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一、中文摘要 

 

根據資料特性將影像分解成數個大小不等的

子頻帶成份後，利用 AM-FM模型的特點可以更有
效地描述子頻帶成份並提高壓縮品質，達到高品質

可變位元率的影像壓縮結果。若配合調變小波轉換

描述子頻道影像可以額外獲得的優點有：多解析度

分析模式、空間域與頻域的區域性資料分析、調變

小波係數間的低相關性與能量集中性、容易實現以

及資料重建的準確性等。相對於傳統的小波轉換只

能對低頻的資料成份做連續性分解，調變小波轉換

卻可以對不同頻帶的影像成份做細部分解，且被分

解的頻帶是由調變頻率參數所決定，選擇適當的調

變頻率參數可以提高影像描述效率。我們提出一個

根據影像資料之主瞬間頻率之對比，將影像分解成

數個子頻帶成份，再依據每個子頻帶的主瞬間頻率

之機率分佈選取適當的調變頻率參數各別進行調

變小波轉換以提高影像壓縮品質。 
 

關鍵詞：調變小波轉換，最佳調變頻率， AM-FM
模型 

 

Abstract 
 

High quality, embedded, variable rate image 
compression can be achieved by decomposing an 
image into subbands of different sizes, modeling with 
one significant AM-FM component as well as 
encoding with a distinct procedure for each subband. 
In this paper, an adaptive subband decomposition 
using the modulated wavelet packet transform is 
proposed, where the adaptation of modulating 
frequencies is based on the energy spectral density in 
a resolution-recursive framework; and, each subband 
can be well represented by the modulated wavelets. 
An extension of SPIHT algorithm that is needed for 
encoding the complex-valued modulated wavelet 
coefficients is also presented. Experimental results 
show that the modulated wavelet subband image 
coding is preferable to both the wavelet coding and 
the JPEG standard 

 
Keywords: Modulated wavelet transforms; Optimal 
modulating frequency; AM-FM modeling 
 
 
二、Introduction 
 

The main obstacle to image applications such as 
storage and transmission over a band-limited channel 
is the huge amount of data required to represent an 
image directly. There has been increasing demand for 
image compression with the rapid growth in modern 
communications and computer technologies; this is a 
natural trend. State of the art techniques can compress 
typical images by factors of 10 to 50 without 
significantly degrading the image quality, depending 
on the specific application and encoder/decoder 
complexity [1]-[4]. The Joint Photographic Experts 
Group (JPEG) [5] shows good performance at 
moderate to high bit rates of compression measured in 
bits per pixel (bpp). Multiresolution representation is 
well suited to the properties of Human Visual System 
(HVS); thus, the wavelet subband coding has shown 
promising results at low to moderate bit rates [6]. 
Wavelet transform provides many advantages such as 
multiresolution analysis, joint spatial-spectral 
localization, fast de-correlation with compact energy 
distribution in the wavelet domain, and exact 
reconstruction, which are beneficial to the image 
compression task [7]. Many competitive wavelet 
coders including embedded zero-tree wavelets (EZW) 
of Shapiro [8], set partitioning in hierarchical trees 
(SPIHT) of Said and Pearlman [9], morphological 
representation of wavelet data (MRWD) of Servetto et 
al. [10], and group testing for wavelets (GTW) of 
Hong and Ladner [11] have been developed. In 
addition, wavelet based coding techniques have been 
adopted as the underlying methods to implement the 
JPEG 2000 standard [12]. Wavelet transform analyzes 
an image with a decomposition procedure, which is 
recursively performed on the low frequency 
component only; on the other hand, wavelet packet 
transform applies the decomposition procedure to both 
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the low and high frequency components to generate a 
larger family of subband components [13]-[14]. 
Recently, the modulated wavelet transform acting as 
an extension of wavelet transform had been proposed 
[15]. Images can be represented by using the 
modulated wavelet transform to gain an adaptable 
zooming in the frequency regions of importance 
depending on the energy spectral density (ESD), 
instead of being constrained in the fixed low 
frequency region centered at zero frequencies. As a 
result, the modulate wavelet transform provides a 
flexible as well as adaptable representation framework 
that can open a broad range of image applications. 
This paper extends the previous work in [16], where 
the modulated wavelet subband coding with a fixed 
Gabor filterbank was introduced. Specifically, an 
adaptable rather than fixed subband decomposition is 
proposed to improve the coding performance; and, a 
simplified version of the extended SPHIT algorithm is 
developed to encode the complex valued modulated 
wavelet coefficients.Image compression is crucial to 
many applications dealing with storage and 
transmission of visual data. To design effective coders, 
it is essential to recognize the importance of data 
representation. The wavelet representation has many 
properties that are beneficial to the image compression 
task; namely multi-resolution analysis, spatial-spectral 
localization, fast de-correlation with energy 
compaction of wavelet coefficients, easy 
implementation and exact reconstruction. Many 
competitive wavelet-based image coders had been 
proposed, e.g. embedded zero-tree wavelets (EZW) of 
Shapiro, set partition in hierarchical trees (SPIHT) of 
Said, and morphological representation of wavelet 
data (MRWD) of Servetto. In this project report, a 
new, modulated wavelet transform (MWT) based 
approach to image representation for compression is 
presented. In contrast to wavelet transform (WT) that 
is focused on the low frequency decomposition in a 
multi-resolution manner, MWT successively 
decomposes images with zooming in the frequency 
regions centered at selectable modulating frequencies; 
thus, MWT is an extension of WT and may be used to 
improve the representation performance by selecting 
suitable modulating frequencies. Motivated by the 
amplitude-modulation frequency-modulation 
(AM-FM) modeling of Bovik et al. the analysis of 
dominant instantaneous frequency (DIF) seems 
essential to the selection of suitable modulating 
frequencies for applying MWT to image 
representation. For computation simplicity, we had 
taken the average of local DIFs as the modulating 
frequency of MWT and the results demonstrated the 
potential of MWT for image compression in terms of 
the computed PSNR-entropy values shown as the 
rate-distortion curves. 
 

 

三、Modulated Wavelet Transform (MWT) 
   

Let )( xψ be a valid wavelet and )( xφ the scaling 
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where )( nSJ and )( nDl

J2

are the scaling and wavelet 
coefficient representing the approximation at the 
coarsest resolution  and the detail at resolution 

 respectively.l2 )( nSl and can be obtained 
from )( nS 1−l  by wavelet transform given by 
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where >=< −− nnh ,,)( 1φφ , >=< −− n,,) 1φψ , 
>⋅⋅< ,  is the inner product; moreover,  can 

be exactly reconstructed from S and by the 
inverse wavelet transform given by 
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For signals of the form , from 
equation (1) we have 
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where coefficients and can 
be obtained by 
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which is called modulated wavelet transform with 
modulating frequency U . Its inverse transform can 
be obtained from equation (3) as follows, 
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The 2D extension can be obtained by a tensor 
product of two 1D MWT.  
 

 

四、Adaptive MWT-Based Subband Decomposition 
 

The analytic image obtained by adding an 
imaginary part via the 2-D Hilbert transform [18] is 
utilized for the compression task. Specifically, the 
analytic image t  and the corresponding real 
valued image  are uniquely related by 

),( yx
),( yxs

) jHy ([,(),( sxsyxt += , where ][⋅H  
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Te ]01[=v  direction; the Fourier transforms of 
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spectrum of  is supported only in quadrants I 

and IV of the frequency plane: ; and the 
spectral redundancy of  can be removed. 
Multicomponent AM-FM modeling represents the 
analytic image as sums of nonlinear functions, each of 
the form , where 

 and  (i.e. the gradient of 
) are the amplitude and frequency 

modulating functions, respectively. As a flexible 
decomposition without excessive side information to 
describe the resulting structure, the DMWPT-based 
subband decomposition algorithm is presented below. 
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Step 1: For a real valued image, remove the DC 
component, perform the Hilbert transform, and 
form the analytic image. Specifically, if the 
Hilbert transform is performed horizontally, 
subbands with negative horizontal frequencies 
are all zeros, which can be ignored by down 
sampling the analytic image by 2 in the 
horizontal direction for the rest of the 
compression task; and, the data size of the 
(critically down sampled) analytic image is 
equal to that of the original real valued image. 
 
Step 2: Compute energy spectral density (ESD) 
of the analytic image, find the position of the 
maximum ESD (in the frequency plane), take it 
as the modulating frequency, and perform 
DMWT to generate four subbands. 
 
Step 3: For each subband, compute the 
respective ESD and decide whether to 
decompose it further or not. Specifically, let 

 be the global maximum of the ESD, if 
there is a local maximum that is greater than 

M  ( ) with a distance (from the 
global maximum) greater than a given threshold 

, then the subband needs to be further 
decomposed into four smaller subbands by 
DMWT with adapted modulating frequency 
according to the position of the global 
maximum . 

 
Step 4: Repeat Step 3 until there is no subband 
with more than one significant local maximum 
in the ESD, or the subband size reaches to the 
minimum size given a priori. 
 

 
五、SPIHT Extension 
 

Since the subbands of images obtained by using 
the adaptive DMWPT are complex valued, the 
original SPIHT algorithm developed by Said et al. 
needs to be extended to encode these subbands in the 
hierarchical modulated wavelet domain. Four symbols 

are used to identify the status of transform coefficients: 
IP, NP, SP and ZT, which stand for insignificant pixel, 
newly significant pixel, significant pixel and zero tree, 
respectively. Initially, all the modulated scaling and 
wavelet coefficients at the coarsest resolution are set 
IP and ZT, respectively. The complex value is 
represented by the magnitude and angle (i.e. in the 
polar form). The magnitude of complex valued 
transform coefficients is used for the comparison with 
a given sequence of successively smaller threshold 
values to sort out the significant coefficients in the 
status check pass. The sequence of threshold values 
can be obtained by using the recursive equation: 

2/1−= kk TT , where the initial value T  must be 
greater than or equal to half the maximum magnitude 
of the transform coefficients. 

0

 

六、實驗結果 

 

The proposed, modulated wavelet subband 
coding (MWSC) system with extended SPIHT 
algorithm has been evaluated on several 512 x 512 
gray scale images, including Barbara, fingerprints, 
and a SAR image. The performance is compared with 
the wavelet-based SPIHT and the JPEG standard. In 
MWSC, the critically down sampled analytic image, 
which is constructed via the use of the 2-D Hilbert 
transform in the horizontal direction, is decomposed 
into subbands using the adaptive DMWPT; the 
adaptability strategy is based on the respective ESD 
with parameters: 5.0=α , 1=β  radian, and the 
minimum size of subbands is: 64 x 32; the coding 
sequence of the decomposed subbands is in a zigzag 
order: from low-to-high frequency subbands; the 
angle quantity of the complex valued transform 
coefficients represented in the modulated wavelet 
trees is uniformly quantized with 6-bit resolution; the 
number of bits representing the initial angle 
information of the newly significant pixels is 3. The 
number of decomposition levels in both wavelet and 
modulated wavelet transforms is 4. Daubechies 
orthogonal wavelet D2 is used. The sequence of 
successively smaller threshold values in the original 
SPIHT as well as its extension is obtained by 

15.0 −= kk TT ; K,2,1=k , with the initial T  
equal to half the maximum amplitude of the transform 
coefficients. The compression distortion is measured 
by the peak signal to noise ratio (PSNR) in dB. The 
compression rates measured in bits per pixel (bpp) and 
PSNR values are plotted as the rate distortion curve 
for performance comparison.  

0

Fig.1 shows the comparison on natural Barbara 
image at different bit rates. Part of the decoded images 
from the JPEG standard, wavelet-based SPIHT, and 
MWSC at 0.2 bpp are shown in Fig. 1(a)-(c), 
respectively. By comparing visually, MWSC 
improves the reconstruction result on the textured 
regions with significant stripes in specific directions. 
Their respective rate distortion curves shown in Fig. 
1(d) demonstrate that MWSC is preferable for images 

 3



with large portions of textures. 
The compression of fingerprints image is one of 

the most important issues, which demands the best 
solution. Without any compression, the storage of 
digitized fingerprints of a person may be in the order 
of mega bytes. Fig. 2 shows the comparison on a 
fingerprints image. By comparing the decoded images 
shown in Fig. 2(a)-(c), and the rate distortion curves 
shown in Fig. 2(d), wavelet-based SPIHT outperforms 
JPEG at low to moderate bit rates (< 1 bpp); and 
MWSC is the superior for this kind of images. 

Finally, the comparison on a SAR image 
containing large portions of irregular textures is 
presented in Fig. 6. Part of the original and decoded 
images is shown in Fig. 3(a)-(d). The rate distortion 
curves shown in Fig. 3(e) demonstrate that 
wavelet-based SPIHT is inferior to JPEG at low to 
moderate bit rates, and vice versa at moderate to high 
bit rates; however, MWSC is still the superior in terms 
of the rate distortion curves as well as visual 
comparison. 

The residual correlation can be exploited further 
by using arithmetic coding. In our experiments, the 
use of arithmetic coding improves the performance 
with a gain of about 0.2–0.4 dB over the 
non-arithmetic coded versions of both the 
wavelet-based SPIHT and MWSC; nevertheless, 
MWSC still outperforms the wavelet-based SPIHT 
with similar rate distortion curve improvements like 
Fig. 1(d), 2(d) and 3(e). 
 
 
 

 
(a) 

 
 

 
(b) 

 

 
(c) 

 
(d) 

 
Fig. 1: (a) ~ (c): Part of the decoded Barbara image at 
0.2 bpp using the JPEG standard (PSNR=24.6 dB), 
the wavelet based SPIHT without arithmetic coding 
(26.4 dB), and the proposed MWSC (26.9 dB), 
respectively; (d): the corresponding rate distortion 
curves (dashed: JPEG, dotted: wavelet based SPIHT, 
solid: the proposed method). 
 
 

 
(a) 
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(b) 

 

 
(c) 

 

 
(d) 

 

Fig. 2: (a) ~ (c): Part of the decoded fingerprints 
image at 0.25 bpp using the JPEG standard 
(PSNR=21.6 dB), the wavelet based SPIHT without 
arithmetic coding (25.4 dB), and the proposed MWSC 
(25.9 dB), respectively; (d): the corresponding rate 
distortion curves (dashed: JPEG, dotted: wavelet 
based SPIHT, solid: the proposed method). 
 

 

  
(a)                      (b) 

 

  
(c)                      (d) 

 
(e) 

 
Fig. 3: (a) ~ (d): Part of the original SAR image, 
decoded image at 0.2 bpp using the JPEG standard 
(PSNR=18.7 dB), the wavelet based SPIHT without 
arithmetic coding (17.8 dB), and the proposed MWSC 
(19.1 dB), respectively; (e): the corresponding rate 
distortion curves (dashed: JPEG, dotted: wavelet 
based SPIHT, solid: the proposed method). 
 

 

六、計畫成果 

 
An adaptive subband image coding system 

based on the modulated wavelet packet and modulated 
wavelet transforms is presented. It consists of three 
stages: adaptive subband decomposition, adaptive 
modulated wavelet transform, and embedded coding 
in the modulated wavelet trees. In the first stage, the 
analytic image is decomposed into subbands via the 
adaptive modulated wavelet transform in a resolution 
recursive manner, which leads to the adaptive 
modulated wavelet packet transform with a top-down 
quadtree structure; In the second stage, each of the 
decomposed subbands containing one significant 
AM-FM component is represented in the modulated 
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wavelet tree; the associated modulating frequencies in 
the first two stages are adapted based on the 
respective energy spectral densities; In the last stage, a 
simplified version of the extended SPIHT algorithm is 
proposed to encode the transform coefficients. 
Experimental results demonstrate that the modulated 
wavelet based subband coding system is preferable to 
both the wavelet based and the JPEG standard for 
images with significant energies in the middle-high 
frequency regions, in terms of the rate distortion 
curves and visual comparisons. Moreover, it is a 
highly parallel processing, which is a substantial 
advantage for the hardware implementation; and there 
is no the so-called blocking effects that are usually to 
be found on the decoded JPEG images with 
compression at low bit rates. 

This project result had been submitted to and 
accepted by the Pattern Recognition Letters. 
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