%)

1. Determine the following limits.

(a).
$$\lim_{x \to -3} \frac{3x+9}{x^2-9}$$
 (7%)
(b) $\lim_{x \to 0} \frac{\sin x}{2x}$ (8%)

- 2. Find the derivative of each function.
 - (a) $f(x) = x^3 \sin x . (7\%)$
 - (b) $f(x) = \ln(2x), x > 0.$ (8%)
- 3. Evaluate
 - (a) $\int 8 \sec^2 x \, dx$ (7%) (b) $\int x \cos x \, dx$ (8%)
- 4. Find the equation of tangent line to $4x^2 + y^2 = 8$ at x=1. (10%)
- 5. Suppose that the line segment y = 1+x/3, $0 \le x \le 12$, is revolved about the x axis. The resulting solid looks like a megaphone (see the following figure). Compute the volume of this solid. (15%)

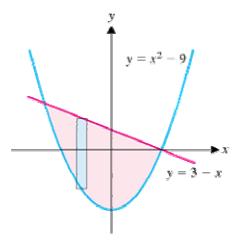
6. Find the Taylor series expansion for $f(x)=e^x$ about x=0. (15%)

7. Evaluate
$$\int \frac{1}{x^2 + x - 2} dx$$
 (15%)

- 1. Determine whether $f(x) = \frac{x+2}{x^2-4}$ is continuous at x = 2 and x = -2. (10%)
- 2. Use the equation $m_{tan} = \lim_{h \to 0} \frac{f(a+h) f(a)}{h}$ to find the equation of the tangent line to the graph of $y = \sin x$ at $x = \frac{\pi}{3}$. (10%)
- 3. Given the relation $\sin y \cos x = x y$, compute $\frac{dy}{dx}$. (10%)

4.
$$\begin{cases} x = 1 + e^{-t} \\ y = e^{t} \end{cases}$$
, find $\frac{dy}{dx}$ at $t = \ln 2$. (10%)

- 5. Let $f(x) = \sin x + \cos x$ on $[0, 2\pi]$,
 - a) find all inflection points. (5%)
 - b) find all local maximum and minimum points. (5%)


6. Let
$$f_i(x) = e^x, i = 1, 2, ..., n$$
, let $y = f_1(f_2(f_3(...f_n(x)...)))$, find $\frac{dy}{dx}$. (8%)

7. Evaluate

(a)
$$\int \cos x dx$$
 (7%)
(b) $\int e^{2x} dx$ (10%)

8. (Integration by Parts) Evaluate $\int xe^x dx \circ (10\%)$

9. Find the area bounded by the graphs of y = 3-x and $y = x^2-9$ (see the following figure). • (15%)

