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一、 中文摘要

在此研究中, 我門已完成隨機 T-S 模糊 ARMAX 模式之適應

權重最小變異量控制。 對於一個隨機 T-S 模糊 ARMAX 模式, 首

先我們推導其最佳向前一步的預估模式; 基於此預估模式, 我們

使用隨機梯度方法來估測其中之參數。 接著於採用之直接適應控

制結構下, 我們推導其適應控制律, 使得針對一個參考模式的輸

出追蹤誤差的變異量與控制輛間之權衡能夠最佳化。 我們推導此

適應控制系統的穩定度, 同時藉由模擬研究已驗證所推導之理論。

關鍵詞: 模糊適應控制、 隨機T-S 模糊 ARMAX 模式

Abstract

In this study, we attack the weighted adaptive minimum vari-
ance control for stochastic T-S fuzzy ARMAX models. From
the fuzzy ARMAX model, a fuzzy one-step ahead prediction
model is first developed. A stochastic gradient algorithm is
then proposed to identify the parameters of the related one-
step-ahead predictor. Under the direct adaptive control scheme,
the weighted minimum variance control is applied to find the
control law to make adaptive control system stable in the sense
of mean square stability. Stability of the adaptive stochastic
fuzzy control system is rigorously derived. Simulation study is
also made to verify the developed results.

Keywords: Fuzzy adaptive control, Stochastic T-S fuzzy AR-
MAX model

二、 緣由與目的

Recently, based on the Takagi-Sugeno model, fuzzy modeling
for nonlinear dynamic systems and identification problem are
discussed in [1]-[3]. Meanwhile, fuzzy control scheme has been
employed for tracking control of nonlinear systems based on
the adaptive feedback linearization techniques [4]-[11]. In the
previously mentioned literature, the external disturbances or
noises are considered to be deterministic for the convenience
of control design. However, in many practical applications

[12][13], external noises are inevitable and are more adequately
described by random processes. In this situation, the systems
to be controlled are always modeled by stochastic systems. A
nonlinear stochastic system can be approximated by a fuzzy
stochastic system [14]-[19]. A stochastic adaptive control
scheme for the state-space T-S fuzzy model based on the LQG
control theory is proposed in [20]. Non-adaptive LQG fuzzy
controllers are also considered in [14] and [15]. On the other
hand, the NARMAX (nonlinear ARMAX) model has been pre-
sented for modeling nonlinear processes. The NARMAX model
can be reduced to a quasi-ARMAX system by linearization
or approximation. Fuzzy system identification and nonlinear
model predictive control based on the quasi-ARMAX model are
discussed in [16][17][18]. Besides the quasi-ARMAX model,
the fuzzy ARMAX model has been used to forecast the short-
term load of a power system in [19]. However, these results
proposed by the mentioned literature are given without vigorous
proofs. Solid proof of the stability and tracking performance of
the fuzzy ARX model for deterministic systems can be referred
to [21]. In the literature [29], the global stochastic stability and
tracking performance of the adaptive minimum variance control
for stochastic T-S fuzzy ARMAX models are attacked.

In this study, we shall further attack the weighted adaptive
minimum variance control for stochastic T-S fuzzy ARMAX
models. From the fuzzy ARMAX model, a fuzzy one-step
ahead prediction model is first developed. A stochastic gradient
algorithm is then proposed to identify the parameters of the
related one-step-ahead predictor. Under the direct adaptive
control scheme, the weighted minimum variance control is
applied to find the control law to make adaptive control system
stable in the sense of mean square stability. Stability of the
adaptive stochastic fuzzy control system is rigorously derived.
Simulation study is also made to verify the developed results.

Notations and Definitions

Let ‖x‖ be the Euclidean norm of a vector x. Let A(q−1) be



a polynomial with A(q−1) =
n∑

i=0

aiq
−i. The companion matrix

ΞA associated with the polynomial A(q−1) is defined as

ΞA =
[

0(n−1)×1 In−1

−an −an−1 · · · −a1

]
三、 研究方法及成果

A. System modeling and problem formulation

A nonlinear stochastic system can be divided into several
local linear stochastic systems according to their operation
regions. Local linear systems using ARX, ARMAX, and NAR-
MAX models to approximate nonlinear stochastic systems can
be referred to [21][18][19][15]. A fuzzy stochastic model can
be employed to interpolate local linear stochastic systems for
a nonlinear stochastic system via the smoothing of fuzzy basis
functions. This fuzzy stochastic model is described by fuzzy if-
then rules and will be used here to deal with the stochastic
tracking problem of nonlinear stochastic systems. The i-th
rule of this fuzzy stochastic model for nonlinear discrete-time
stochastic systems is proposed as the following fuzzy ARMAX
form:

Plant Rule i:
If z1(k) is Fi1 and · · · · · · and zg0(k) is Fig0 ,
then Ai(q−1)y(k + 1) = Bi(q−1)u(k) + Ci(q−1)w(k + 1)

(1)
for i = 1, 2, ..., L, where Fij is the fuzzy set, z1(k), z2(k),
· · · , zg0

(k) are the premise variables, and L is the number of
if-then rules. Polynomials Ai(q−1), Bi(q−1), and Ci(q−1) are
defined, respectively, as follows

Ai(q−1) = ai0 + ai1q
−1 + ...... + ainq−n, ai0 = 1

Bi(q−1) = bi0 + bi1q
−1 + ...... + bimq−m,

Ci(q−1) = ci0 + ci1q
−1 + ci2q

−2 + ...... + cilq
−l, ci0 = 1

(2)
for i = 1, 2, ..., L where q−1 denotes the delay operator, i.e.,
q−1y(k) = y(k − 1). Without loss of generality, Ci(q−1) can
be taken to have roots inside the unit circle [12][13]. y(k) is
the output measurement, u(k) the control input, and the noise
process w(k) will be taken to satisfy the following assumptions
[12][13]:

E[w(k + 1)| zk] = 0, a. s. (3)

E[w2(k + 1)| zk] = σ2
w, a. s. (4)

lim sup
N→∞

1
N

N∑
k=1

w2(k) ≤ Kw < ∞, a. s. (5)

where E denotes the expectation, zk denotes the sub-σ al-
gebra generated from the data set {y(s)}s≤k. Note that zk

is increasing, i.e., zk ⊂ zk+1. We also assume that u(k) is
zk−measurable. For the premise variables zi(k), 1 ≤ i ≤ g0,
we assume that they are zk−measurable, i.e., zi(k) depends
on the data set {y(s), u(s)}s≤k. Using the smoothing property
of the conditional mean [22], conditions (3) and (4) imply that
w(k) is also a white process with zero mean and variance σ2

w.
Note that condition (5) implies

1
N

N∑
k=1

w2(k) ≤ Kw, a.s., for N ≥ Nw (6)

where Nw is a sufficiently large integer.
Given the input/output sequences {u(k)} and {y(k)}, the

stochastic fuzzy system (1) is equivalent to

y(k + 1) =
L∑

i=1

hi(z(k))
{
(1 − Ai(q−1))y(k + 1)

+Bi(q−1)u(k) + Ci(q−1)w(k + 1)
}

(7)

where z(k) = [z1(k) z2(k) ... zg0(k)] and, for 1 ≤ i ≤ L,

µi(z(k)) =
g0∏

j=1

Fij(zj(k)) (8)

hi(z(k)) =
µi(z(k))∑L
i=1 µi(z(k))

(9)

Where the function Fij(zj(k)) is the grade of membership of
zj(k) in Fij . For (8) and (9), we assume that

hi(z(k)) ≥ 0 ,
L∑

i=1

hi(z(k)) = 1 (10)

The physical meaning of (7) is that the L local linear stochas-
tic subsystems are interpolated by the fuzzy basis functions
hi(z(k)), for i = 1, 2, . . . , L.

In the sequel, we shall first attack the identification problem
for estimating the parameters related to the fuzzy ARMAX
model (1). To attack this problem, we shall need some math-
ematical tools concerning the stochastic stability of the T-S
stochastic fuzzy system. After obtaining the estimates of the
parameters, the design objective for the stochastic fuzzy system
in (7) is to determine the adaptive control input u(k) so as to
bring the output y(k + 1) to optimally track a desired bounded
output command y∗(k + 1), which is specified beforehand.
Based on the identified parameters, the control objective is to
choose the input u(k), as a function of {y(s), u(s − 1)}s≤k, to
minimize

J1(k + 1) = E{[y(k + 1) − y∗(k + 1)]2 + λu2(k)|zk} (11)

B. Stability of Stochastic T-S Fuzzy Systems

In order to deal with the identification problem of the T-S
stochastic fuzzy system, the stability issue of the stochastic
fuzzy system must be addressed first. The results will be
used in the sequel for analysis of the optimal predictor and
the identification algorithm for the stochastic fuzzy ARMAX
model. Since the fuzzy ARMAX model, such as in (7), can
be transformed into a state-space stochastic fuzzy model and
stability is easier to discuss from the state-space perspective,
we consider a forced T-S fuzzy system in the state-space form
as follows

x(k + 1) =
L∑

i=1

hi(z(k))Aix(k) + v(k + 1) (12)

where {v(k)} is the stochastic forced term. It is assumed that
{v(k)} is zk−measurable. Recall that z(k) is zk−measurable,
i.e., E {hi(z(k))|zk} = hi(z(k)) a.s. Then x(k) is also



zk−1−measurable. Also we make the assumption that v(k) is
a process with uniformly bounded average power

sup
k

E
{
‖v(k)‖2

}
= σ2

v < ∞ (13)

Before deriving the stability result for the forced stochastic
fuzzy model (12), we need to first consider the following
unforced stochastic system

x(k + 1) = A(k)x(k) (14)

where A(k) is zk−measurable and the sequence
{
‖A(k)‖2

}
is uniformly bounded. A sufficient conditions concerning the
stability of the unforced system in (14) is given below.

Theorem 1: If there exists a sequence of symmetric positive
definite matrices {P(k)} with 0 < λmin

P I ≤ P(k) ≤ λmax
P I <

∞ and P(k) being zk−measurable such that the matrix in-
equality

λP(k) − AT (k)E {P(k + 1)|zk}A(k) > 0, ∀k (15)

holds for some λ with 0 < λ < 1, then the stochastic fuzzy
system (14) is mean square exponentially stable with

E
{
‖x(k)‖2

}
≤ λmax

P

λmin
P

λk−k0E
{
‖x(k0)‖2

}
, ∀k ≥ k0 (16)

where k0 is an arbitrary initial time, x(k0) is an arbitrary initial
condition. Furthermore, it is also exponentially stable in the
sense that

‖x(k)‖ ≤ c1(
√

λ)k−k0 ‖x(k0)‖ , k ≥ K1, a.s. (17)

for some positive almost surely bounded random variable c1 >
0 and a sufficiently large integer K1.

Proof: The proof is given in Appendix 4.1.
Note that the following unforced system

x(k + 1) =
L∑

i=1

hi(z(k))Aix(k), (18)

which is related to (12), is a special case of (14) by identifying

A(k) =
L∑

i=1

hi(z(k))Ai

Hence we have the following corollary.
Corollary 1: If there exist symmetric positive definite matri-

ces Pi, 1 ≤ i ≤ L, such that the linear matrix inequalities

Ξi,j ,
[

λPi AT
i Pj

PjAi Pj

]
> 0, 1 ≤ i, j ≤ L (19)

hold where λ is a positive real number with 0 < λ < 1, then
condition (15) is satisfied. Therefore, for the system in (18), the
stability properties in (16) and (17) hold.

Proof:
Since Pj is positive definite, by Schur complement, condition
(19) is equivalent to

λPi − AT
i PjAi > 0 (20)

Define P(k) =
L∑

i=1

hi(z(k))Pi. It follows P(k) is

zk−measurable and λmin
P I ≤ P(k) ≤ λmax

P I where λmin
P =

min
1≤i≤L

(λmin(Pi)) and λmax
P = max

1≤i≤L
(λmax(Pi)). Due to the

properties of hi(·) in (10), we also have

E {hj(z(k + 1))|zk} ≥ 0 ,
L∑

j=1

E {hj(z(k + 1))|zk} = 1

Now applying the operation
L∑

i=1

L∑
j=1

hi(z(k))E {hj(z(k + 1))|zk} to both sides of (20), we

have

λP(k) − AT (k)E {P(k + 1)|zk}A(k) > 0,∀k.

By using Theorem 1, the proof is completed. ¤
In the following, we shall see that, provided the matrix

inequalities in (15) hold, the stochastic system in (14) behaves
like a linear time-varying system. With the system A(k), the
system response of the system in (14) can be described by

x(k + 1) = Φ(k + 1, k0)x(k0), k ≥ k0 ≥ 0

where Φ(k+1, k0) can be regarded as the transition matrix [24]
and is defined as

Φ(k + 1, k0) , A(k)A(k − 1) · · ·A(k0) (21)

and Φ(k, k) , I. The following corollary directly follows from
the definition of the norm ‖·‖ms and inequality (16).

Corollary 2: If there exists a sequence of symmetric positive
definite matrices {P(k)} with 0 < λmin

P I ≤ P(k) ≤ λmax
P I <

∞ and P(k) being zk−measurable such that the matrix in-
equality (15) hold for some λ with 0 < λ < 1, then the upper
bounds of the induced norm of Φ(k, k0) in the mean square
and almost sure senses are given by

‖Φ(k, k0)‖ms ≤

√
λmax

P

λmin
P

(
√

λ)k−k0 , ∀k ≥ k0 (22)

‖Φ(k, k0)‖ ≤ c2(
√

λ)k−k0 , k ≥ K1, a.s. (23)

for some positive almost surly bounded random variable c2 and
a sufficiently large integer K1.

Now consider the following stochastic system

x(k + 1) = [A(k)x(k) + B(k)us(k)]
ys(k) = [C(k)x(k) + D(k)us(k)] (24)

where the sequences
{
‖A(k)‖2

}
,

{
‖B(k)‖2

}
,

{
‖C(k)‖2

}
,

and
{
‖D(k)‖2

}
are uniformly bounded.

Theorem 2: For the stochastic system in (24), there exists
a sequence of symmetric positive definite matrices {P(k)}
with 0 < λmin

P I ≤ P(k) ≤ λmax
P I < ∞ and P(k) being

zk−measurable such that the matrix inequality (15) hold for
some λ with 0 < λ < 1, then we have

1
N

N∑
k=1

‖ys(k)‖2 ≤ K2

N

N∑
k=1

‖us(k)‖2 +
K3

N
, a. s., (25)

for N ≥ K1 where K1 is a sufficiently large number, 0 <
K2 < ∞, and 0 ≤ K3 < ∞.

Proof: The proof is given in Appendix 4.2.



Note that the following general T-S fuzzy state-space system

x(k + 1) =
L∑

i=1

hi(z(k)) [Aix(k) + Bius(k)]

ys(k) =
L∑

i=1

hi(z(k)) [Cix(k) + Dius(k)]

(26)

is a special case of the systems in (24) by identifying

A(k) =
L∑

i=1

hi(z(k))Ai, B(k) =
L∑

i=1

hi(z(k))Bi

C(k) =
L∑

i=1

hi(z(k))Ci, D(k) =
L∑

i=1

hi(z(k))Di

Therefore, by combining the results in Corollary 1, Corollary 2,
and Theorem 2, the following corollary can be easily obtained.

Corollary 3: If there exist symmetric positive definite matri-
ces Pi, 1 ≤ i ≤ L, such that the matrix inequality (19) holds for
some λ with 0 < λ < 1, then, for the stochastic fuzzy system
(26), the inequality (25) holds.

Stability analysis of the state-space stochastic fuzzy system
(12) is very useful for the optimal tracking design of the fuzzy
ARMAX model in (7). For system identification based on the
prediction error method [26] for the fuzzy ARMAX model, the
optimal fuzzy prediction must be first established as in the next
section.

C. Optimal predictor of stochastic fuzzy systems

In this section, the prediction problem of the fuzzy ARMAX
model in (7) will be addressed. This will result in a fuzzy
predictor model which will be suitable for parameter estimation
and optimal tracking design of fuzzy ARMAX systems. The
optimal fuzzy predictor for the fuzzy ARMAX model has
been studied in [27]. The results in that reference are briefly
summarized in the following.

Assumption 1: Let ΞC,i be the companion matrix associated
with the polynomial Ci(q−1). Assume that there exist symmet-
ric positive matrices PC,i, 1 ≤ i ≤ L, such that the set of
matrix inequalities[

λCPC,i ΞT
C,iPC,j

PC,jΞC,i PC,j

]
> 0, 1 ≤ i, j ≤ L (27)

is solvable for some λC with 0 < λC < 1.

A fuzzy polynomial
∑L

i=1 hi(z(k))Ci(q−1) with Ci(q−1)
being manic and hi(·) satisfying (10) is stable if the LMI
condition (27) holds.

Let y0(k + 1|k) denote the conditional mean of y(k + 1)
given the data set {u(s), y(s)}s≤k, i.e., y0(k + 1| k) ,
E {y(k + 1)| zk} . Define the polynomial αi(q−1), 1 ≤ i ≤ L,
as

Ci(q−1) − Ai(q−1) = q−1αi(q−1) (28)

where

αi(q−1) = αi0 + αi1q
−1 + · · · + q−(n−1), n = max(n, l)

Under Assumption 1 on the fuzzy ARMAX model (7), the
optimal one-step ahead predictor of y(k +1) given the data set

{u(s), y(s)}s≤k is y0(k + 1| k) which satisfies the following
equation

y0(k + 1|k) =
L∑

i=1

hi(z(k)){
[
1 − Ci(q−1)

]
y0(k + 1|k)

+ αi(q−1)y(k) + Bi(q−1)u(k)} (29)

with the prediction error

y(k + 1) − y0(k + 1|k) = w(k + 1) (30)

Equation (29) defines a unique one-step ahead fuzzy pre-
diction model corresponding to the fuzzy ARMAX model (7).
From human-operation point of view, the fuzzy prediction
model is more feasible than the fuzzy ARMAX model since we
can use the current and past measurement data {u(s), y(s)}s≤k

to predict the future response y(k + 1) of the stochastic fuzzy
system; while using the fuzzy ARMAX model (7), the statistical
properties of the noise process w(k) should be specified in
advance.

D. Stochastic Gradient Algorithm

Following from the fuzzy prediction model represented by
(29), the stochastic gradient algorithm in [13] will be used to
identify the parameters. First, rearrange the prediction model
(29) as follows

y0(k + 1|k) =
L∑

i=1

hi(z(k))χT
0 (k)θi0 = φT

0 (k)θ0 (31)

where, for 1 ≤ i ≤ L,

χ0(k) =
[
−y0(k|k − 1) · · · − y0(k − l + 1|k − l)

y(k) · · · y(k − n + 1) u(k) · · ·u(k − m)]T

θi0 =
[
ci1 · · · cil αi0 · · ·αi(n−1) bi0 · · · bim

]T

φ0(k) =
[
h1(z(k))χT

0 (k) h2(z(k))χT
0 (k)

· · · · · ·hL(z(k))χT
0 (k))

]T

θ0 =
[
θT
10 θT

20 · · · · · · θT
L0

]T

Note that (31) represents a pseudo linear regression form for the
fuzzy ARMAX prediction model (29) because the component
y0(k − i + 1|k − i) in χ0(k) depends on the true parameter
vector θ0. According to the pseudo linear regression form (31),
the proposed stochastic gradient algorithm to identify the true
parameter vector θ0 is given by, for k ≥ 1,

θ̂(k) = θ̂(k − 1) +
φ(k − 1)

r(k − 2) + φT (k − 1)φ(k − 1)

×
[
y(k) − φT (k − 1)θ̂(k − 1)

]
(32)

where the regression vector φ(k) and r (k − 1) are defined as

φ(k) =
[
h1(z(k))χT (k) h2(z(k))χT (k)

· · · · · · hL(z(k))χT (k)
]T

(33)
χ(k) = [−y(k) · · · − y(k − l + 1)

y(k) · · · y(k − n + 1) u(k) · · ·u(k − m)]T (34)

y(k) = φT (k − 1)θ̂(k) (35)

r(k − 1) = r(k − 2) + φT (k − 1)φ(k − 1) (36)



For the initial conditions, θ̂(0) can be arbitrarily chosen and
r(−1) must be a positive scalar. By its definition, the variable
y(k) can be regarded as a posterior estimate of y(k).

Before proceeding to analyze the stochastic gradient algo-
rithm, some useful definitions are made as follows

ŷ(k) = φT (k − 1)θ̂(k − 1) (37)
e(k) = y(k) − ŷ(k) (38)
η(k) = y(k) − y(k) (39)
ς(k) = η(k) − w(k) (40)

θ̃(k) = θ̂(k) − θ0 (41)

β(k) = −φT (k − 1)θ̃(k) (42)

The variables ŷ(k) and y(k) are the a prior and the a posteriori
predictions of y(k), respectively. Accordingly, e(k) and η(k)
are termed as the a prior and the a posteriori prediction errors,
respectively. Using (30), the quantity ς(k) can be rewritten as
ς(k) = y0(k|k−1)−y(k) and thus it accounts for the deviation
between the optimal prediction y0(k|k−1) and the a posteriori
prediction y(k). In the extreme case, if ς(k) = 0, then φ(k) =
φ0(k) and the pseudo linear regression form (31) becomes y(k+
1) = φT (k)θ0 which is a linear regression form.

Lemma 1: For the stochastic gradient algorithm in (32), we
have

(i) lim
N→∞

N∑
k=1

φT (k − 1)φ(k − 1)
r(k − 1)r(k − 2)

< ∞ (43)

(ii) η(k) =
r(k − 2)
r(k − 1)

e(k) (44)

(iii) E {β(k)w(k)| zk−1}

= −φT (k − 1)φ(k − 1)
r(k − 1)

σ2
w, a. s. (45)

(iv)
L∑

i=1

hi(z(k − 1))Ci(q−1)ς(k) = β(k) (46)

Proof: The proof is given in Appendix 4.3.
In addition to the results in Lemma 1, we shall need the

following assumptions in order to obtain the properties of the
parameter estimate θ̂(k).

Assumption 2 : For each i, 1 ≤ i ≤ L, system Ci(q−1) is
input strictly passive (ISP) [13].

In (46), the signals ς(k) and β(k) are related by the fuzzy
polynomial

∑L
i=1 hi(z(k − 1))Ci(q−1). As shall be shown in

the next lemma, Assumption 2 implies a passivity condition
for that fuzzy polynomial.

Lemma 2: Consider the fuzzy system in (46). With Assump-
tion 2 that Ci(q−1) is input strictly passive (ISP), we have

k∑
j=1

β(j)ς(j) − ες2(j) ≥ 0, for k ≥ 1 (47)

for some ε > 0.

Proof: The proof is given in Appendix 4.4.
Theorem 3: Under Assumption 2, for the stochastic gradi-

ent algorithm in (32)-(36), we have the parameter difference

convergence

lim
N→∞

N∑
k=1

∥∥∥θ̂(k) − θ̂(k − 1)
∥∥∥2

< ∞, a. s. (48)

and the normalized prediction error convergence

lim
N→∞

N∑
k=1

[e(k) − w(k)]2

r(k − 1)
< ∞, a. s. (49)

Proof: The proof is given in Appendix 4.5.
With the property in (49), it is possible to attain further results

of the stochastic gradient algorithm by imposing an additional
key condition. The following stochastic key technical lemma is
quoted from [13].

Lemma 3: With the property in (49), if there exist positive
constants Ka1, Ka2, and N such that, for N ≥ N , a. s.

1
N

r(N − 1) ≤ Ka1 +
Ka2

N

N∑
k=1

[e(k) − w(k)]2 , (50)

then a. s.

(i) lim
N→∞

1
N

N∑
k=1

[e(k) − w(k)]2 = 0, (51)

(ii) lim sup
k→∞

r(N − 1)
N

< ∞, (52)

(iii) lim
N→∞

1
N

N∑
k=1

E
{

[y(k) − ŷ(k)]2 | zk−1

}
= σ2

w. (53)

Proof: The proof is given in Appendix 4.6.

E. Adaptive Weighted Minimum Variance Control

With the stochastic gradient algorithm for identifying param-
eters in the stochastic fuzzy predictor model, we are ready
to propose an adaptive fuzzy controller. The objective of the
adaptive control system is to design u (k) to minimize the mean-
square error between the output y (k) and the desired output
command y∗ (k) at any time instance and at the same time to
keep the control law at suitable level, i.e., the cost function
in (11) is minimized. We shall construct a direct adaptive
control. Therefore, we shall first discuss the structure of the
weighted minimum variance controller by assuming that the
system parameters are given. For the fuzzy stochastic system
(7) having the optimal one-step ahead prediction form in (29),
the weighted minimum variance tracking control minimizing
the cost function J1(k + 1) in (11) is given by [27] as quoted
below. First, let

b0(k) =
L∑

i=1

hi(z(k))bi0

Theorem 4: ([27]) For the fuzzy stochastic system (7) hav-
ing the optimal one-step-ahead prediction form in (29), the
weighted minimum variance control law minimizing the cost



function in (11) is given by

u(k)

=
b0(k)

b2
0(k) + λ

{
L∑

i=1

hi(z(k))[Ci(q−1) − 1]y0(k + 1|k)

+ y∗(k + 1) −
L∑

i=1

hi(z(k))αi(q−1)y(k)

−
L∑

i=1

hi(z(k))[Bi(q−1) − bi0]u(k)

}
(54)

which is equivalent to

b0(k)
[
y0(k + 1|k) − y∗(k + 1)

]
+ λu(k) = 0 (55)

The dynamics of the closed-loop system is governed by

u(k) =
b0(k)

λ
[w(k + 1) − y(k + 1) + y∗(k + 1)] (56)

and

L∑
i=1

hi(z(k))
[
Ai(q−1) + Bi(q−1)

b0(k)
λ

]
y(k + 1)

=
L∑

i=1

hi(z(k))Bi(q−1)
b0(k)

λ
y∗(k + 1)

+
L∑

i=1

hi(z(k))
[
Bi(q−1)

b0(k)
λ

+ Ci(q−1)
]

w(k + 1)

(57)

Now suppose that the estimated parameters, α̂ij(k), b̂ij(k),
and ĉij(k) are obtained by using the stochastic gradient algo-
rithm at time k. Accordingly, define the following polynomials

α̂i(k, q−1) = α̂i0(k) + α̂i1(k)q−1 + ...... + α̂i(n−1)(k)q−(n−1),

B̂i(k, q−1) = b̂i0(K) + b̂i1(k)q−1 + ...... + b̂im(k)q−m,

Ĉi(k, q−1) = 1 + ĉi1(k)q−1 + ĉi2(k)q−2 + ...... + ĉil(k)q−l,

with ci0 = 1. Let b̂0(k) =
∑L

i=1 hi(z(k))b̂i0(k). Based on the
above estimated polynomials, the weighted adaptive minimum
variance control law under the certainty equivalent principle is
given by

u(k) =
b̂0(k)

b̂2
0(k) + λ

{
L∑

i=1

hi(z(k))[Ĉi(q−1) − 1]ȳ(k + 1)

+ y∗(k + 1) −
L∑

i=1

hi(z(k))α̂i(q−1)y(k)

−
L∑

i=1

hi(z(k))[B̂i(q−1) − b̂i0]u(k)

}
(58)

in which the control law is derived from the following equation

b̂0(k)
λ

[
φT (k)θ̂(k) − y∗(k + 1)

]
+ u(k) = 0 (59)

F. Analysis of Stability

In this section, closed-loop stability of the proposed adaptive
stochastic fuzzy control system will be discussed. First, we
rewrite the equation concerning the adaptive control law in (59)
as

u(k) =
b̂0(k)

λ
[e(k + 1) + y∗(k + 1) − y(k + 1)] (60)

Now applying the operator
∑L

i=1 hi(z(k))Bi(q−1) to both sides
of the above equation and using the system equation (7), we
can obtain

L∑
i=1

hi(z(k))

[
Ai(q−1) + Bi(q−1)

b̂0(k)
λ

]
y(k + 1)

=
L∑

i=1

hi(z(k))Bi(q−1)
b̂0(k)

λ

× [y∗(k + 1) + e(k + 1) − w(k + 1)]

+
L∑

i=1

hi(z(k))

[
Ci(q−1) + Bi(q−1)

b̂0(k)
λ

]
w(k + 1)

(61)

To analyze the closed-loop response of y(k) from the above
equation, the estimated term b̂0(k) imposes a difficult issue.
Therefore, as done in [28], we assume the following assump-
tion.

Assumption 3: (i) Assume that b0,i is known for 1 ≤ i ≤ L
in the fuzzy model and these exists positive number b0,min and
b0,max such that 0 < b0,min ≤ b0,i ≤ b0,max and 0 < b0,min ≤
|b0(k)| ≤ b0,max.

Based on Assumption 3, it is possible to find a constant γ0

such that
0 <

λ

λ + b2
0(k)

≤ γ0 ≤ 1 (62)

Also, the closed-loop system equation in (61) becomes

L∑
i=1

hi(z(k))
[
Ai(q−1) + Bi(q−1)

b0(k)
λ

]
y(k + 1)

=
L∑

i=1

hi(z(k))Bi(q−1)
b0(k)

λ

× [y∗(k + 1) + e(k + 1) − w(k + 1)]

+
L∑

i=1

hi(z(k))
[
Ci(q−1) + Bi(q−1)

b0(k)
λ

]
w(k + 1)

(63)

Without loss of generality, assume that n = max(n,m). Then,
Ai(q−1) and Bi(q−1) will be regarded as polynomials of
degree n where the extra coefficients bij for n ≥ j > m are
identified as zeros. Let ΞAi

be the companion matrix associated
with the polynomial Ai(q−1) , −γ0Ai(q−1) with degree n.
Corresponding to the polynomial Bi(q−1) with degree n, define
a matrix MBi

as

MBi
=

[
0(n−1)×n

−γ0bin −γ0bi(n−1) · · · −γ0bi1

]



Next we assume that the nonadaptive weighted minimum
variance controller defined in 54 is a stabilizing controller for
the stochastic T-S fuzzy model defined in (7).

Assumption 4: There exist symmetric positive definite ma-
trices P i, 1 ≤ i ≤ L, of the form

P i =

[
P

11

i 0(n−1)×1

01×(n−1) P
22

i

]
(64)

such that the matrix inequalities, for 1 ≤ i, j ≤ L, λ0P i − ε
b20,max

λ2 In ΞT
Ai

Pj 0n×n

P jΞAi
P j P jMBi

0n×n MT
Bi

P j εIn

 > 0 (65)

hold for some ε > 0 and some λ0 with 0 < λ0 < 1.
Now, define the following time-varying matrices

ΞA(k) =
L∑

i=1

hi(z(k))ΞAi
, MB(k) =

L∑
i=1

hi(z(k))MBi

P(k) =
L∑

i=1

hi(z(k))P i, P+(k) =
L∑

i=1

hi(z(k + 1))P i

and let Γ2(k) be a diagonal matrix with

Γ2(k) = diag{b0(k − n)
λ

,
b0(k − n + 1)

λ
, · · · ,

b0(k − 1)
λ

}
(66)

Note that by the properties of the membership functions in (10)
and the definitions of b0(k) as well as b0,max, it follows that

‖Γ2(k)‖ ≤ b0,max

λ
(67)

Moreover, from Lemma 7 in [27], we can conclude that

[ΞA(k) + MB(k)Γ2(k)]T P+(k) [ΞA(k) + MB(k)Γ2(k)]
< λ0P(k)

(68)
Based on Assumptions 1-4, we have the following results

which will be used to prove stability of the adaptive control
system.

Lemma 4: Under Assumption 1-Assumption 4, there exist
finite positive constants K8 to K13 such that a.s.

(i)
1
N

N∑
k=1

y2(k) ≤ K8

N

N∑
k=1

[e(k) − w(k)]2 + K9, (69)

(ii)
1
N

N∑
k=1

y2(k) ≤ K10

N

N∑
k=1

[e(k) − w(k)]2 + K11, (70)

(iii)
r(N − 1)

N
≤ Ka2

N

N∑
k=1

[e(k) − w(k)]2 + Ka1, (71)

for N ≥ N where N is a sufficiently large number.
Proof: The proof is given in Appendix (4.7).

Finally, with the above lemma, we have the following track-
ing performance and global convergence result.

Theorem 5: For the stochastic fuzzy system in (7) with As-
sumption 1-Assumption 43, the weighted adaptive minimum

variance control system is stable in the sense that

(i) lim sup
k→∞

1
N

N∑
k=1

y2(k) < ∞, a. s. (72)

(ii) lim sup
k→∞

1
N

N∑
k=1

u2(k) < ∞, a. s. (73)

Proof:
Since, with (71), the stochastic key technical lemma (Lemma
3) holds, we have

lim
N→∞

1
N

N∑
k=1

[e(k) − w(k)]2 = 0, a. s.

Moreover, we have

lim sup
k→∞

r(N − 1)
N

< ∞, a. s.

which implies (72) and (73). ¤

G. Simulation Study

In this section, a simulation example is given to verify
the proposed adaptive weighted minimum variance control
algorithm.

Example 1: Adaptive control for T-S fuzzy systems
Consider the following stochastic fuzzy system:

If z(k) is Fi, then

Ai(q−1)y(k + 1) = Bi(q−1)u(k) + Ci(q−1)w(k + 1)

for i = 1, 2, · · · 5 where

A1(q−1) = 1 − 0.27q−1 + 0.011q−2,

B1(q−1) = 1 − 0.2q−1,

C1(q−1) = 1 − 0.135q−1

A2(q−1) = 1 − 0.33q−1 + 0.023q−2,

B2(q−1) = 1 − 0.3q−1,

C2(q−1) = 1 − 0.165q−1

A3(q−1) = 1 − 0.362q−1 + 0.0288q−2,

B3(q−1) = 1 − 0.4q−1,

C3(q−1) = 1 − 0.18q−1

A4(q−1) = 1 − 0.39q−1 + 0.035q−2,

B4(q−1) = 1 − 0.5q−1,

C4(q−1) = 1 − 0.195q−1

A5(q−1) = 1 − 0.44q−1 + 0.0468q−2,

B5(q−1) = 1 − 0.6q−1,

C5(q−1) = 1 − 0.22q−1,

and w(k) is a zero-mean Gaussian white noise with σw = 0.01.
The membership function for the fuzzy logic set Fi is given in
Fig 1 and the premise variable z(k) is chosen as z(k) = y(k).
We choose y∗ (k + 1) = sin( 2π

100 )+3 sin
(

6π
100

)
as the reference

signal. to estimation parameter and find the u (k) to yield
y (k + 1) = y∗ (k + 1) . The weighting constant λ is chosen
as λ = 0.01.The simulation results are shown in Fig 2 and
Fig 3. Fig 2 shows the output y(k) and the prediction y(k)
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圖 1. Membership functioms of Example 1
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圖 2. Output y(t) and its prediction ȳ(t) of Example 1.

together with the estimation error. Fig 3 shows the output y(k)
and the desired output command y∗(k). The estimated paramers
are shown in Fig. 4.

四、 結論與討論

Adaptive weighted minimum variance control for stochastic
T-S fuzzy ARMAX model is addressed in this study. From
the fuzzy ARMAX model, a fuzzy one-step ahead prediction
model is first developed. A stochastic gradient algorithm is
then proposed to identify the parameters of the related one-
step-ahead predictor. Under the direct adaptive control scheme,
weighted minimum variance control is applied to find the
control law to make the output track a desired reference signal.
Stability of the adaptive stochastic fuzzy control system is
rigorously derived. Simulation study is also made to verify the
developed results.
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圖 3. The reference signal y∗(t) and the output y(t) of Example 1 is shown
in the upper trace. The tracking error is shown in the lower trace.
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4.. APPENDIX

A. Proof of Theorem 1

Proof: First define a Lyapunov function as

V (x(k)) = xT (k)P(k)x(k) (74)

which is uniformly positive definite and

λmin
P ‖x(k)‖2 ≤ V (x(k)) ≤ λmax

P ‖x(k)‖2 (75)

With the definition of V (x(k)), it follows that

V (x(k + 1)) = xT (k)
[
AT (k)P(k + 1)A(k)

]
x(k) (76)

Note that the terms x(k), P(k), and A(k) are all
zk−measurable. Now applying the conditional mean operator
E {· | zk} to the both sides of (76) and using (15), we have,



almost surely,

E {V (x(k + 1)) | zk}
= xT (k)

[
AT (k)E {P(k + 1)|zk}A(k)

]
x(k)

≤ λxT (k)P(k)x(k)
= λV (x(k))

(77)

Note that as E
{
‖A(k)‖2

}
and E

{
‖P(k)‖2

}
are uniformly

bounded, E {V (x(k + 1)) | zk} and E {P(k + 1)|zk} are
well defined. Apply the conditional expectation operator
E {· | zk−1} again to the both sides of (77) and recall that
the sequence of the σ−algebra zk is increasing. With the
smoothing properties [13] of conditional mean and inequality
(77), it follows that almost surely

E {V (x(k + 1)) | zk−1} ≤ λ2V (x(k − 1))

Continuing this procedure by sequentially applying
E {· | zk−2}, E {· | zk−3}, · · · , E {· | zk0} , one can
obtain almost surely

E {V (x(k + 1)) | zk0} ≤ λk+1−k0V (x(k0)) (78)

Now taking expectation of the last inequality to yield

E {V (x(k))} ≤ λk−k0E {V (x(k0))}

Finally, using the fact of (75), inequality (16) is obtained.
Now we turn to prove the almost sure exponential stability

(17). Clearly, it is trivial if x(k0) = 0. Now assume that the
initial condition x(k0) is nonzero. By Chebyshev’s inequality
[22], for any εk > 0, we have

Prob
{

‖x(k)‖
‖x(k0)‖ > εk

}
≤ E

{
‖x(k)‖2

‖x(k0)‖2

}
/ε2k

= E
{

1
‖x(k0)‖2 E

{
‖x(k)‖2 | zk0

}}
/ε2k

(79)

where Prob{A} is the probability measure of the event A. With
(75) and (78), one can get

E
{
‖x(k)‖2 | zk0

}
≤ λmax

P

λmin
P

λk−k0 ‖x(k0)‖2
, a.s.

With the last inequality, (79) can be reduced to

Prob
{

‖x(k)‖
‖x(k0)‖

> εk

}
≤ 1

ε2k

λmax
P

λmin
P

λk−k0 (80)

Now choose the sequence εk as εk = ε0λ
(k−k0)/2
1 for any ε0 > 0

and λ1 > λ. Then inequality (80) implies that
∞∑

k=k0

Prob
{
‖x(k)‖ > ε0λ

(k−k0)/2
1 ‖x(k0)‖

}
≤ 1

ε20

λmax
P

λmin
P

∞∑
k=k0

(
λ

λ1
)k−k0

As λ
λ1

< 1, it follows that

∞∑
k=k0

Prob
{
‖x(k)‖ > ε0λ

(k−k0)/2
1 ‖x(k0)‖

}
< ∞

and consequentially, by the Borel-Cantelli Lemma [22], we
obtain that

Prob
{
∪k≥K1

{
‖x(k)‖ > ε0λ

(k−k0)/2
1 ‖x(k0)‖

}}
= 0

for some sufficiently large K1, any ε0 > 0, and any λ1 > λ.
This means that for any sample path with bounded initial state
x(k0), we have

‖x(k)‖ ≤ c1(
√

λ)k−k0 ‖x(k0)‖ , k ≥ K1, a.s.

for any initial condition x(k0), some positive bounded random
variable c1, and a sufficiently large integer K1. This completes
the proof.

B. Proof of Theorem 2

Proof: Suppose that ‖A(k)‖ ≤ AL, ‖B(k)‖ ≤ BL,
‖C(k)‖ ≤ CL, and ‖D(k)‖ ≤ DL for all k. Using the def-
inition of the transition matrix defined in (21), the response of
the output ys(k) of the fuzzy system in (26) can be represented
by

ys(k) = C(k)Φ(k, 0)x(0) + D(k)us(k)

+ C(k)
k−1∑
j=0

Φ(k, j + 1)B(j)us(j)

Applying the results in Corollary 2, for k ≥ K1, we have

‖ys(k)‖ ≤ CLc2

√
λ

k
‖x(0)‖ + DL ‖us(k)‖

+ CLBL

k−1∑
j=0

‖Φ(k, j + 1)‖ ‖us(j)‖ , a. s.

By the Cauchy-Schwartz inequality, the last inequality leads to

‖ys(k)‖2 ≤ 3
{

C2
Lc2

2λ
k ‖x(0)‖2 + D2

L ‖us(k)‖2

+C2
LB2

L

k−1∑
j=0

‖Φ(k, j + 1)‖ ‖us(j)‖

2

≤ c3λ
k + 3D2

L ‖us(k)‖2

+ 3C2
LB2

L

k−1∑
j=0

‖Φ(k, j + 1)‖

×
k−1∑
j=0

‖Φ(k, j + 1)‖ ‖us(j)‖2
, a. s. (81)

where c3 is defined as c3 = 3C2
Lc2

2 ‖x(0)‖2
. Considering the

change of index i = k − j, the first summation term in the last
inequality can be rearranged as

k−1∑
j=0

‖Φ(k, j + 1)‖ =
k∑

i=1

‖Φ(k, k − i + 1)‖

=
K1∑
i=1

‖Φ(k, k − i + 1)‖

+
k∑

i=K1+1

‖Φ(k, k − i + 1)‖ (82)



With the transition matrix defined in (21), it follows that
‖Φ(k, k − i + 1)‖ ≤ Ai−1

L for i ≤ K1. On the other hand,
for i > K1, inequality (23) ensures that ‖Φ(k, k − i + 1)‖ ≤
c2

√
λ

i−1
, a.s. and thus

lim
k→∞

k−1∑
j=0

‖Φ(k, j + 1)‖ ≤
K1∑
i=1

Ai−1
L + c2

∞∑
i=K1+1

√
λ

i−1

= c4 < ∞, a. s. (83)

where

c4 =
1 − AK1

L

1 − AL
+ c2

√
λ

K1

1 −
√

λ

Taking the summation operation 1
N

∑N
k=1 on both sides of (81)

and using (83), one can get

1
N

N∑
k=1

‖ys(k)‖2

≤ 1
N

c3

1 − λ
+

3D2
L

N

N∑
k=1

‖us(k)‖2

+
(

3C2
LB2

Lc4

N

×
N∑

k=1

k−1∑
j=0

‖Φ(k, j + 1)‖ ‖us(j)‖2

 , a. s. (84)

in which the double summation term can be rearranged as
follows
N∑

k=1

k−1∑
j=0

‖Φ(k, j + 1)‖ ‖us(j)‖2 =
N−1∑
j=0

N∑
k=j+1

‖Φ(k, j + 1)‖ ‖us(j)‖2

With the same argument made from (82) to (83), it is easy to
see that

N∑
k=j+1

‖Φ(k, j + 1)‖ ≤
∞∑

k=j+1

‖Φ(k, j + 1)‖ ≤ c4 < ∞, a. s.

(85)
Therefore, following from (84) and (85), inequality (25) can be
attained with

K3 = c3
1−λ + 3C2

LB2
Lc2

4 ‖us(0)‖2

= 3C2
L

(
c2
2

1−λ ‖x(0)‖2 + B2
Lc2

4 ‖us(0)‖2
)

K2 = max
(
3D2

L, 3C2
LB2

Lc2
4

)

C. Proof of Lemma 1

Proof: (i) Using (36), we can get
∞∑

k=1

φT (k − 1)φ (k − 1)
r (k − 1) r (k − 2)

=
∞∑

k=1

r (k − 1) − r (k − 2)
r (k − 1) r (k − 2)

=
∞∑

k=1

1
r (k − 2)

− 1
r (k − 1)

≤ 1
r (−1)

< ∞ for r (−1) = ro

Therefore, condition (43) is valid.
(ii) From equation (32) and using (37), we can obtain

θ̂(k) = θ̂(k−1)+
φ(k − 1)

r(k − 2) + φT (k − 1)φ(k − 1)
[y(k) − ŷ(k)]

Then multiply φT (k − 1) to both sides of the above equation
and use (38) to get

φT (k − 1) θ̂(k) = φT (k − 1) θ̂(k−1)+
φT (k − 1)φ(k − 1)

r(k − 1)
e (k)

Subtracting y (k) from both sides of the above equation, we
have

y(k) − y(k) = y(k) − ŷ(k) − φT (k − 1) φ(k − 1)
r(k − 1)

e (k)

Using (36) and (38), we can get the following equation

η (k) =
(

1 − φT (k − 1) φ(k − 1)
r(k − 1)

)
e (k)

=
r(k − 2)
r(k − 1)

e (k)

This completes the proof.
(iii) From (32), (36), and (37), we can get

θ̂(k) = θ̂(k − 1) +
φ(k − 1)
r(k − 1)

e (k) (86)

Subtracting θ0 from (86) and multiplying by w (k)φT (k − 1)
give

w (k) φT (k − 1) θ̃ (k) = w (k)φT (k − 1) θ̃ (k − 1)

+
(

φT (k − 1) φ(k − 1)
r(k − 1)

× [e (k) − w (k) + w (k)]w (k))
(87)

Now taking the conditional mean E{· | zk−1} on (87), we have

E {−β (k) w (k) | zk−1}

= E
{

w (k)φT (k − 1) θ̃ (k − 1) | zk−1

}
+ E

{
φT (k − 1) φ(k − 1)

r(k − 1)
× [e (k) − w (k) + w (k)]w (k) | zk−1}

(88)

Particularly, by (38), the term e (k)−w (k) can be represented
as

e (k) − w (k) = y (k) − ŷ (k) − w (k)

=
L∑

i=1

hi (z (k − 1))
{
(1 − Ai(q−1))y(k)

+Bi(q−1)u(k − 1)

+Ci(q−1)w(k)
}
− ŷ (k) − w (k)

=
L∑

i=1

hi (z (k − 1))
{
(1 − Ai(q−1))y(k)

+Bi(q−1)u(k − 1)
+

[
Ci(q−1) − 1

]
w(k)

}
− ŷ (k) (89)



From (89), the term e (k)−w (k) is zk−1−measurable. There-
fore, by properties of the noise w(k) in (3) and (4), it follows
that (45) is concluded.

(iv) Rewrite (7) to get
L∑

i=1

hi(z(k − 1))Ai(q−1)y(k)

=
L∑

i=1

hi(z(k − 1))
[
Bi(q−1)u(k − 1) + Ci(q−1)w(k)

]
(90)

Substituting (28) into (90), we have
L∑

i=1

hi(z(k − 1))[Ci(q−1) − q−1αi(q−1)]y(k)

=
L∑

i=1

hi(z(k − 1))
[
Bi(q−1)u(k − 1)

+Ci(q−1)w(k)
]

which leads to
L∑

i=1

hi(z(k − 1))Ci(q−1)[y(k) − w(k)]

=
L∑

i=1

hi(z(k − 1))
[
q−1αi(q−1)y(k)

+Bi(q−1)u(k − 1)
]

From (39) and (40), we subtract
∑L

i=1 hi(z(k −
1))Ci(q−1)y(k) from both sides of the above equation
to get

L∑
i=1

hi(z(k − 1))Ci(q−1)[y(k) − y(k) − w(k)]

=
L∑

i=1

hi(z(k − 1))
[
q−1αi(q−1)y(k)

−Ci(q−1)y(k) + Bi(q−1)u(k − 1)
]

and thus
L∑

i=1

hi(z(k − 1))Ci(q−1)ς(k)

=
L∑

i=1

hi(z(k − 1))
[
−(Ci(q−1) − 1)y(k)

+q−1αi(q−1)y(k) + Bi(q−1)u(k − 1) − y(k)
]

Using (34), we can get the following equation
L∑

i=1

hi(z(k − 1))Ci(q−1)ς(k)

=
L∑

i=1

hi(z(k − 1))χT (k − 1)θi0 − y(k)

= φT (k − 1)θ0 − φT (k − 1)θ̂(k) = −φT (k − 1)θ̃(k)
= β(k)

This completes the proof.

D. Proof of Lemma 2

Proof: First define βi(k) = Ci(q−1)ς(k) for 1 ≤ i ≤ L.
With the fuzzy system (46), we have

β(k) =
L∑

i=1

hi(z(k − 1))βi(k) (91)

As Ci(q−1) is ISP [13], for any i, there is a positive number
εi such that

k∑
j=1

ς(j)βi(j) − εiς
2(j) ≥ 0 (92)

Taking the operation
L∑

i=1

hi(z(k − 1)) on both side of (92)

gives
k∑

j=1

{
L∑

i=1

hi(z(k − 1))
[
ς(j)βi(j) − εiς

2(j)
]}

≥ 0 (93)

Using equation (91) and letting ε = min
1≤i≤L

εi, we can see that

inequality (93) implies the desired property in inequality (47).

E. Proof of Theorem 3

Proof: With (32), (44), and the definitions of e(k) and
θ̃(k), we have

θ̃(k) − φ(k − 1)
r(k − 2)

η(k) = θ̃(k − 1) (94)

which leads to

θ̃T (k)θ̃(k) +
2β(k)

r(k − 2)
η(k) +

φT (k − 1)φ(k − 1)
r2(k − 2)

η2(k)

= θ̃T (k − 1)θ̃(k − 1) (95)

Now define a quadratic function V (k) = θ̃T (k)θ̃(k). Thus
equation (95) can be rewritten as

V (k) = V (k − 1) − 2β(k)
r(k − 2)

η(k)

−φT (k − 1)φ(k − 1)
r2(k − 2)

η2(k)

= V (k − 1) − 2β(k)ς(k)
r(k − 2)

−2β(k)w(k)
r(k − 2)

− φT (k − 1)φ(k − 1)
r2(k − 2)

η2(k)

= V (k − 1) − g1(k)
r(k − 2)

− g2(k)
r(k − 2)

−

2β(k)w(k)
r(k − 2)

− φT (k − 1)φ(k − 1)
r2(k − 2)

η2(k)

(96)

where g1(k) = 2(β(k)ς(k) − 1
2 ς2(k)) and g2(k) = ς2(k). In

order to make the last equation into a recursive form, we make
the following definitions

S1(k) =
∑k

j=1 g1(j) ≥ 0
S2(k) =

∑k
j=1

g2(j)
r(j−2) ≥ 0

S3(k) =
∑k

j=1
φT (j−1)φ(j−1)

r2(j−2) η2(j) ≥ 0

(97)



Note that the fact that S1(k) ≥ 0 for all k follows from Lemma
2 under Assumption 2. With the above notations, the second
term on the right hand side of (96) can be represented as

g1(k)
r(k − 2)

=
S1(k) − S1(k − 1)

r(k − 2)
(98)

and the third one can be represented by

g2(k)
r(k − 2)

= S2(k) − S2(k − 1) (99)

and the final one can be represented by

φT (k − 1)φ(k − 1)
r2(k − 2)

η2(k) = S3 (k) − S3 (k − 1) (100)

By using (97)-(100), inequality (96) implies

X(k) = (X(k − 1) + S1(k − 1) (101)

×[
1

r(k − 2)
− 1

r(k − 3)
] − 2β(k)w(k)

r(k − 2)

)
X(k) ≤ X(k − 1) − 2β(k)w(k)

r(k − 2)
(102)

where the nonnegative process X(k) is defined as

X(k) = V (k) +
S1(k)

r(k − 2)
+ S2(k) + S3(k) (103)

Now taking the conditional mean E{· | zk−1} on (102) and
using (45), we have

E{X(k) | zk−1} ≤ X(k−1)+2
φT (k − 1)φ(k − 1)
r(k − 1)r(k − 2)

σ2
w, a. s.

(104)
With inequality (43), we can invoke the martingale convergence
theorem [13] to obtain that

lim
k→∞

X(k) = X < ∞, a. s. (105)

Almost sure convergence of the nonnegative process X(k) to a
bounded nonnegative random variable X implies

lim
N→∞

N∑
k=1

ς2(k)
r(k − 2)

< ∞, a. s. (106)

lim
N→∞

N∑
k=1

φT (k − 1)φ(k − 1)
r2(k − 2)

η2(k) < ∞, a. s. (107)

Now following from (94), we have∥∥∥θ̂(k) − θ̂(k − 1)
∥∥∥2

=
∥∥∥∥φ(k − 1)

r(k − 2)
η(k)

∥∥∥∥2

=
φT (k − 1)φ(k − 1)

r2(k − 2)
η2(k) < ∞

Therefore, by using (107), inequality (48) can be ensured.
After multiplying φT (k − 1) to and subtracting y(k)−w(k)

from (94), we can get

ς(k) +
φT (k − 1)φ(k − 1)

r(k − 2)
η(k) = e(k) − w(k)

By Cauchy-Schwartz inequality, it follows

[e(k) − w(k)]2 ≤ 2ς2(k) + 2
[φT (k − 1)φ(k − 1)]2

r2(k − 2)
η2(k)

and hence
N∑

k=1

(e(k) − w(k))2

r(k − 1)

≤ 2
N∑

k=1

ς2(k)
r(k − 1)

+ 2
N∑

k=1

[φT (k − 1)φ(k − 1)]2

r(k − 1)r2(k − 2)
η2(k)

≤ 2
N∑

k=1

ς2(k)
r(k − 2)

+ 2
N∑

k=1

φT (k − 1)φ(k − 1)
r2(k − 2)

η2(k)

Therefore, using (106) and (107), the last inequality leads to
(49). The completes the proof.

F. Proof of Lemma 3

Proof: (i) Assume r(k − 1) < kq < ∞, then (49) implies

lim
N→∞

N∑
k=1

[e(k) − w(k)]2 < ∞ a.s. (108)

With (108), we can apply Kronecker’s Lemma in appendix
D of [13] to get

lim
N→∞

1
N

N∑
k=1

k [e(k) − w(k)]2 = 0 a.s.

which implies (51).
On the other hand, if r(k − 1) is unbounded. By applying

Kronecker’s Lemma again, we obtain

lim
N→∞

1
r(N − 1)

N∑
k=1

r(k − 1)
[e(k) − w(k)]2

r(k − 1)

= lim
N→∞

N

r(N − 1)
× 1

N

N∑
k=1

[e(k) − w(k)]2 = 0 a.s.

(109)

Substituting of (50) into (109) gives

lim
N→∞

1
N

N∑
k=1

[e(k) − w(k)]2

Ka1 + Ka2
N

N∑
k=1

[e(k) − w(k)]2
= 0 a.s. (110)

From (110), we can easily get (51).
(ii) Substituting (51) into (50), we can get (52).
(iii) For the left hand side of (53), we have

E
{

[y(k) − ŷ(k)]2 | zk−1

}
= E

{
[y (k) − ŷ (k) − w(k) + w(k)]2 | zk−1

}
= E

{
[y(k) − ŷ(k) − w(k)]2

+2 [y(k) − ŷ(k) − w(k)]w(k)

+w2(k) | zk−1

}
a.s. (111)

Since y(k) − w(k) and ŷ(k) are zk−1−measurable and
E {w(k) | zk−1} = 0, we can obtain

E
{

[y (k) − ŷ (k)]2 | zk−1

}
= [e(k) − w(k)]2 + E

{
w2(k) | zk−1

}
a.s. (112)



From (51) and (4),we can easily derive (53).
(iv) Applying (51), (3), (4), (??), and Lemma D.5.2 in

Appendix D of [13], we have

lim
N→∞

1
N

N∑
k=1

[y(k) − ŷ(k)]2

= lim
N→∞

1
N

N∑
k=1

[y (k) − ŷ (k) − w(k) + w(k)]2

= lim
N→∞

1
N

N∑
k=1

[e(k) − w(k)]2

+ 2
1
N

N∑
k=1

[y(k) − ŷ(k) − w(k)]w(k) +
1
N

N∑
k=1

w2(k)

= σ2
w + lim

N→∞

2
N

N∑
k=1

[e(k) − w(k)]w(k) (113)

In (113), define a process $(k) = [e(k) − w(k)]w(k). Then
its is easy to see that E {$(k) | zk−1} = 0 and from (49), (4),
and (52), we have

N∑
k=1

1
k2

E
{
$2(k) | zk−1

}
< ∞

Using Lemma D.5.1 in [13], we have

lim
N→∞

1
N

N∑
k=1

[e(k) − w(k)]w(k) = 0 (114)

Substituting (114) into (113), we get (53).

G. Proof of Lemma 4

Before presenting the proof of Lemma 4, we shall need a
lemma which is quoted from [27].

Lemma 5: Let P be a m × m symmetric positive definite
matrix which is partitioned as

P =
[

P11 P12

PT
12 P22

]
where P11 and P22 are (m− 1)× (m− 1) and 1× 1 matrices,
respectively. Also let Γ be a matrix defined by

Γ =
[

Im−1 0(m−1)×1

01×(m−1) r

]
, 0 < |r| ≤ 1

Then ΓT PΓ−P is negative semi-definite if and only if P12 =
0(m−1)×1.

Proof of Lemma 4:
(i) The equation for the signal y(k+1) in (63) can be rewritten
as

λ + b2
0(k)

λ
y(k + 1)

= −
L∑

i=1

hi(z(k))

 n∑
j=1

aijy(k + 1 − j)

 + v3(k + 1)

−
L∑

i=1

hi(z(k))

 n∑
j=1

bij
b0(k − j)

λ
y(k + 1 − j)

 (115)

where the signal v3(k + 1) is defined as

v3(k + 1)

=
L∑

i=1

hi(z(k))Bi(q−1)
b0(k)

λ

× [y∗(k + 1) + e(k + 1) − w(k + 1)]

+
L∑

i=1

hi(z(k))
[
Bi(q−1)

b0(k)
λ

+ Ci(q−1)
]

w(k + 1)

(116)

Now define a process κ(k) as

κ(k) =
λ

λ + b2
0(k)

1
γ0

With the definition of γ0 in (62), it follows

0 < κ(k) ≤ 1 (117)

To analyze the property of the signal y(k), the dynamic
equation (115) will be transformed into a state-space form. By
constructing a state vector xy(k) as

xy(k) =
[

y(k + 1 − n) y(k − n + 2) · · · y(k)
]T

,

the system defined by equation (115) can be expressed by

xy(k + 1) = Ã(k)xy(k) + vy(k + 1) (118)

where

Ã(k) = Γ1(k)A(k)
A(k) = ΞA(k) + MB(k)Γ2(k)

vy(k + 1) =
[

01×(n−1)
λ

λ+b2
0(k)

v3(k + 1)
]T

Γ1(k) =
[

In−1 0(n−1)×1

01×(n−1) κ(k)

]
Since, by assumption, there exist symmetric positive definite
matrices P i, 1 ≤ i ≤ L, of the form in (64) such that the
matrix inequalities (65) hold for some ε > 0 and some λ0 with
0 < λ0 < 1, and that

A
T
(k)P+(k)A(k) < λ0P(k) (119)

for all k ≥ 0. Since the matrix P i is chosen with the special
form shown in (64), we have

ÃT (k)P+(k)Ã(k)

= A
T
(k)

[
L∑

i=1

hi(z(k + 1))ΓT
1 (k)P iΓ1(k)

]
A(k)

≤ A
T
(k)

[
L∑

i=1

hi(z(k + 1))P i

]
A(k)

= A
T
(k)P+(k)A(k)

< λ0P(k)

by using Lemma 5 and (119). Therefore, by applying Theorem
2, we have

1
N

N∑
k=1

‖y(k)‖2 ≤ 1
N

N∑
k=1

‖xy(k)‖2

≤ K2

N

N∑
k=1

‖v3(k)‖2 +
K3

N
, a. s., for N ≥ K1



where K1 is a sufficiently large number. Next, by the definition
of v3(k),the boundedness of y∗(k), and the mean-square bound-
edness of w(k) given in (5), it follows that there are constants
K8 and K9 such that

1
N

N∑
k=1

y2(k) ≤ K8

N

N∑
k=1

[e(k) − w(k)]2+K9, a.s., for N ≥ K1

(ii) Using (43) and (44), equation (39) gives

y(k) = e(k) + y∗(k) − r(k − 2)
r(k − 1)

e(k)

=
φT (k − 1)φ(k − 1)

r(k − 1)
e(k) + y∗(k)

=
φT (k − 1)φ(k − 1)

r(k − 1)
[e(k) − w(k)]

+
φT (k − 1)φ(k − 1)

r(k − 1)
w(k) + y∗(k)

< [e(k) − w(k)] + w(k) + y∗(k) (120)

By Cauchy-Schwartz inequality, it follows

y2(k) ≤ 3 [e(k) − w(k)]2 + 3w2(k) + 3y∗2
(k)

Similar to the proof in part (i), inequality (70) can be
concluded.

(iii) First, note that from the equation concerning the adaptive
control law u(k) defined in (60), we have

u(k) =
b0(k)

λ
[e(k + 1) + y∗(k + 1) − y(k + 1)]

=
b0(k)

λ
[e(k + 1) − w(k + 1) + w(k + 1)

+y∗(k + 1) − y(k + 1)]

which implies that

1
N

N∑
k=1

u2(k) ≤ K4

N

N∑
k=1

[e(k) − w(k)]2 +
K5

N

N∑
k=1

y2(k) + K6, a.s.

≤ K7

N

N∑
k=1

[e(k) − w(k)]2 + K7a (121)

In (36) with k = N , we have

r(N − 1) = r(0) +
N−1∑
k=1

φT (N − 1)φ(N − 1)

= r(0) +
N−1∑
k=1

L∑
i=1

h2
i (z(k))χT (k)χ(k)

≤ r(0) +
N−1∑
k=1

L∑
i=1

hi(z(k))χT (k)χ(k)

= r(0) +
N−1∑
k=1

χT (k)χ(k) (122)

By the definition of χ(k) in (34), it follows from (121), (69),
and (70) that, for N ≥ N,

1
N

r(N − 1) ≤ Ka2

N

N−1∑
k=1

[e(k) − w(k)]2 + Ka1

for some positive numbers Ka2 and Ka1. This completes the
proof. ¤
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一、 參加會議經過: 
    此次2009年機器學習與人工頭腦學國際研討會(2009 International Conference on 
Machine Learning and Cybernetics ，ICMLC 2009)，由河北大學、華南理工大學、IEEE

SMC (System, Man, and Cybernetics) 協會等單位聯合主辦，於 98 年 7 月 12 日到 98
年 7 月 15 日，在中國河北保定市之電谷錦江國際酒店舉行。台灣的學者參與此研討會

非常踴躍。 
此次研討會所有論文都列入 IEEE Explorer 之資料庫，都屬於 EI Index。研討會之網

路首頁為 http://www.icmlc.com/，整個研討會包含三個 Plenary Talk： 
[1] Brain-Machine Interfaces, Speaker: Prof. Jose M. Carmena，University of California, 
Berkeley, USA  
[2] Adversarial Pattern Classification, Speaker: Prof. Fabio Roli, University of Cagliari, Italy  
[3] On Leveraging Unlabeled Data and Classifier Combination, Speaker: Prof. Zhi-Hua Zhou,
Nanjing University, China 
另外有兩個 Tutorials： 

[1] An Introduction to Graphical Models and Bayesian Nonparametrics, Speaker: Prof. 
Michael Jordan 
[2] Publish or perish (P2): how to successfully publish your research, Speaker: Prof. Witold 
Pedrycz 
此次研討會之主題包含： 
1. Adaptive systems  
2. Business intelligence  
3. Biometrics  
4. Bioinformatics  
5. Data and web mining  
6. Intelligent agent  
7. Financial engineering  
8. Inductive learning  
9. Geoinformatics  
10. Pattern recognition  
11. Logistics  
12. Intelligent control  
13. Media computing  
14. Neural net and support vector machine 
15. Hybrid and nonlinear system 
16. Fuzzy set theory, fuzzy control and system 
17. Knowledge management 
18. Information retrieval 
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19. Intelligent and knowledge based system 
20. Rough and fuzzy rough set 
21. Networking and information security 
22. Evolutionary computation 
23. Ensemble method 
24. Information fusion 
25. Visual information processing 
26. Computational life science  
 

二、與會心得 
(1) 從此次研討會所安排之主題來看，比較偏向人工智能於資訊工程之研究，

各國有關人工智慧理論都有顯著的研究成果，幾個比較新的主題如 Media 
computing、Bioinformatics、Computational life science、Business 
intelligence，非常值得國內學界注意其發展。 

(2) 除了認識許多中國之學者外，也認識了很多來自全世界各地的菁英學者，

對於將來推動國際學術交流，有相當大的幫助。 

(3) 大陸在人工智能領域之研究成果亦有長足之進步，在 IEEE SMC Society
之影響力也已超過台灣相關學界，國內應該即起直追。 

三、考察參觀活動(無是項活動者省略)  
7 月 14 日上午，應河北大學數學與電腦學院邀請，由元智大學電機工程系林志民

教授帶隊的臺灣學術代表團到河北大學參觀訪問。 

代表團首先參觀了數學與電腦學院，學院負責人向臺灣代表團介紹了學院的基本情

況，臺灣代表團林志民教授、范國清教授、李柏坤教授、陳邱雄教授、劉旭光博士分別

介紹了各自學校及所在學院的基本情況。 

然後，代表團成員拜會了河北大學副校長哈明虎教授。哈明虎教授向代表團成員簡

要介紹了河北大學的歷史和發展現狀，並陪同參觀了坤輿全圖等圖書館藏。 

最後，代表團到河北大學新校區參觀了機器學習與計算智慧省級重點實驗室，與實

驗室師生進行了學術交流，就共同感興趣的學術問題進行了有益的探討。 

四、建議 
(1) 台灣應該多爭取舉辦國際研討會，使得全世界各地的菁英學者，能夠共

聚ㄧ堂。 
(2) 大陸學術界的國際化，已經逐步生根，同時以此為基礎邁向國際之競爭，

台灣學術界的國際化還有待大家的努力。  
五、攜回資料名稱及內容 

(1) 完整論文光碟片。 
(2) 論文摘要紙本以及部份之論文集。 

六、其他 
無。 

 

 


