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Abstract

High quality, embedded, variable rate image
compression can be achieved by decomposing an
image into subbands of different sizes, modeling with
one significant AM-FM component as well as
encoding with a distinct procedure for each subband.
In this paper, an adaptive subband decomposition
using the modulated wavelet packet transform is
proposed, where the adaptation of modulating
frequencies is based on the energy spectral density in
a resolution-recursive framework; and, each subband
can be well represented by the modulated wavelets.
An extension of SPIHT algorithm that is needed for
encoding the complex-valued modulated wavelet
coefficients is also presented. Experimental results
show that the modulated wavelet subband image
coding is preferable to both the wavelet coding and
the JPEG standard
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Introduction

The main obstacle to image applications such as
storage and transmission over a band-limited channel
is the huge amount of data required to represent an
image directly. There has been increasing demand for
image compression with the rapid growth in modern
communications and computer technologies; this is a
natural trend. State of the art techniques can compress
typica images by factors of 10 to 50 without
significantly degrading the image quality, depending
on the specific application and encoder/decoder
complexity [1]-[4]. The Joint Photographic Experts
Group (JPEG) [5] shows good performance at
moderate to high bit rates of compression measured in
bits per pixel (bpp). Multiresolution representation is
well suited to the properties of Human Visual System
(HVS); thus, the wavelet subband coding has shown
promising results at low to moderate bit rates [6].
Wavelet transform provides many advantages such as
multiresolution  analysis, joint  spatial-spectral
localization, fast de-correlation with compact energy
distribution in the wavelet domain, and exact
reconstruction, which are beneficial to the image
compression task [7]. Many competitive wavelet
coders including embedded zero-tree wavelets (EZW)
of Shapiro [8], set partitioning in hierarchical trees
(SPIHT) of Said and Pearlman [9], morphological
representation of wavelet data (MRWD) of Servetto et
al. [10], and group testing for wavelets (GTW) of
Hong and Ladner [11] have been developed. In
addition, wavelet based coding techniques have been
adopted as the underlying methods to implement the
JPEG 2000 standard [12]. Wavelet transform analyzes
an image with a decomposition procedure, which is
recursively performed on the low frequency
component only; on the other hand, wavelet packet
transform applies the decomposition procedure to both



the low and high frequency components to generate a
larger family of subband components [13]-[14].
Recently, the modulated wavelet transform acting as
an extension of wavelet transform had been proposed
[15]. Images can be represented by using the
modulated wavelet transform to gain an adaptable
zooming in the frequency regions of importance
depending on the energy spectral density (ESD),
instead of being constrained in the fixed low
frequency region centered at zero frequencies. As a
result, the modulate wavelet transform provides a
flexible as well as adaptable representation framework
that can open a broad range of image applications.
This paper extends the previous work in [16], where
the modulated wavelet subband coding with a fixed
Gabor filterbank was introduced. Specificaly, an
adaptable rather than fixed subband decomposition is
proposed to improve the coding performance; and, a
simplified version of the extended SPHIT agorithmis
developed to encode the complex valued modulated
wavelet coefficients.Image compression is crucia to
many applications dealing with storage and
transmission of visual data. To design effective coders,
it is essential to recognize the importance of data
representation. The wavelet representation has many
properties that are beneficial to the image compression
task; namely multi-resolution analysis, spatial-spectral

localization, fast de-correlation with energy
compaction of  wavelet  coefficients, easy
implementation and exact reconstruction. Many

competitive wavelet-based image coders had been
proposed, e.g. embedded zero-tree wavelets (EZW) of
Shapiro, set partition in hierarchical trees (SPIHT) of
Said, and morphological representation of wavelet
data (MRWD) of Servetto. In this project report, a
new, modulated wavelet transform (MWT) based
approach to image representation for compression is
presented. In contrast to wavelet transform (WT) that
is focused on the low frequency decomposition in a
multi-resolution  manner, MWT  successively
decomposes images with zooming in the frequency
regions centered at selectable modulating frequencies;
thus, MWT is an extension of WT and may be used to
improve the representation performance by selecting
suitable modulating frequencies. Motivated by the
amplitude-modulation frequency-modulation
(AM-FM) modeling of Bovik et a. the analysis of
dominant instantaneous frequency (DIF) seems
essential to the selection of suitable modulating
frequencies for applying MWT to image
representation. For computation simplicity, we had
taken the average of local DIFs as the modulating
frequency of MWT and the results demonstrated the
potential of MWT for image compression in terms of
the computed PSNR-entropy values shown as the
rate-distortion curves.

Modulated Wavelet Transform (MWT)

Lety( x) be avalid wavelet and ¢( x) the scaling

function. Finite energy signal f( x) can be written by
f(Xx) =2 S5(n)gynl X)"'/ZJZDf(n)‘//Zn( x) (1)
n /’<J n

whereS;(n) and D,( n) are the scaling and wavelet

coefficient representing the approximation at the

coarsest resolution 27 and the detail at resolution

2" respectively. S,(n) and D,(n) can be obtained

from S,_4(n) by wavelet transform given by
Sy(n) =%54—1( k)h( 2n—k)

Dé(n):%Sf_l(k)g( 2n—k) 2

where h(n)=<g¢,¢_1_n> , 9(n)=<y,d3_n> ,
<-+-> isthe inner product; moreover, S,_4(n) can
be exactly reconstructed fromS,( n) and D,( n) by the
inverse wavelet transform given by

Sra(n) = 28 k)h( n—2k) +2D(K)G(n-2K) (3
where h(n)=h(-n) and §(n)=g(-n).

For signals of the form f(x)e/V* | from

equation (1) we have

f(x) €)= 5( Sy(n)el2 UM gy x)el2 U Z )

" (4)
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where coefficients S, (n)eizUn and D,( n)ejzfUn can
be obtained by
S(Ne?UN=35 y(Ke? Vi n-Kel? UD K
K
. e o ©)
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which is caled modulated wavelet transform with
modulating frequency U . Its inverse transform can
be obtained from equation (3) as follows,

S.4(meiZ Un_s5,(Kel? UK n-2qei? U2
k
” . ©)
+3D,(K)elZ Vg n-2k)eiZ U
k

The 2D extension can be obtained by a tensor
product of two 1D MWT.

Adaptive MWT-Based Subband Decomposition

The analytic image obtained by adding an
imaginary part via the 2-D Hilbert transform [18] is
utilized for the compression task. Specifically, the

analytic image t(X,y) and the corresponding real
vaued image S(X,y) ae uniquely related by
t(xy) =s(x,y)+ JH[s(x,y)] . where H[]
denotes the 2-D Hilbert transform acting in the, say,
€=[10]" direction; the Fourier transforms of
S(X,Y) H[s(x, y)] related by

F{H[s(x, y)]} = -ison(Q" &)F {s(x,y)} ; the

and are



spectrum of t(X,Y) is supported only in quadrants |

and IV of the frequency plane: Q =[u V]" ; and the
spectral redundancy of S(X,Yy) can be removed.

Multicomponent AM-FM modeling represents the
analytic image as sums of nonlinear functions, each of

the form (X y)exp[jU(X,y)] ., where
f(x,y) and VU(X,y) (i.e. the gradient of
U(X,y) ) ae the amplitude and frequency

modulating functions, respectively. As a flexible
decomposition without excessive side information to
describe the resulting structure, the DMWPT-based
subband decomposition algorithm is presented below.

Step 1: For area valued image, remove the DC
component, perform the Hilbert transform, and
form the analytic image. Specificaly, if the
Hilbert transform is performed horizontally,
subbands with negative horizontal frequencies
are all zeros, which can be ignored by down
sampling the analytic image by 2 in the
horizontal direction for the rest of the
compression task; and, the data size of the
(critically down sampled) analytic image is
equal to that of the original real valued image.

Step 2: Compute energy spectral density (ESD)
of the analytic image, find the position of the
maximum ESD (in the frequency plane), take it
as the modulating frequency, and perform
DMWT to generate four subbands.

Step 3: For each subband, compute the
respective  ESD and decide whether to
decompose it further or not. Specificaly, let
M be the global maximum of the ESD, if
there is a loca maximum that is greater than
aM (a<1l) with a distance (from the

global maximum) greater than a given threshold
S, then the subband needs to be further

decomposed into four smaller subbands by
DMWT with adapted modulating frequency
according to the position of the globa
maximumM .

Step 4: Repeat Step 3 until there is no subband
with more than one significant local maximum
in the ESD, or the subband size reaches to the
minimum size given apriori.

SPIHT Extension

Since the subbands of images obtained by using
the adaptive DMWPT are complex vaued, the
origina SPIHT algorithm developed by Said et al.
needs to be extended to encode these subbands in the
hierarchical modulated wavelet domain. Four symbols

are used to identify the status of transform coefficients:
IP, NP, SP and ZT, which stand for insignificant pixel,
newly significant pixel, significant pixel and zero tree,
respectively. Initialy, all the modulated scaling and
wavelet coefficients at the coarsest resolution are set
IP and ZT, respectively. The complex value is
represented by the magnitude and angle (i.e. in the
polar form). The magnitude of complex valued
transform coefficients is used for the comparison with
a given sequence of successively smaller threshold
values to sort out the significant coefficients in the
status check pass. The sequence of threshold values
can be obtained by using the recursive equation:

T, =T/ 2, where the initial value T, must be

greater than or equal to half the maximum magnitude
of the transform coefficients.

The proposed, modulated wavelet subband
coding (MWSC) system with extended SPIHT
algorithm has been evaluated on several 512 x 512
gray scale images, including Barbara, fingerprints,
and a SAR image. The performance is compared with
the wavelet-based SPIHT and the JPEG standard. In
MWSC, the critically down sampled analytic image,
which is constructed via the use of the 2-D Hilbert
transform in the horizontal direction, is decomposed
into subbands using the adaptive DMWPT; the
adaptability strategy is based on the respective ESD

with parameters: @ = 0.5, f =1 radian, and the

minimum size of subbands is. 64 x 32; the coding
sequence of the decomposed subbands is in a zigzag
order: from low-to-high frequency subbands; the
angle quantity of the complex valued transform
coefficients represented in the modulated wavelet
trees is uniformly quantized with 6-bit resolution; the
number of bits representing the initial angle
information of the newly significant pixels is 3. The
number of decomposition levels in both wavelet and
modulated wavelet transforms is 4. Daubechies
orthogonal wavelet D2 is used. The sequence of
successively smaller threshold values in the original
SPIHT as well as its extension is obtained by

T, =05T,,; k=12,..., with the initid T,

equal to half the maximum amplitude of the transform
coefficients. The compression distortion is measured
by the peak signal to noise ratio (PSNR) in dB. The
compression rates measured in bits per pixel (bpp) and
PSNR values are plotted as the rate distortion curve
for performance comparison.

Fig.1 shows the comparison on natural Barbara
image at different bit rates. Part of the decoded images
from the JPEG standard, wavelet-based SPIHT, and
MWSC a 0.2 bpp are shown in Fig. 1(a)-(c),
respectively. By comparing visually, MWSC
improves the reconstruction result on the textured
regions with significant stripes in specific directions.
Their respective rate distortion curves shown in Fig.
1(d) demonstrate that MWSC is preferable for images



with large portions of textures.

The compression of fingerprints image is one of
the most important issues, which demands the best
solution. Without any compression, the storage of
digitized fingerprints of a person may be in the order
of mega bytes. Fig. 2 shows the comparison on a
fingerprints image. By comparing the decoded images
shown in Fig. 2(a)-(c), and the rate distortion curves
shown in Fig. 2(d), wavelet-based SPIHT outperforms
JPEG at low to moderate bit rates (< 1 bpp); and
MWSC isthe superior for thiskind of images.

Finally, the comparison on a SAR image
containing large portions of irregular textures is
presented in Fig. 6. Part of the original and decoded
images is shown in Fig. 3(a)-(d). The rate distortion
curves shown in Fig. 3(e) demonstrate that
wavelet-based SPIHT is inferior to JPEG at low to
moderate bit rates, and vice versa at moderate to high
bit rates, however, MWSC is still the superior in terms
of the rate distortion curves as well as visua
comparison.

The residua correlation can be exploited further
by using arithmetic coding. In our experiments, the
use of arithmetic coding improves the performance
with a gain of about 0.2-04 dB over the
non-arithmetic coded versions of both the
wavelet-based SPIHT and MWSC; nevertheless,
MWSC till outperforms the wavelet-based SPIHT
with similar rate distortion curve improvements like
Fig. 1(d), 2(d) and 3(e).
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Fig. 1: (8) ~ (c): Part of the decoded Barbaraimage at
0.2 bpp using the JPEG standard (PSNR=24.6 dB),
the wavelet based SPIHT without arithmetic coding
(26.4 dB), and the proposed MWSC (26.9 dB),
respectively; (d): the corresponding rate distortion
curves (dashed: JPEG, dotted: wavelet based SPIHT,
solid: the proposed method).
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Fig. 2. (& ~ (c): Part of the decoded fingerprints
image at 0.25 bpp using the JPEG standard
(PSNR=21.6 dB), the wavelet based SPIHT without
arithmetic coding (25.4 dB), and the proposed MWSC
(25.9 dB), respectively; (d): the corresponding rate
distortion curves (dashed: JPEG, dotted: wavelet
based SPIHT, solid: the proposed method).
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Fig. 3: (@ ~ (d): Part of the original SAR image,
decoded image at 0.2 bpp using the JPEG standard
(PSNR=18.7 dB), the wavelet based SPIHT without
arithmetic coding (17.8 dB), and the proposed MWSC
(19.1 dB), respectively; (€): the corresponding rate
distortion curves (dashed: JPEG, dotted: wavelet
based SPIHT, solid: the proposed method).

An adaptive subband image coding system
based on the modulated wavel et packet and modul ated
wavelet transforms is presented. It consists of three
stages. adaptive subband decomposition, adaptive
modulated wavelet transform, and embedded coding
in the modulated wavelet trees. In the first stage, the
analytic image is decomposed into subbands via the
adaptive modulated wavelet transform in a resolution
recursive manner, which leads to the adaptive
modulated wavelet packet transform with a top-down
quadtree structure; In the second stage, each of the
decomposed subbands containing one significant
AM-FM component is represented in the modulated



wavelet tree; the associated modulating frequencies in
the first two stages are adapted based on the
respective energy spectral densities; In the last stage, a
simplified version of the extended SPIHT algorithmis
proposed to encode the transform coefficients.
Experimental results demonstrate that the modulated
wavelet based subband coding system is preferable to
both the wavelet based and the JPEG standard for
images with significant energies in the middle-high
frequency regions, in terms of the rate distortion
curves and visual comparisons. Moreover, it is a
highly parallel processing, which is a substantial
advantage for the hardware implementation; and there
is no the so-called blocking effects that are usually to
be found on the decoded JPEG images with
compression at low bit rates.

This project result had been submitted to and
accepted by the Pattern Recognition L etters.
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