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Control and Estimation for Nonlinear Stochastic Systems
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Multiobjective Robust Tracking Control for Nonlinear Stochastic Systems via Fuzzy Approach
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Abstract

Tracking control using fuzzy method for nonlinear
stochastic system consisted of bounded and stochastic
uncertainties is studied in the work. Since disturbances and
uncertainties can only affect on the dynamical model, their
effect can not directly act on the kinematical model. It
implies that the dynamical and kinematical models of the
original dynamical system can be separated, and each
controller can be designed independently. Therefore, a
two-loop control scheme is proposed in the work, and its
inner-loop is consisted of the dynamical model and its
outer-loop contains the kinematical model. Thus, in the work
a kinematical controller is integrated with a robust dynamic
controller to deal with bounded and stochastic uncertainties
with the aid of an adaptive fuzzy elimination scheme which
can reduce the nonlinear effect.
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A tracking control method through time-varying state
feedback based on the back-stepping technique is proposed
for a kinematical and the model of two-degree-of-freedom
mobile robot [1]. A systematic way to design time-variant
feedback control laws requires a class of controller of the
nonlinear system. Exponential stabilization of drift less

nonlinear control systems uses homogeneous feedback [2].
Stabilization of a nonholonomic system via sliding models
has been studied in [3]. External disturbances and parameter
uncertainty of a mobile robot driven by two independent
wheels have considered in [4]. In the autonomous mobile
robot system, the dynamical model is known, but viscous
friction is usually consisted of the nominal part and
stochastically distributed part. Therefore, a robust controller
is recommended for such control design, since it allows
simplification of modeling and also considers parameter
variation, load change, elasticity of the wheels and road
disturbance. The H_ control design has been developed to
minimize the worst from the disturbances energy point of
view. In the H_ optimal design [5]-[6], the disturbance is
measured by the L, norm. Therefore, the external
disturbances are constrained to have finite energy (bounded
L, norms. Most researches normally designed the problem
based on one loop which considers dynamical and
kinematical models together as one system. However, the

kinematical model physically is a pure particle motion
unrelated to the mass and force, so it is free of the
uncertainties and disturbances. On the other hand, the
dynamical model is related to the mass and force, so the
robust problem only is inherited in the dynamical model.

A two-loop scheme in [7]-[9] is adopted in the work, but
the stochastic uncertainty is additionally considered here
instead of the pure bounded uncertainty. In this scheme the
dynamical controller is designed in the inner-loop with a
suitable bandwidth to migrate the effect of uncertainties and
disturbances; and the kinematical controller is designed in
the outer-loop for the nonlinear kinematical model of mobile
robots. In other words, the proposed two-loop control is to
design kinematical control and dynamical control separately
then to integrate them together. The proposed scheme can
reduce the dimension of dynamical control design, because
its target is focused on the dynamical model which is unlike
the traditional approaches using the dynamical system
consisted of the dynamical and kinematical models.
Moreover, Effect of disturbance, bounded and stochastic
uncertainties can be reduced by applying the fuzzy method
and the stochastic robust H_ control design [10].
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1. Kinematical Model

The kinematical model of the mobile robot is described
and formulated in the section, and it is basically unrelated to
the mass, force, uncertainties, and disturbances. The
associated dynamical model affected by the uncertainties
and disturbances is then discussed in next section to work on
the stochastic robust issue.

A. Kinematics of the Mobile Robot

A kinematical model of the front mobile robot possesses
two inputs, the center linear and angular velocities v andw,
respectively, and the differential equations describing the
kinematics of a mobile robot are given as follows.
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Figure 1.A wheeled mobile robot with trailer

X=Vcosé

y=vsinf €8
0=a.

Fig. 1 depicts a wheel mobile robot with trailer in the

absolute coordinates. The corresponding difference between
target and absolute coordinates is further defined as follows.

Xeo = X, — X
Yoo =Ye =Y
6,=6 -0

where (Xeo> Yeos Go)s (X5 Yr» 6)) and (x,y, #) are error,
target and absolute coordinates, respectively. In order to
discuss the basis on the mobile robot itself, the following
transformation equation is applied.

X, cos@ sind 0] X,
Y, |=|—sin@ cos@ O]l Y, | 2)
0, 0 0 1]6,

The new error differential equations for kinematical tracking
problems of the mobile robot can be reformulated as

X, =—V+V, cosb, + oy,
Y, =V, sinf, —wX, 3)

6, =0, -o.

It notes that as referred from (3), if both of x and ¢,
equal zero, then we obtain y =0 (ie., y, is constant).
This implication can be interpreted that when drivers park a
car along the side way, the main trouble is that some offset
with the side way (y_ is constant) always happens to drivers.
Similarly, it is also the worst case of mobile robot tracking
problem, so a good kinematical controller is to make sure
that the convergent rate of y, is the fastest one in order to
avoid the above problem. Furthermore, the mobile robot can
turn any angle freely with a zero radius, so y, should be
particularly designed to decay to zero before ¢, does for
avoiding the worst case. Then the following two Lyapunov
functions can meet the requirements.

1 1 1
L,==x>+=Yy, +—c(0, —¢)* and
k1 2 e Zye 2 (e ¢)

L :%YEZ +% Yo' +%C€e2’ where X, =x, Moy,
The first one means that ¢, decays to zero only for ¢=0,
and the second one means that x_ decays to zero only when
y,=0. ¢ is chosen to be a function of Y, with the
assumption that y, =0= ¢(0)=0. The weighting parameter
0<c<1 is selected for paying less care upon the decay of
¢, and more care on the decay of x, and vy, .

The following approach is similar to that in [1] with some
modifications, i.e., V; isin term of @. Three remarks are
introduced first.

Remark 1.1: Let a function ¢(g,4) be defined as

sin @ —sin ¢ for 0 % ¢
¢(0,9)= 0—¢ (4)’
cos ¢ for =9,

and it can be extended as a continuous function.

Remark 1.2: Let ¢ be a continuous monotonic decreasing
function of yv ,and ge[-z/2,7/2]. Then yv sin(g)<0
if yevr #0.

Remark 1.3: In this work the function ¢ is selected as
¢=(n/2)tanh(-ay,y,) )



§= S8 = sech’ (-ay v, -2y, ~ay,1,)
- %(1 — tanh*(-ay, v, ))(-ay,V, —ay,V, ) (6)

= ¢’ (_ayevr - ayevr)

dé(-ay,v,) = 2 T 2,
where 5 _ 2P0V ) T 4 ohi(cavy ) =L oL
e L AR

Theorem 1.1:
For the tracking problem (3) of mobile robots with the

Lyapunov function L, if the control inputs are designed as

0, = o, +%; +M (8, — )+ #'(av.* sin 6, + ay,v, ) 7

V, =V, cos b, + Mx, —c(6, —g)p'am V,, (8)
where ¢ =(z/2)tanh(-ay,v,), as well as M >0, 0<c<I,

and a >0 are constants. Then the system is asymptotically

stable as v (t)=0,Vt>0.

Remark 1.4: The input v in (9) containing o is different
from that in [1]. The approach can also be interpreted that as
driving a car, the direction (related to ) should be decided
before the acceleration does (related to v). In other words,
the acceleration somehow needs consider the turning angle
(related to @ ), so it makes sense that the input v contains
o.

Theorem 1.2:

For the tracking problem of the mobile robot (3) with the
given |, the corresponding control inputs are designed as

+ L Y.V, sin6, + M6, )
co

e

Wy =,

Vy =V, - Y. 0o+MX,. 10)

Then the system is asymptotically stable.

In the above theorem, it is noted that the system is
asymptotically stable by the control inputs (7) (8) and (9)
(10) with the adjustable convergence rate M and the
weighting factor c.

In practical system, parameters of the dynamical model
are varied with some bounded values or even with some
stochastic distribution. Bounded uncertainties normally
occur on | .1 ,M, and M,, and stochastic distribution

exists on viscous friction C. The dynamic model of the
mobile robot in [5] can be formulated as follows.

(M, +AM)q+(C,+AC)g=u+d", ((9))

where q=[v w]", d’ is the disturbance, u=[u, u,]" are
two driving inputs for right and left wheels, and other
parameters M,, AM and C, can refer to [S5]. And the
AC is considered as a stochastically normal distribution in
the work. Therefore, a nominal controller of the dynamic
model is designed as

u=Myq, +C,q, +ACq, +u, 12)
where u, is an auxiliary control input, and g o =[Vy» 0, 1,
denotes the desired tracking vector of the linear velocity and
angular velocity of the mobile robot.

Remark 1.5: In the work, AC is considered as a
stochastically normal distribution which has zero mean
property. Then the control input in application should be
modified as

u= Moqd +Coqd +U, (13)

To substitute (12) into (11), the systems is a linear system
combined with two nonlinear parts f(;) and d, as well
as one stochastic part, and it can be written as

é(t) = Ae(t) + AACe(t) +u,(t)+[f () + (T(t)], (14)
where f()=-M,'AMq,n=[q,4]'» d=M,"'d",
A =-M 0*1 and the stochastic term AC .

Remark 1.6: The dimension of matrix A is 2x2 instead of
4x4 in [5], because the dynamical and kinematical models
are separated in this work.
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Figure 2.Tracking control system for the mobile robot

In the section, kinematics and dynamic models are
integrated together as a two-loop scheme in which the
dynamical control is designed in the inner-loop for reducing
the effect of uncertainties and disturbances, and the
kinematical control is implemented in the outer-loop for
kinematical tracking problem, as described in Fig. 2. In the
figure, the dynamic and kinematical models are (11) and (1),
respectively. The proposed robust controller with fuzzy
elimination scheme block is shown in Fig. 2, and its detailed



description, as shown in Fig. 3, will be discussed in the next
section. The coordinate transformation is (2), and the
notation T is denoted to convert from (xr, Y., Hr) to (Vr,wr)
with the following equations

V=A% Y, ﬁr:tan][i} o, =0.

X

r

Based on the nominal controller (12), the kinematical
tracking control law is implemented as (7) (8) or (9) (10).

2. Adaptive Fuzzy Elimination Scheme

The objective of the work is to design a stochastic robust
control based on the proposed two-loop control scheme, so
the adaptive fuzzy elimination scheme in [4] is directly
implemented here with only dimension reduction of the
matrix A. An error dynamic system (14) is equivalent to
combining the dynamical model and the nominal controller.
In section, we will study the adaptive fuzzy elimination
scheme.

Figure 3.Fuzzy logic systems for wheeled vehicle control

The nonlinear uncertainty f(;) of systems is cancelled
as much as possible with y, (7,0) by using the fuzzy
estimation. With the definition of U, =U, —U, (77’®) , and U,
is designed for attenuating the effect of the disturbance d
and the error f (U)—Uf (77,9).

é=Ae+AACe+u, +[ f (1)U, (,0)]+d (15)

The fuzzy rule base consists of a collection of fuzzy If-Then
rules are listed as follows.

RO Ifn, is Fl', 1, is Fz', n, is F3', n, 1s F4',
Thenu, isG', forl =1,2,..., M (16)

The fuzzy basis functions are defined as (17), then the fuzzy
logic systems with center-average defuzzifier, product
inference and singleton fuzzifier for mobile robots are (18).

H?:l Hea (177)

B0= [T s 1))

a7)

— ufl (’7’®) _ élTG)l o)

u¢ (7,0) = sz (77,(9)} = L‘f@j =E(m0 (18)
_1© &m0

where ®—{®j and _(77)—{ 0 é’;(ﬁ)}’

O, :[gil'”giM]T’ ‘;(ﬂ):[él(ﬂ)"'ém(ﬂ)f for i=1,2, and
6, s singleton.

Let us define the following optimal update parameter of the
elimination:

@ =arg mgn max || f(7)-2#)0||.
n

Then, (14) can be rewritten as follows:
¢=Ae+AACe+U, +[Z(O -Z)O |+&+d
=Ae+AACe+u, +Z(1)O+d,

where ©=0"-0, ¢=f(7)-Z2(7)® ,and d=¢+d.

3. Stochastic Robust H_ Control

The bounded uncertain of mobile robots is reduced by the
above fuzzy approach, and in the section stochastic robust
control methods are introduced. Consider the following
stochastic system [10]

de(t) = (Ae(t) +u, (t) +d(t))dt + Ae(t) ACdt + Z()Odt
= ((A+ K)e(t) + d(t))dt + AACe(t)dw+E(;)®dt (19)

where e(0)=0, e(t)eR", u,(t)=Ket)eR", d(t)eR",
and K eR™" denote the initial error state vector, control
input, external disturbance, and feedback gain matrix,
respectively.

For robust control, many methods can achieve the desired
performance. The notation and definition are listed, and the
robust H_ control is studied first.

Notation and Definition

LX) 2=E j: X(t)" x(t) dt

2 q: 1 T T
||.|\x(t)|\p_mFEj_Tx(t) x(t) dt

The H_ performance control with the LMI approach is
to make the ratio of the error state to the disturbance to be
smaller than an upper bound, so it is suboptimal. The
disturbance d(t) and error state e(t) are measured by the
L, norm (or power norm). Therefore, the external
disturbances are constrained to have finite energy (or power),
i.e., bounded L, (or power) norms. Let us consider the
following H_ performance (20), denote ||L||OO [10], which
has been derived to be (20) in [5].
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{E_[0 (eTe+ueTue)dt}

||L||w = sup i 12 <p (20)
A {E_[U dedt}
where p>0.

The optimal H_ control is to minimize (20), so the
below theorem is implemented to solve the robust tracking
problem [4]. Because the stable matrix A can be selected
by the designer, the following inequality (21) is a simplified
version without a free adjustable matrix P. A coupling
matrix N, will be derived from the integration of the
dynamical and kinematical loops, and it is corresponding to
differences between the desired inputs (v, and @,) and the
real inputs (v and @). These differences can be considered
in designing the dynamical controller as uncertainty effect to
be reduced to desired level p>0.

Theorem 3.1:

Consider the system (19) with zero initial conditions, and
the following inequality is satisfied

/S+/KT+ACTA,TAAC+NC+LZ|+KTK<0, 21
P
where A=A+K and N, =diag{l/4M,c/4M} .

If the adaptive law with fuzzy elimination scheme is
designed as follows.

©=y =" (n)e(t)
then the system is satisfying the H_ performance (20).

(22)

Remark 3.1: As we observe the matrix inequality (21), there
exists an extra term AC'A'AAC associated with the
stochastic uncertainty part. It indicates that the stochastic
uncertainty is mitigated by designing the closed-loop pole of

system matrix A to be further left in the left-hand plane.

In order to convert (21) into the LMI form, we substitute
A=A+K into (21)to get

(A+K)+(A+K) +ACTATAAC +N +LI+KTK<O(23)
c pz

By the Schur-complement, it can be formulated as

A+K+AT+KT+ACTA1TA1AC+L2I +N, KT
P

<0.(24)
K -1
Corollary 3.1:
The stochastic robust H_ control problem is to solve the
following LMI.
Solve K

Subject to

A+K+AT+KT+ACTA1TA1AC+LZI +N, KT
P <0.(25)

K -1

Fwmaits

A two-loop control scheme, integrated the kinematical
and dynamical controls together, is proposed in the work,
especially, the bounded and stochastic uncertainties are
considered to design two distinct kinematical controllers
which can individually integrate with the same stochastic
robust H_ control with adaptive fuzzy elimination scheme
dynamical controller. The coupling matrix (the difference
between desired and real inputs) is considered as an
uncertainty in designing the corresponding dynamical
controller. The dimension of the dynamical controller design
based on the proposed scheme can be reduced. Moreover,
disturbance in the inner-loop can be suppressed to a desired
level first, and it can further be smoothed in the outer-loop.
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