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一、 中文摘要 

利用模糊方法來做非線性隨機系統的追蹤控制，此

非線性隨機系統包含有界及隨機的不確定性。因為不確

定性及干擾只影響系統的動態模式，而不會直接影響其

運動模式。亦既，系統的動態模式及運動模式可分別獨

立設計其控制器，所以提出一個雙迴路的架構，此架構

的內迴路是動態模式，外迴路是運動模式。因此，運動

控制器結合靭性動態控制器，並利用適應模糊消去非線

性，來處理有界及隨機的不確定性。 

 

關鍵詞：非線性、隨機、模糊。 

 

Abstract 
Tracking control using fuzzy method for nonlinear 

stochastic system consisted of bounded and stochastic 
uncertainties is studied in the work. Since disturbances and 
uncertainties can only affect on the dynamical model, their 
effect can not directly act on the kinematical model. It 
implies that the dynamical and kinematical models of the 
original dynamical system can be separated, and each 
controller can be designed independently. Therefore, a 
two-loop control scheme is proposed in the work, and its 
inner-loop is consisted of the dynamical model and its 
outer-loop contains the kinematical model. Thus, in the work 
a kinematical controller is integrated with a robust dynamic 
controller to deal with bounded and stochastic uncertainties 
with the aid of an adaptive fuzzy elimination scheme which 
can reduce the nonlinear effect. 
 
Key Words: Nonlinear, stochastic, fuzzy. 
 
二、 緣由與目的 

A tracking control method through time-varying state 
feedback based on the back-stepping technique is proposed 
for a kinematical and the model of two-degree-of-freedom 
mobile robot [1]. A systematic way to design time-variant 
feedback control laws requires a class of controller of the 
nonlinear system. Exponential stabilization of drift less 

nonlinear control systems uses homogeneous feedback [2]. 
Stabilization of a nonholonomic system via sliding models 
has been studied in [3]. External disturbances and parameter 
uncertainty of a mobile robot driven by two independent 
wheels have considered in [4]. In the autonomous mobile 
robot system, the dynamical model is known, but viscous 
friction is usually consisted of the nominal part and 
stochastically distributed part. Therefore, a robust controller 
is recommended for such control design, since it allows 
simplification of modeling and also considers parameter 
variation, load change, elasticity of the wheels and road 
disturbance. The ∞H  control design has been developed to 
minimize the worst from the disturbances energy point of 
view. In the ∞H  optimal design [5]-[6], the disturbance is 
measured by the L2 norm. Therefore, the external 
disturbances are constrained to have finite energy (bounded 

2L  norms. Most researches normally designed the problem 
based on one loop which considers dynamical and 
kinematical models together as one system. However, the 
kinematical model physically is a pure particle motion 
unrelated to the mass and force, so it is free of the 
uncertainties and disturbances. On the other hand, the 
dynamical model is related to the mass and force, so the 
robust problem only is inherited in the dynamical model. 

A two-loop scheme in [7]-[9] is adopted in the work, but 
the stochastic uncertainty is additionally considered here 
instead of the pure bounded uncertainty. In this scheme the 
dynamical controller is designed in the inner-loop with a 
suitable bandwidth to migrate the effect of uncertainties and 
disturbances; and the kinematical controller is designed in 
the outer-loop for the nonlinear kinematical model of mobile 
robots. In other words, the proposed two-loop control is to 
design kinematical control and dynamical control separately 
then to integrate them together. The proposed scheme can 
reduce the dimension of dynamical control design, because 
its target is focused on the dynamical model which is unlike 
the traditional approaches using the dynamical system 
consisted of the dynamical and kinematical models. 
Moreover, Effect of disturbance, bounded and stochastic 
uncertainties can be reduced by applying the fuzzy method 
and the stochastic robust ∞H  control design [10]. 
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三、 研究方法及成果 
 
1. Kinematical Model 

The kinematical model of the mobile robot is described 
and formulated in the section, and it is basically unrelated to 
the mass, force, uncertainties, and disturbances. The 
associated dynamical model affected by the uncertainties 
and disturbances is then discussed in next section to work on 
the stochastic robust issue. 
 
A. Kinematics of the Mobile Robot 

A kinematical model of the front mobile robot possesses 
two inputs, the center linear and angular velocities v  andω , 
respectively, and the differential equations describing the 
kinematics of a mobile robot are given as follows. 

 
Figure 1.A wheeled mobile robot with trailer 

 

cos
sin (1)
.

x v
y v

θ
θ

θ ω

=
=

=

&

&

&

 

Fig. 1 depicts a wheel mobile robot with trailer in the 
absolute coordinates. The corresponding difference between 
target and absolute coordinates is further defined as follows. 

eo rx x x= −  

eo ry y y= −  

eo rθ θ θ= −  

where ( ,  ,  )eo eo eox y θ , ( ,  ,  )r r rx y θ  and ( ,  ,  )x y θ  are error, 
target and absolute coordinates, respectively. In order to 
discuss the basis on the mobile robot itself, the following 
transformation equation is applied. 
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The new error differential equations for kinematical tracking 
problems of the mobile robot can be reformulated as 
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It notes that as referred from (3), if both of ex  and eθ  
equal zero, then we obtain 0ey =&  (i.e., ey  is constant). 
This implication can be interpreted that when drivers park a 
car along the side way, the main trouble is that some offset 
with the side way ( ey  is constant) always happens to drivers. 
Similarly, it is also the worst case of mobile robot tracking 
problem, so a good kinematical controller is to make sure 
that the convergent rate of ey  is the fastest one in order to 
avoid the above problem. Furthermore, the mobile robot can 
turn any angle freely with a zero radius, so ey  should be 
particularly designed to decay to zero before eθ  does for 
avoiding the worst case. Then the following two Lyapunov 
functions can meet the requirements. 

2 2 2
1

1 1 1 ( )
2 2 2k e e eL x y c θ φ= + + −  and 

2 2 2
2

1 1 1
2 2 2k e e eL x y cθ= + + , where eee yMxx ω−=  

The first one means that eθ  decays to zero only for 0φ = , 
and the second one means that ex  decays to zero only when 

0ey = . φ  is chosen to be a function of ey  with the 
assumption that 0ey = ⇒ (0) 0φ = . The weighting parameter 
0 1c< <  is selected for paying less care upon the decay of 

eθ  and more care on the decay of ex  and ey . 
The following approach is similar to that in [1] with some 

modifications, i.e., dv  is in term of ω . Three remarks are 
introduced first. 
 
Remark 1.1: Let a function ( , )ζ θ φ  be defined as 
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and it can be extended as a continuous function. 

 

Remark 1.2: Let φ  be a continuous monotonic decreasing 

function of e ry v , and [ / 2, / 2]φ π π∈ − . Then sin( ) 0e ry v φ <  

if 0e ry v ≠ . 

 
Remark 1.3: In this work the function φ  is selected as 

( / 2) tanh( ) (5)e ray vφ π= −
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Theorem 1.1: 
For the tracking problem (3) of mobile robots with the 
Lyapunov function 1kL , if the control inputs are designed as 

2( ) ( sin ) (7)e r
d r e r e e r

y v M av ay v
c

ω ω ζ θ φ φ θ′= + + − + + &

cos ( ) , (8)d r e e e rv v Mx c a vθ θ φ φ ω′= + − −

where ( / 2) tanh( )e ray vφ π= − , as well as 0M > , 0 1c< < , 

and 0a >  are constants. Then the system is asymptotically 

stable as ( ) 0, 0rv t t≠ ∀ ≥ . 

 
Remark 1.4: The input v  in (9) containing ω  is different 
from that in [1]. The approach can also be interpreted that as 
driving a car, the direction (related to ω ) should be decided 
before the acceleration does (related to v ). In other words, 
the acceleration somehow needs consider the turning angle 
(related to ω ), so it makes sense that the input v  contains 

.ω  
 

Theorem 1.2: 
For the tracking problem of the mobile robot (3) with the 
given 2kL , the corresponding control inputs are designed as 

1 sin (9)d r e r e e
e

y v M
c

ω ω θ θ
θ

= + +

1 . (10)d e ev v y M xω= − +  

Then the system is asymptotically stable. 
In the above theorem, it is noted that the system is 

asymptotically stable by the control inputs (7) (8) and (9) 
(10) with the adjustable convergence rate M  and the 
weighting factor c . 

 
In practical system, parameters of the dynamical model 

are varied with some bounded values or even with some 
stochastic distribution. Bounded uncertainties normally 
occur on 1, ,w vI I M  and 2M , and stochastic distribution 
exists on viscous friction C . The dynamic model of the 
mobile robot in [5] can be formulated as follows. 

0 0( ) ( ) ', (11)M M q C C q u d+∆ + +∆ = +&  

where [ ]Tq v ω= , d ′  is the disturbance, [ ]T
r lu u u=  are 

two driving inputs for right and left wheels, and other 
parameters 0M , M∆  and 0C  can refer to [5]. And the 

C∆  is considered as a stochastically normal distribution in 
the work. Therefore, a nominal controller of the dynamic 
model is designed as 
 

0 0 0     (12)d d du M q C q Cq u= + + ∆ +&  
where 

0u  is an auxiliary control input, and [ , ]T
d d dq v ω= ,  

denotes the desired tracking vector of the linear velocity and 
angular velocity of the mobile robot. 
 
Remark 1.5: In the work, C∆  is considered as a 
stochastically normal distribution which has zero mean 
property. Then the control input in application should be 
modified as 

0 0 0                       (13)d du M q C q u= + +&  
 
To substitute (12) into (11), the systems is a linear system 

combined with two nonlinear parts ( )f η  and d , as well 
as one stochastic part, and it can be written as 

1 0( ) ( ) ( ) ( ) [ ( ) ( )],  (14)e t Ae t A Ce t u t f d tη= + ∆ + + +&  

where 1
0( )f M Mqη −= − ∆ & , [ , ]Tq qη = & , 1

0d M d− ′= , 
1

1 0-A M −=  and the stochastic term C∆ . 

 
Remark 1.6: The dimension of matrix A  is 2x2 instead of 
4x4 in [5], because the dynamical and kinematical models 
are separated in this work. 

 

Figure 2.Tracking control system for the mobile robot 
 
In the section, kinematics and dynamic models are 

integrated together as a two-loop scheme in which the 
dynamical control is designed in the inner-loop for reducing 
the effect of uncertainties and disturbances, and the 
kinematical control is implemented in the outer-loop for 
kinematical tracking problem, as described in Fig. 2. In the 
figure, the dynamic and kinematical models are (11) and (1), 
respectively. The proposed robust controller with fuzzy 
elimination scheme block is shown in Fig. 2, and its detailed 



description, as shown in Fig. 3, will be discussed in the next 
section. The coordinate transformation is (2), and the 
notation T  is denoted to convert from ( , ,r r rx y θ ) to ( ,r rv ω ) 
with the following equations 
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Based on the nominal controller (12), the kinematical 
tracking control law is implemented as (7) (8) or (9) (10). 
 
2. Adaptive Fuzzy Elimination Scheme 

The objective of the work is to design a stochastic robust 
control based on the proposed two-loop control scheme, so 
the adaptive fuzzy elimination scheme in [4] is directly 
implemented here with only dimension reduction of the 
matrix A . An error dynamic system (14) is equivalent to 
combining the dynamical model and the nominal controller. 
In section, we will study the adaptive fuzzy elimination 
scheme. 

 
Figure 3.Fuzzy logic systems for wheeled vehicle control 
 
The nonlinear uncertainty ( )f η  of systems is cancelled 

as much as possible with ( ),fu η Θ by using the fuzzy 
estimation. With the definition of ( )0 ,e fu u u η= − Θ , and eu  
is designed for attenuating the effect of the disturbance d  
and the error ( ) ( ),ff uη η− Θ . 

1 ( ) ( , ) (15)e fe Ae A Ce u f u dη η⎡ ⎤= + ∆ + + − Θ +⎣ ⎦&  

The fuzzy rule base consists of a collection of fuzzy If-Then 
rules are listed as follows. 
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The fuzzy basis functions are defined as (17), then the fuzzy 
logic systems with center-average defuzzifier, product 
inference and singleton fuzzifier for mobile robots are (18). 
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1[ ]T
i i iMθ θΘ = L , 1( ) [ ( ) ( )]T

i i iMξ η ξ η ξ η= L  for 1,2i = , and 

ilθ  is singleton. 
Let us define the following optimal update parameter of the 
elimination: 

* arg min max || ( ) ( ) || .f
η

η η
Θ

Θ = −Ξ Θ  

Then, (14) can be rewritten as follows: 
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where *Θ =Θ −Θ% , *( ) ( )fε η η= −Ξ Θ , and d dε= + . 

3. Stochastic Robust H∞
 Control 

The bounded uncertain of mobile robots is reduced by the 
above fuzzy approach, and in the section stochastic robust 
control methods are introduced. Consider the following 
stochastic system [10] 

1

1

( ) ( ( ) ( ) ( )) ( ) ( )

       = (( ) ( ) ( )) ( ) ( )  (19)
ede t Ae t u t d t dt A e t Cdt dt

A K e t d t dt A Ce t dw dt
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where (0) 0e = , ( ) ne t R∈ , ( ) ( ) m
eu t Ke t R= ∈ , ( ) md t R∈ , 

and m nK R ×∈  denote the initial error state vector, control 
input, external disturbance, and feedback gain matrix, 
respectively. 

For robust control, many methods can achieve the desired 
performance. The notation and definition are listed, and the 
robust H∞

 control is studied first. 
 

Notation and Definition 

2
2 0

. || ( ) || ( ) ( )TI x t E x t x t dt
∞

= ∫  

2 1. || ( ) || lim ( ) ( )
T T

p TT
II x t E x t x t dt

T −→∞
= ∫  

The H∞
 performance control with the LMI approach is 

to make the ratio of the error state to the disturbance to be 
smaller than an upper bound, so it is suboptimal. The 
disturbance ( )d t  and error state ( )e t  are measured by the 

2L  norm (or power norm). Therefore, the external 
disturbances are constrained to have finite energy (or power), 
i.e., bounded 2L  (or power) norms. Let us consider the 
following H∞

 performance (20), denote L
∞

 [10], which 
has been derived to be (20) in [5]. 
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where 0ρ > . 
The optimal H∞

 control is to minimize (20), so the 
below theorem is implemented to solve the robust tracking 
problem [4]. Because the stable matrix A  can be selected 
by the designer, the following inequality (21) is a simplified 
version without a free adjustable matrix P . A coupling 
matrix cN  will be derived from the integration of the 
dynamical and kinematical loops, and it is corresponding to 
differences between the desired inputs ( dv  and dω ) and the 
real inputs ( v  and ω ). These differences can be considered 
in designing the dynamical controller as uncertainty effect to 
be reduced to desired level 0ρ > . 

 
Theorem 3.1: 
Consider the system (19) with zero initial conditions, and 
the following inequality is satisfied 

1 1 2

1 0,T T T T
cA A C A A C N I K K

ρ
+ + ∆ ∆ + + + <          (21) 

where A A K= +  and {1/ 4 , / 4 }cN diag M c M= .  
If the adaptive law with fuzzy elimination scheme is 
designed as follows. 

( ) ( )T e tγ ηΘ = Ξ&                                 (22) 
then the system is satisfying the H∞

 performance (20). 
 
Remark 3.1: As we observe the matrix inequality (21), there 
exists an extra term 1 1

T TC A A C∆ ∆  associated with the 
stochastic uncertainty part. It indicates that the stochastic 
uncertainty is mitigated by designing the closed-loop pole of 
system matrix A  to be further left in the left-hand plane. 

In order to convert (21) into the LMI form, we substitute 
A A K= +  into (21) to get 

1 1 2

1( ) ( ) 0 (23)T T T T
cA K A K C A A C N I K K

ρ
+ + + + ∆ ∆ + + + <

By the Schur-complement, it can be formulated as 

1 1 2

1
0. (24)

T T T T T
cA K A K C A A C I N K

K I
ρ

⎡ ⎤+ + + + ∆ ∆ + +⎢ ⎥ <⎢ ⎥
−⎢ ⎥⎣ ⎦

Corollary 3.1: 
The stochastic robust H∞

 control problem is to solve the 
following LMI.  
Solve K  

Subject to 

1 1 2

1
0. (25)

T T T T T
cA K A K C A A C I N K

K I
ρ

⎡ ⎤+ + + + ∆ ∆ + +⎢ ⎥ <⎢ ⎥
−⎢ ⎥⎣ ⎦

 
四、 結論與討論 

A two-loop control scheme, integrated the kinematical 
and dynamical controls together, is proposed in the work, 
especially, the bounded and stochastic uncertainties are 
considered to design two distinct kinematical controllers 
which can individually integrate with the same stochastic 
robust ∞H  control with adaptive fuzzy elimination scheme 
dynamical controller. The coupling matrix (the difference 
between desired and real inputs) is considered as an 
uncertainty in designing the corresponding dynamical 
controller. The dimension of the dynamical controller design 
based on the proposed scheme can be reduced. Moreover, 
disturbance in the inner-loop can be suppressed to a desired 
level first, and it can further be smoothed in the outer-loop. 
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