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Abstract—In the field of adaptive fuzzy control, there
has been a severe deficiency by assuming the premise
variables will usually stay within the universe of dis-
course in the derivation of stability of the adaptive
control system. To overcome this deficiency, we develop
a switching adaptive control scheme using only essential
qualitative information of the plant to attain asymptotical
stability of the adaptive control system for a typical first-
order nonlinear system without imposing the mentioned
severe assumption. The switching adaptive control system
consists of an adaptive VSS controller for coarse control,
an adaptive fuzzy controller for fine control, and a
hysteresis switching mechanism. An adaptive VSS control
scheme is proposed to force the state to enter the universe
of discourse in finite time. While the premise variable is
within the universe of discourse, an adaptive fuzzy control
is proposed to learn the capability to stabilize the plant.
At the boundary of the universe of discourse, a hysteresis
switching scheme between the two controllers will be
proposed. We show that after finite times of switching, the
premise variables of the fuzzy system will remain within
the universe of discourse and stability of the closed-
loop system can be attained by applying Lyapunov direct
method.

In the current year, we focus on robust adaptive
control for deterministic nonlinear systems. Based on the
developed results, we shall attack the same problem for
nonlinear stochstic systems in the next year.

Index Terms: Adaptive fuzzy control, switching
control, T-S fuzzy model

I. INTRODUCTION

There are many deterministic fuzzy adaptive control
systems which are proposed in the literature since
2000. Generally speaking, the main difficulty for adap-
tive fuzzy control systems arises from system uncer-
tainty and disturbances. In the presence of these two
uncertain terms, the first problem is how to guarantee
uniform boundedness of parameter estimates, and the
second one is how to design adaptive control law so
as to guarantee system stability. In [1], it is assumed
that the uncertainty term, which is also a function of
plant input and system states, has an known upper
bound to design a stabilizing control law. However,
this assumption is unreasonable due to the following
two problems.

P1. First, it is unreasonable to impose an upper
bound of uncertainty term since plant input and

system states may diverge before guaranteeing
system stability. Especially, the upper bound is
hard to know in an adaptive control scenario.

P2. Second, we can not guarantee that the premise
variables will be confined in a compact universe
of discourse so that the uniform approximation
property holds in the analysis of the stability of
the adaptive fuzzy control system.

In [2], where an adaptive control of time delay
nonlinear systems is considered, problems P1 and P2
also occurred. The same situation also took place in [3]
and [4]. In [5], [6], and [7], problem P1 is avoided, but
problem P2 is also not considered in the analysis of the
closed-loop system stability.

In [8], fuzzy systems are introduced to approximate
system nonlinear functions and Lyapunov-based design
techniques are employed to design stabilizing adaptive
controllers to attain asymptotical stability of the state
and the boundedness of the estimated parameters for
regulation control problem. In their adaptive fuzzy
control schemes, an essential deficiency is that the
universe of discourse should depends on unknown
system parameters, which is hard to define in advance.
Basically, problem P2 is also not overcome in this
literature.

Based on the literature survey discussed above, in
this study, we shall construct a robust fuzzy adap-
tive control for nonlinear affine systems to overcome
problems P1 and P2. We shall only use minimum
information about modeling error of system uncertain
terms, because adaptive controller should have the
ability to learn the information of the modeling error
by itself. We shall not assume that the trajectory of
premise variables is limited to the universe of discourse
of the fuzzy system. Without this assumption, it will
be more difficult to design an stabilizing adaptive
controller.

To attain our goals, we shall develop a switching
adaptive control scheme to attain stability of the adap-
tive control system for a typical first-order nonlinear
system. We shall only make some essential qualitative
assumptions of the plant, instead of requiring some
quantitative information of the plant, to construct an
adaptive controller. The proposed switching adaptive



control system consists of an adaptive VSS controller
for coarse control, an adaptive fuzzy controller for
fine control, and a hysteresis switching mechanism
for switching of the previous two controllers. The
adaptive VSS controller is used to force the premise
variable to enter the universe of discourse in finite time.
While the premise variable is kept within the universe
of discourse, the adaptive fuzzy controller will tune
its parameters and gradually learn the capability to
stabilize the plant. At the boundary of the universe
of discourse, a hysteresis switching scheme between
the adaptive VSS control law and the adaptive fuzzy
control law will be proposed. We shall show that after
finite times of switching, the premise variable of the
fuzzy system will remain in the universe of discourse
and stability of the adaptive control system will be
attained by applying the Lyapunov direct method.

The remainder of this work is organized as fol-
lows. The problem to be attacked and the hysteresis
switching adaptive control scheme are described in
Section 2. The adaptive VSS controller is proposed and
analyzed in Section 3. Then, the considered adaptive
fuzzy control is presented in Section 4. Analysis of the
switching control system is made in Section 5 together
with a simulation example. Finally, conclusions and
discussions are given in Section 6.

Notations

Foravector x = [ x; a9 z, |7, the asso-

ciated swap operation is defined as
]T

swap(z) =[ zn, Tp—1 -+ T1

For a vector x, we write x > 0 if every entry of x is
greater than or equal to zero.

Il. PROBLEM FORMULATION AND THE
HYSTERESIS SWITCHING ADAPTIVE CONTROL

Consider the plant
&= f(z)+u @)

where f(x) is a scalar nonlinear continuous function
of the scalar variable z and v € R! is the input. For
the nonlinear continuous function f(x), we make the
following assumptions.

Assumption 1: f(x) is a continuous function and
admits its maximum f,,, on the compact connected
set ), with

fmax = ara'rel%l}i |f<$)‘ (2)

where fi..x IS an unknown positive number.

Assumption 2: The function f(z) satisfies

df (z)

< 3

‘ de | — s )

for « € Q, where k¢ is an unknown positive number.

Assumption 3: For = ¢ Q,, there is a least upper
bound v (z) of f(x) satisfying

@) < ¢ [a] + ¢ |2 = (@) forz ¢ Q. (4)
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Fig. 1. Illustration of the hysteresis switching control.
where ¢; and ¢} are unknown positive parameters.
Assumption 4: We assume that
zf(x) >0, ifz#£0 (5)
fx)y=0, ifz=0

and f(x) is a convex function for x € Q,. Also to
simplify system analysis, we shall assume f(x) is an
odd function, i.e.,

f(=z) =—f(z) (6)
An example of such a function f(x) is given by
fl@) =ezla|+ p'x @

with ¢* > 0 and p* > 0 under which the equilibrium
point 0 of the system dynamics (1) is unstable. In this
study, we shall consider the case that the nonlinear
function f(z) is unknown and a fuzzy approximator
F(x|0) will be used to approximate an ideal nonadap-
tive stabilizing controller in the universe of discourse
Q, = [-1,1] where z is the only premise variable.
Basically, when the state trajectory x=(t) is outside the
universe of discourse ., by utilizing the structure
information of f(x) given in (4) in Assumption 3,
we shall develop an adaptive VSS control uy ss(t) to
force the state trajectory entering €,. On the other
hand, if the state trajectory x(¢) is staying within Q,,
an adaptive fuzzy control wy,..,(t) will be applied
to further ensure that the system will be ultimately as-
ymptotically stable. Since switching between these two
control laws with infinite frequency at the boundary of
the region ©, may happen, we shall use a hysteresis
switching control as described in the following to
avoid this problem. Let A, with 0 < h < 1, be the
hysteresis size and define the hysteresis zone Q; as
Qn = {z| 1 — h < |z| < 1}. The hysteresis switching
control structure, as shown in Fig. 1, is described as
follows. At ¢ = 0, the control structure is defined as

uvss(0), if [2(0)] > 1—h
u(0) = { WO, i ) <1-n @

For ¢t > 0, while z(t) is outside the hysteresis zone
2y, the control input w(t) is defined as

_ ) uvss(t), i fz(t)] > 1
wp={ s T @

and on the contrary, while z(t) is inside the hysteresis
zone Qp,, u(t) is defined as

u(t) = { if u(t-) =uyss(t-)

if u(t_) = Ufuzzy(t—)

uyss(t),

Ufuzzy(t), &0



We note that while applying the adaptive VSS control
law uy gg, the tuning parameters in the adaptive fuzzy
controller will be kept invariant. On the other hand,
while applying the adaptive fuzzy control law w sy, .y,
the tuning parameters in the adaptive VSS controller
will be frozen.

The problem to be attacked is formulated as follows.
For the plant in (1) under assumptions Assumption 1-
Assumption 4, we shall construct an adaptive VSS
controller and an adaptive fuzzy controller together
with the above hysteresis switching mechanism so that
the tuning parameters in the two adaptive controllers
are bounded and z(t) — 0 as t — oo.

I11. DESIGN AND ANALYSIS OF THE ADAPTIVE VSS
CONTROL

In this section, an adaptive VSS control will be
proposed and the system behavior will be analyzed.
Recall that the system function f(x) has an least
upper bound v (z) with the structural information as
indicated in (4) for x ¢ Q.. Here, we shall develop
an adaptive VSS control uyss(t) to force the state
trajectory entering €, when the state trajectory is
outside the region .. To attain this goal, we shall
construct estimates ¢; and ¢ of ¢j and ¢, respectively,
so that the following inequality

|f(2)] < & |z] 4 é|z|” forz ¢ Q,

can be attained. Based on the estimates ¢; and ¢g, the
proposed adaptive VSS control law will be defined as

11)

where r is a given positive constant. The tuning laws
of ¢; and ¢, are given as

wyss = —(é1 x| + é |z|* + 7 |2|)sign(z)

& = Tilzf, &(0)=0
e = TIylzf’, &(0)=0

(12)
(13)
To analyze the system response when applying the

adaptive VSS control law defined in (11), (12), and
(13), we consider the Lyapunov function candidate

1 1 4. 1.4,
Va = 5.732 —|— §F1 101 + §F1 163
where
51 = él — CT
52 = éQ — C;

The following lemma, adopted from [8], is required for
further analysis.

Lemma 1: If V/(t,z) is positive definite and V <
—k1V + ko where k; > 0 and k; > 0 are bounded
constants, then

V(t,z) < ﬁ + (V(0) — @)e_klt
k1 k1
for all ¢. Also it is obvious that
ko

. < ke
tli)rgo‘/(t,x) ~ ks

Lemma 2: Consider the adaptive VSS control sys-
tem defined by (1), (11), (12), and (13). The trajectories
of x(t), é1(t), and éx(t) are bounded over the time
interval (t9,00) where ¢, is an arbitrary initial time,
and z(t) converges to the origin. Moreover, there is a
finite time ¢, such that z(¢;) = 1—h if (o) > 1—h
or z(t1) = —(1 — h) if z(to) < —(1 — h) where ¢; is
a time instant with ¢; < ¢y + 77 and

V)
L=

Proof: The time derivative of V,, along the system
trajectory of the adaptive VSS control system can be
evaluated as

(14)

Va
= z[f(z) +uvss] +a o) + & |z

of(x) — (@) x| + (] |2] + ¢ |2*) ||

— (&1 |z] + & |2* + 7 |2]) @] + & [l + 2 [al®
< —rlzfP<o0 (15)

The above inequality implies that the trajectories of
x(t), ¢1(t), and éx(t) are bounded over the time
interval (¢o, c0) and V,(¢) is a non-increasing function
of ¢. From (12) and (13), it is obvious that both ¢ (%)
and é;(t) are non-decreasing functions of ¢. Therefore
¢1(t) and é(t) both converge to some finite values as
t — oo. On the other hand, we have

¢, =202 | f(z) — (&1 x| + é2 o] + r ||)sign(z)

which is bounded, and we have ¢; is uniformly con-
tinuous. Then, Barbalat’s lemma [9], we have

Consequentially, with ¢; = I'y || defined in (12), we
can conclude
lim z(t) =0

t—oo

From (15), there exists a positive function Z(¢) > 0
such that

Va+2Z=—rl|z]

Integrating the last differential equation, one can get

Valt) = Valto)+ / = 2(r) — [ (7))dr
_ Va(to)—rl |x|2(7)d7—/t Z(r)dr
which implies

1/222 < V,(t) < Va(to) — 7"/ lz* (r)dr  (16)

to

Now define a function y(t) as

y(t) = / 2 (r)dr
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Fig. 2. A typical case of the fuzzy sets in the rule base.

which is equivalent to the following differential equa-
tion
dy/dt = 2*(t), y(to) =0
Then, from (16), we have
y+2ry < 2Va(tO)

By Lemma 1, we can conclude that

t
y(t) < 2V,(to) / e 2rt=")qr
to
1— 672r(t7t0)
= (————Valto)
and thus
t _ 72T(t7t0)
| #0r < ) < 2
to T T
(7)

If 2(t9) > 1 — h, we can show that there is a finite
time ¢; such that z(¢t1) = 1 — h with t; —tx < Ty
where T is defined in (14). By contradiction, assume
that z(t) > 1 — h > 0 for ¢t € [to,to + T1]. Then, we
have

to+T1

/ a?(r)dr > (1 —h)*Ty = Valto)
to r

which contradicts inequality (17). This verifies the

assertion. Similarly, if z(t9) < —(1 — h), there is

a finite time ¢; such that z(¢;) = —(1 — h) with

ty —to < T3. This ends the proof. [ |

IV. DESIGN OF THE ADAPTIVE FUZZY CONTROL

For the plant in (1), the only premise variable of the
fuzzy system is = and the universe of discourse €2, is
chosen as 2, = [—1, 1]. The rule base of the T-S fuzzy
system is defined as: for 1 <[ < L,

Rule I : If z is Fj,then y = 6,.

where Fj is the fuzzy set with membership function
pr, (x) and 6; is the value specified in the antecedent

part of the [—th rule. The number L, which is the total
number of rules, will be chosen as an odd number. A
typical case is shown in Fig. 2 where the set of IF-
THEN rules is complete, consistent, and continuous
[10]. Based on the above rule base, the T-S fuzzy sys-
tem, consisting of the singleton fuzzyifier, the product
inference engine, and the center average defuzzifier
[10], can be expressed as
F(x,0) = £ (2)0 (18)
where
[01,....0.]",
fp ()
§z) = Lin’
Z pr, ()
z) = [E(@), (@]

From Fig. 2, we can observe that

L
Z K, (z) =1,

for any z € Q, and

0 =

(19)

(@) = [pp, (@), oo pipy (@)] (20)

with L = 5. From the triangular membership functions
shown in Fig. 2, we have, for any = € €,

lE@)I* = p3, (@) + 1., (2) (21)
for1<i<L-1and
b (T) + pp,, () =1 (22)
From (21) and (22), it is obvious that
1
5 < le@)I” <1 (23)
Note that since 2, = [—1, 1] is symmetric with respect

to the origin, the rule base will be chosen to symmetric
in the sense that

E(—a) = &(x)
where &(x) =swap(£(z)).

Now let A;, for 1 < ¢ < L, be the support of the
membership function . (), i.e.,

Ai ={z e Q|pp(z) >0}

Denote d; as the center of the membership function
pp(x) for 1 < i < L and ~, as the point such
that pp, (v;) = pp,, (v;) for 1 <4 < L — 1. For
the convenience of further analysis, now partition the
universe of discourse Q, as Q, = U?£2Q, ; where

(24)

Qpoicr = [diyy,), for 1 <i < %
Quoi = [v;dig1), for 1 <i< % -1
Quoic1 = (dg,ny,], for L+3 <i<L-1
Qo = (74 diga], for L+l <i<L-1



and
Qr,Lfl
Qac,L =

We make a final note that the fuzzy system F'(x,0)
in (18) admits a linear approximator structure with
respect to the parameter vector 6 and

ez, dep)

[drgs, ves]

F(x,01) — F(x,05) = 7 (2) (01 — 62) (25)

For = € ., we can approximate the system function
f(z) by the fuzzy system F(z,6) = ¢7 ()6 so that

min () - F(z,0)] .« = W

for some W > 0 due to the universal approximation
property of the constructed fuzzy system [10] and the
infinite norm is defined as

l9(x)ll oo = sup |g(z)]
TEQ,

Let’s denote a best fitted parameter 6* as
0" € argmein | f(z) — F(z,0)

lloo
For z € ., we then have
|f(z) = F(z,0%)| <W (26)

Finally, with respect to the membership functions
shown in Fig. 2, the hysteresis size h defined in (9)
will be chosen such that

1
O<h§z—€h 27

where ¢;, is a small positive constant.
With the above definitin of the fuzzy system, the
adaptive controller is defined as

0 = Tz (28)
u(t) = -0 &) (29)

V. A HYSTERESIS SWITCHING ROBUST Fuzzy
ADAPTIVE CONTROL

Based on the adaptive VSS controller and the adap-
tive fuzzy controller, we shall study the proposed hys-
teresis switching robust adaptive control defined as in
(9) and (10). While applying adaptive VSS controller,
the closed-loop dynamics is given

& = f(x) — (&1 |2| + & || + 7 |a])sign(z),
& =T1lz|*, e1(0) =0,
& =Ty la[*, e2(0) =0

0=0,
(30)
On the other hand, by letting I's = I in (28), the
closed-loop dynamics adaptive fuzzy control system is

&= f(x) 0 (@)

0 =¢x, H(0) =0 (31)
¢1=0

¢1=0

Note that the value of the fuzzy approximator is given
by A o
F(z]0) =0 £(x)

According to the tuning law of # defined in (??) and
the definition of the vector £(z) in (20), some further
properties of # can be discovered.

Lemma 3: Due to the structure of the fuzzy system
and the tuning law of 6(t) defined in (31), we have
the following results. (i) If A; c [0,1], then 6;(¢) > 0
and 0,(t) is a monotone increasing function of time.
On the other hand, if A; ¢ [—1,0], then 6;(t) < 0
and 0;(¢) is a monotone decreasing function of time.
(i) For A; C [0,1] or A; C [—1,0], if there is time
to such that z(to) € Aj, then 0;(t) > 0 for t > t,.
Similarly, if there is time to such that x(¢y) € A,
then 6;(t) < 0 for ¢t > to. (iii) If 2(t) € [1 — h,1],
then &' (£)¢(x(t)) > 0. On the other hand, if z(1) €
[—1,—(1— h)], then §" (1)€(x(t)) < 0.

Proof: (i) Denote A; be the closure of A;. If = €
A;NA; . C [0,1], only 6; and 6, will be updated
according to

0; = (32)

(33)

pp,(x)z >0
0it1 fr,, ()T >0

and 9j will be kept fixed for j # i and j # i + 1. On
the contrary, if 2 € 4; N A;41 C [-1,0], only 6; and

0;+1 will be updated according to

0; = (34)

(35)

pp,(z)z <0

Oit1 o, @)z <0

and 0; will be kept fixed for j # i and j # i +
1. Similarly, Since the initial guest of 0 is chosen as
6(0) = 0, equations (34)-(33) imply that if A; C [0,1]
(A; C [~1,0]), then &; > 0 and 6;(t) is monotone
increasing (0;(¢) < 0 and 6;(¢) is monotone decreasing
). In summary, if A; C [-1,0] or 4; C [0,1], then
é?i(t)‘ is monotone increasing.

(i) If there is a time ¢, such that z(¢y) € A; C [0,1],
then, due to the continuity of the trajectory while using
the adaptive control law, there is an interval (¢,,ts)
with to € (ta, %) such that z(¢) > 0 and pp, (x(t)) >

0 for tg € (ta,tp). By (32), we have 6;(t) > 0 for
to € (ta,ty) and thus 6;(t) > 0 for t > t,. Proof of
the similar case for A; C [—1,0] is omitted.

(iii) If z(t) € [1—h, 1], then z(t) € A,N A5 C [0,1]
and

0" (&) = g, (2(0)04(1) + o, ()5 (1) > 0

On the other hand, =(t) € [~1,—(1— h)], then z(t) €
AN Ay C[-1,0] and

0" (DE((t)) = g, (@(8)01 () + pupy ()8 (1) < O
This completes the proof. [ |



Remark 1: Suppose that the membership functions
are specified as shown in Fig. 2. Then, according to
Lemma 3, we have both 0, (¢) and f(t) are of non-
positive values and monotone decreasing. On the other
hand, 04(t) and 65 (t) are of non-negative values and
monotone increasing.

Lemma 4: The response x(t) of the hysteresis
switching robust adaptive control defined as in (9),
(10), (??), and (??) is symmetric in the sense that if
{x(t), 9(15)} and {y(t),0(t)} are the system responses
corresponding to the initial states x(0) and —xz(0),
respectively, then y(t) = —z(t) and 6(t) = —0(t)
where 6(t) =swap(f(t)).

Proof : (i) First, we shall show that the response of
the adaptive VSS control system is symmetric. Since
both f(x) and (¢, || 4 & || + r |z|)sign(x) are odd
functions of , so is their sum. Let y(¢) = —xz(¢). Then,
by multiplying -1 to both sides of the first equation in
(30), we have

—f(@) + (&1 ]a] + & [af” + r|a|)sign(z)
= f(=2) = (& ]e| + & |2|* + r |2])sign(—z)

- =

where we have used the property that f(z) is an odd
function, i.e., f(—x) = —f(z). The above differential
equation implies that y(t) = —z(t) is the solution
to the closed-loop dynamics defined as, with y(0) =
—z(0)

9= f(y) — (&1 lyl + & |yl + 7 [y])sign(y)
¢ =Ty |z, e1(0)=0
éo =T1]z|*, ¢2(0)=0
(36)
Note that the trajectories ¢, (¢) and c2(t) are the same
for the systems in (30) and (36).

(if) Next, we shall show that the response of the
adaptive fuzzy system defined in (31) is symmetric.
Now define & =swap(d) and £ =swap(¢). Then it
follows that

0 () =0 ¢()

Note that due to the symmetric structure of the fuzzy
sets in the rule base, we have

£(z) =&(—=)

Let y(t) = —2(t) and § = —0. Then, by multiplying
-1 to both sides of the first equation in (31), we get

—f(@) + 0" &)

= f(x)+0 &)
which implies
§ o= fly)+0 &)
= f(y)+0" ()
— fly)—0"¢y)

Similarly, by the swapping operation and the symmet-
ric property of the vector £(z) in (24), the second

equation in (31) can be expressed as

0 = &(z)(x) = £(—)(x)

Now multiplying -1 to both sides of the last equation,
one has

—0 = &(—a)(—x) = £(y)(y)

and by the definition of the vector 6, it can be con-
cluded that

0 = £(y)(y)

Therefore, the responses y(t) = —x(t) and § = —0
consist of the solution to the closed-loop dynamics of
the adaptive fuzzy control system in (31)

{ J=fy) - 0"y), y(0) = —(0)

2 ) @37)
0 =¢(y)(y), 0(0) =0

(iii) Finally, we note that the switching mechanism

defined in (9) and (10) is symmetric to the origin

x=0.

By combining the results in parts (i), (ii), and (iii),
the assertion can be concluded. This completes the
proof. [ |

Due to the symmetry of the responses of the switch-
ing control system as described in Lemma 4, we shall
assume z(0) > 0 in the analysis of the dynamics of
the switching control system. If z(0) > 1 — h, then
the adaptive VSS control law in (30) will ensure that
there is a finite time ¢; such that z(¢;) = 1 — h and
x(t) > 1 —h fort € [0,t1). At t = ¢1, the adaptive
fuzzy control law in (31) will then be applied.

A. Analysis of switching behavior

In this section, we shall focus on discuss switching
behavior of the switching control law at the boundaries
of the hysteresis zone Q;, = [1 — h, 1JU[-1, —(1—h)].
For further analysis, we shall need some definitions.

Definition 1: We say that continuous switching of
N times at the positive boundary = = 1 — h happens
att =1¢; for 1 <i < N with ¢; < t;,, if there are
finite time instants ¢x,q and #; with ¢; < #; < t;41
for 1 < i < N such that (i) the adaptive VSS
controller is applied in (¢o,t1) for some ¢y < ¢y, (ii)
the adaptive fuzzy controller is used for ¢ € [t;,1;]
with z(¢) € [1 — h,1] for 1 < i < N, (iii) the adaptive
VSS controller is applied within the interval (Z;,¢;11)
for 1 <4 < N, and (iv) the adaptive fuzzy control law
is used after t = ¢ 41 such that there is no time instant
tyy1suchthat {z(t) [tn+1 <t <inyy1} C[1—h,1],
xz(tn+1) = 1, and the adaptive VSS control law is
applied after ¢t = ¢y ;. For the above situation, we
also say that continuous switching of IV times at the
positive boundary x = 1 — h happens since ¢ = ¢;. If
N =1, we say a switching at the positive boundary
x = 1 — h happens at ¢t = ¢;. Similarly, we may
let N — oo, in this case we shall say continuous
switching of infinite times at the positive boundary
x =1—h happens at t = ¢; for 1 < i < oo with



t; < t;41 or continuous switching of infinite times at
the positive boundary z = 1 — h happens since t = ¢;.

By the switching mechanism defined in (9) and (10),
if a continuous switching of IV times at the positive
boundary z =1 — h happens att =t; for 1 <i < N,
then we should have z(¢;) =1 — h, z({;) = 1, and
x(t) € [1 —h,1] for t € [t;,¢;] for 1 <i < N.

Definition 2: We say that continuous switching of
N times at the positive boundary © = —(1 — h)
happens at ¢t = ¢; for 1 < i < N with t; < t;41
if there are finite time instants ¢y.; and ¢; with
t; < t; < tjyq for 1 < 4 < N such that (i)
the adaptive VSS control is applied in (to,t1) for
some ty < t1, (ii) the adaptive fuzzy control law is
used for t € [t;,t;] with z(t) € [-1,—(1 — h)] for
1 <4 < N, (iii) the adaptive VSS control law is
applied within the interval (¢;,¢;41) for 1 < ¢ < N,
and (iv) the adaptive fuzzy control law is used after
t = tyo1 such that there is no time instant #x. 1
such that {x(t) |[tnt1 <t <iny+1} C[-1,—(1—h)],
z(tn4+1) = —1, and the adaptive VSS control law is
applied after ¢ = ¢y 1. For the above situation, we
also say that continuous switching of N times at the
positive boundary = = —(1 — h) happens since ¢ = ¢;.
If N =1, we say a switching at the positive boundary
x = —(1 — h) happens at ¢ = t;. Similarly, we may
let N — oo, in this case we shall say continuous
switching of infinite times at the positive boundary
x = —(1—h) happens at t = ¢; for 1 < i < oo with
t; < t;41 or continuous switching of infinite times at
the positive boundary « = —(1 — h) happens since
t=1t.

Definition 3: We say that a switch at the positive
boundary x = 1 — h (at the negative boundary x =
—(1 —h)) happens N timesat¢=t¢; for 1 <i < N
with t; < ¢;4; if a switching at the positive boundary
x = 1 — h (or at the negative boundary z = —(1 —
h)) happens at t = ¢; for 1 < 4 < N. Similarly, as
N — oo, we shall say a switch at the positive boundary
x = 1—h (or at the negative boundary z = —(1 — h))
happens infinite times at ¢t = ¢; for 1 < i < oo with
t; < t;4+1 Or aswitch at the positive boundary x = 1—h
(or at the negative boundary = = —(1 — h)) happens
infinite times since ¢ = ¢;.

Definition 4: We say that there is no switching at
the boundary x = 1 — h (or at the boundary =z =
—(1—h)) happened since ¢t = ¢; if (i) the adaptive VSS
control is applied in (to, t1) for some ¢y < t1, (ii) the
adaptive fuzzy control law is applied after ¢ = ¢, and
(iii) there is not a switching at the boundary z = 1—h
(or at the boundary « = —(1 — h)) happens at ¢ = ¢}
fro any ¢} > t;.

Since the system response is symmetric as stated in
Lemma 4, we shall focus on analyzing the switching
property at the boundary x =1 — h.

Lemma 5: Assume that there is no switching hap-
pened at the boundary = 1 — h since ¢t = ¢;. Then
it is impossible that {x(¢) |t > ¢} C [1 — h,1].

Proof: By contradiction, assume that we have
x(t1) = 1—h and the adaptive fuzzy control law in (31)
is applied for ¢ > ¢, and {x(t)[t > t1} C [L — A, 1].
From Lemma 3, we have 64(t1) > 0 and 65(t1) > 0.
Note also that for z(t) € [1—h,1], we have 0 <
pp, (2(t) < 5 and 5 < pp (1= h) < pp (2(1) <1,
Then, by the tuning law of 6, we have

04(t) = 94(151) +/ pp, (2(1))z(r)dr >0 (38)

ty
and

bs(t) = Bs(ts)+ / i (2())e(r)dr
> (t—t2) (1 — h)(1— B)

With (38) and (39), the value of 9T(t)§(a:(t)) can be
evaluated as

(39)

0 (E((t) = Oa(t)pp, (b)) + 05t g, ((t))
> (t—t) (1= h)ud,(1-h)
Now define a constant ¢, to satisfy

2fmax
(1= h)pg, (1= h)
Then from the first equation of the closed-loop dynam-
ics of the adaptive fuzzy system in (31), we have

.%'(tl + tM)

1
S 1-h + fmaxtM - 5(1 - h)/’[’%},(l - h’)t?bf

By the definition of ¢5; given in (40), we lead to a
contradiction that

tyv > (40)

x(ty+tm) <1—nh

Therefore, the assumed situation is impossible. [ |

In the following, we shall first investigate the learn-
ing capability of the adaptive tuning law when a
switching at the boundary happens.

Lemma 6: Suppose that a switching at the boundary
x = 1 — h happens at t = t; and the adaptive fuzzy
control is applied during the interval [t1,%;]. Let o
be the next time when the adaptive fuzzy control law
is applied. Then, the time difference #; — ¢; can be
estimated as

Bt > (41)
Moreover, we have
F($(t2)7é(t2))
> F(z(t1),0(t1)) + Ar (42)
where
A — lh(l —h)
F B 2 fmax

Similarly, if a switching at the boundary x = —(1—h)
happens at ¢ = ¢, then we have

F(z(t2), 0(t2)) < F(a(t1),0(t1) —Ar  (43)



Proof: Since a switching at the boundary z = 1—h
happens at ¢t = ¢, by Definition 1, we have z(t3) =
z(t1) =1—h, z(t;) =1, z(t) € [1 —h,1] for ¢t €
[t1,%1], and the adaptive control law is applied during
the interval [t;,%;]. From the switching control law
defined in (30) and (31), we see that the parameter
vector (t) is frozen during the interval (¢1,t) and
thus according to the second equation of (31), we have

(t) = 0(5) = 0(t) + [ Ea(r)a(r)d(r) (@)

t1

The value of the fuzzy approximator F(z(t),0(t))
evaluated at ¢ = - is given by

F(a(ts), 0(t2)) = € (x(t2))0(t2) = €7 (w(t1))0(F1)
Now, by applying (44), we get

F(x(t2),0(t2)) )
€7 (@(tr)) |d(tr) + / 1a<x<r>>x<r>d<r>]
— Fa(tr),d(t))

[ ) @) - gt a(r)d(r)

ty

€T ()€ (1)) / e(nd(r)  (45)

Since z(t) € [1—h,1] for t € [t1,t1], from the
membership functions defined in Fig. 2, we have

(@)=[0 00 2-2¢ 22-1]"
and
§(z(r)) — &(z(t1))
= [0 00 -2 2] (a(r) - a(t))

for ¢ € [t1,%1]. Note that z(¢1) = 1 — h. Therefore, it
follows from inequality (27) that

¢ (x(t)) [6(x(7) — &(x(tr))]

[B(1 = h) = 6] (x(7) — 2(t1))
0

Y

where the fact z(7) — x(t1) = z(r) — (1 — h) > 0 for
t € [t1,%1] has been used. Using (45) and (23), we can
obtain

F((t2), 0(t2))

> Fle(ty),0(0)) + €7 (2(t)€(x (1)) / Ca(r)d(r

> Fla(t),0(0) + 501~ W)(E )

Since z(t) € [1 — h,1] for ¢ € [t1,%], following from
Lemma 3, we have

~T

#(t) = f(x(t) =0 ()E(@(1)) < fmax

)

Therefore, with z(¢1) = 1—h and z(t;) = 1, we have

tp —t1 >

This shows inequality (42). Analysis of the case x =
—(1 = h) is omitted. u
Remark 2: We shall note that when the adaptive
control law is applied beginning from ¢ = ¢;, we have

ih) = flat) -0 (m)E(n))
= f1—h) =0 (b))
Therefore, if f(1 — h) is greatly larger than

éT(tl)f(x(tl)), then a switch of control law at z =
1 — h may happens due to instability of the adaptive
control system under the current parameter setting. To
avoid continuous switching behavior at z = 1 — h, the
only way is to increase the value of F'(z(t),0(t)) =

HT(t)f(x(t)). Lemma 6 shows that if the adaptive
control law is applied beginning from ¢ = ¢o just after
a switch of control law at z = 1—h happened at t = 1,
then with the learning capability of 6" (¢), (1) will
be decreased by an amount A as indicated in (42) so
that the adaptive control system at ¢t = ¢, has a better
chance to avoid continuous switching at the boundary
r=1-—h.

Remark 3: Since we shall spend at least —— time
length to complete a switching, this implies that if
continuous switching of infinite times at the positive
boundary x = 1 — h happens since ¢ = ¢, then such
a infinite-times switching can not be completed in a
finite interval.

Lemma 7: Suppose that a switching at the boundary
x = 1 — h happens at t = t; and the adaptive fuzzy
control is applied during the interval [t1,%1]. In this
case, 05(t)— f4(t) is a monotone increasing function
of ¢ in the intervals [t1, 1] . Particularly, at ¢t = t1, we
have

_ ~ 4€h(1 - h)h
om0

4(t1), then é5(t) > é4(t> for

>

Moreover, if 05(t;) >
t € [ty,t] and

F(&(x(t)),0() > F(&(z(t)), (1)

for t € [t1,#:]. In addition, if x(t) is also non-
decreasing, then F'(&(x(t)),0(t)) is a monotone in-
[tl, 'El} .

(47)

creasing function of ¢ in the intervals
Proof: For t € [t1,%1], we have

bs(t) = Os(t) + / i, (())e(r)dr

= 05(t1) + /t [2z(7) — 1] z(7)dT (48)



and

t
04(t1) +

)
Ny
—~

o~
~—

pip, (2(7))2(T)dr

+

04(t1) + | [2—22(7)] x(7)dT (49)

— —

1

Therefore, the difference 05 (¢)—f4(¢) can be evaluated
as

t
05(t)—04(t) = 95(t1)—94(t1)+/ [4a(7) — 3] z(7)dT

(50)
Since z(t) € [1 —h,1] for t € [t;,t1] and 0 < h <
i — ¢y, as defined in (27), the integrand of the integral
in (50) is greater than zero. Therefore, 05 (t)—04(t) isa
monotone increasing function for ¢ € [¢1,7;]. Actually,
a lower bound of 05(t) — 4(t) can be evaluated as

05(t) — 04(t) > 05(t1) — O4(tr) + depn(1 — h)(t —t1)
(51)
Particularly, at ¢ = ¢, with (41), one can lead to

%
>
ot
—
~
-
~—
|
>

4(t1) +4ep(1 —h)(t1 — t1)

> 0s5(t1) — Oa(tr) + Zlgh(fl—_h)h

Moreover, from (51), it follows that if 05 (t1) > 04(t1),
then 05 (t) > 6,(t) for any ¢ € [t1,41] .

Now we show that F'(¢(z(t)),0(t)) is a monotone
increasing function of ¢ in the intervals [t;,%]. Using
the definitions of the membership functions in (??), we
can get

T

0" (DE((t)

= [22() — 1] [B5(1) — Ba()| +0a(1)
Since both 5 (t) — 6.4 (t) as well as 6,(t) are monotone
increasing under the assumptlon 95(t1) > 04(151) and

x(t) > x(t1) = 1 — h, it follows that inequality (47)
holds. In addition, if x(¢) is also non-decreasing, then
F(&(x(t)),0(t)) is a monotone increasing function of
t in the intervals [¢1,%;]. This completes the proof. B

Lemma 8: Assume that a continuous switching of
infinite times at the positive boundary = 1 — h
happens since a finite time ¢ = ¢;. Then there is an
index I; such that 85(t) > f4(t) for t > t7, .

Proof: Assume that there are two time sequences
{t:};2, and {t;};~, with ¢; < t; < ¢;41 such that
the adaptive fuzzy control law is used for ¢ € [t;,1;]
with x(t) € [1 — h,1]. It is noted that =(¢;) = 1 —h
and z(¢;) = 1 for any . While keeping switching at
the boundary = = 1 — h, we shall repeatedly use the
result in Lemma 7 and we shall show that there is
a time instant ¢, such that 05(t;,) > O4(t7,). In the
following, we shall identify %, as ¢;. By using (46) for

A den(1— h)h
> 95(ti)_94(tl)+gh(f—)
.~ a 4 1—-h)h
_ 95<ti1>—e4<t“>+5h<fi) (52)

for 4 > 1. By using the recursive inequality (52), one
can get

O5(tn41) — Oa(tn1)
= O5(tn) — 0a(tn)
> 05(ty) — 04(t1) + Ndep, (1 — h) (53)

fmdx

Therefore, if we choose

max (0, 94(t1) - 95@1)) fmax
dep(1— h)h

where [z] is the smallest integer with = < [xz], then,
following from (53), 05(t;,) > 64(tr,) where we
define I; = N + 1. Consequentially, from (52), we
05(t;) > B4(t;) for i > I,. Therefore, by repeatedly
using Lemma 7, we can conclude that 05(¢) > 04(t)
for ¢t > ¢;,. Note that if 6,(t,) < 05(t1), then I = 1.

Lemma 9: It is impossible that a continuous switch-
ing of infinite times at the positive boundary z = 1—h
happens since a finite time ¢ = ¢;.

Proof: By contradiction, assume that a continuous
switching of infinite times at the positive boundary x =
1 —h happens since a time instant ¢ = ¢;. By Lemma
8, there is an index I; such that 0s(t;) > 04(t;) for
i > I. Then, by inequality (47) in Lemma 7, we have
F(a(t),0(t)) = 0" (0&(x(t)) > Fla(t:),0(t:)) fort €
[t;,t;] with ¢ > I;. Therefore, for any positive integer
N, we have

z(tnyr,) B
= altvan)+ [ [fa) =0 ()ea()] dr
< 1—h 1
tN+1y T
[ o= 8 s (o)) 59

Now, following from inequality (42) in Lemma 6 and
inequality (41), for any positive integer NV, we have

F(a(tnin),0(tnir,))

> F(a(tn,),0(tr,)) + NAF
> NAp
and thus inequality (54) implies
T(EN+1,)
EN+11
< 1-h+t / Fax — NAgdr  (55)
tN+1;
= 1—h+ (fmax — NAF) (Int1, — tni1,)
(56)



Suppose that we choose N such that
fmax
Ap

and thus fi.x — NAp < 0. Then, following from (41)
and (56), we have

v

<1l-h

_ h
x(tNJrIl) <l-h+ (fmax _NAF) f

max
However, the above inequality contradicts the assump-
tion that a continuous switching of infinite times at the
positive boundary = = 1—h happens since ¢t = ¢;. This
completes the proof. [ |

Lemma 10: It is impossible that a switching at the
positive boundary x = 1 — h (or at the negative
boundary = —(1 — h)) happens infinite times since
any finite time ¢ = ¢;.

Proof: By contradiction, assume that a switch at
the positive boundary 2 = 1 — h (or at the negative
boundary = = —(1 — h)) happens infinite times at ¢ =
t; for 1 < i < oo with t; < t;41. Denote a time
sequence t; for 1 < i < oo with ¢; < #; < ;41 such
that the adaptive fuzzy control law is applied in [¢;, #;] -
Also define a time sequence #; for 1 < i < oo such that
the adaptive V/SS control law is applied in (Z;,7;) and
t; < t; <t; <ty for 1 < i < oco. Then, since the
adaptive fuzzy control is applied in [¢;,;], following
from Lemma 6, we have

/ " iy () (r)dr

t;

05(t;) — 05(t;)

> g (L—=h)(1—h) (& —t)
> (1= DL 1)

Since 65(t) is monotone increasing, i.e., f5(t;11) >
95(@) as tiy1 > El', we have

O5(tis1) — O5(t:;) > Os(t:) — 0s(t:)
(L= (1~ )7

Therefore, recursively using the above inequality, one
can obtain

Os(tn+1) > Os(t1) + Npug, (1 — h)(1 — h)

>

h

max
Since iy, (z) is monotone increasing in the interval
[1 —h,1], for ¢t € [ty41,tn+1], We have

0 W)
= 04(t)pp, ((t) + O5(t) g, (x(t))
> O5(0)r, (2()
> Os(tni1)pp (1 —h)
> a1 ) [Ba(00) + (1 )Nt (1= 1)

max

Suppose that we choose N such that

max _ 0
N> [ e~ fs(t)

R —Ryun (L h) f‘“"l

|

and thus
fre < iy (1) [ésw T Npg (1= B)(1— )

Then one can lead to

h
fmax

z(tnir)
= altv)+ [ [far) =8 sG] ar
< 1—h :

However, the above inequality contradicts the assump-
tion that a switching at the positive boundary © = 1—h
happens infinite times since ¢ = ¢;. This completes the
proof. [ |

Lemma 11: Under the specified switching mecha-
nism in (8)-(10) including the adaptive VSS control in
(30) and the adaptive fuzzy control in (31), we have
the following results.

(i) there is a finite time ¢4, such that z(t) € 2, and
the adaptive fuzzy control is used for ¢t > tg,
and

(i) the parameters ¢;(¢) and ¢éx(t) in the adaptive
VSS control are bounded for ¢ € [0, c0).

Proof: (Part i) Suppose that z(0) > 1— h. Then the
adaptive VSS control in (30) will ensure that there is
a finite time ¢; such that z(¢;) = 1 — h and z(t) >
1—hforte[0,t) as stated in Lemma 2. At ¢ = ¢4,
the adaptive fuzzy control law in (31) will then be
applied. When applying the adaptive fuzzy control law
at some time instant ¢ = ¢, the case that a continuous
switching of infinite times at the positive boundary x =
1 — h since ¢ = t, has been excluded by Lemma 9.
Therefore, there are three possible cases at ¢ = .
(A1) There is no control law switching happened at

the boundary z 1 — h since t = tg, ie.,
{z@) [t >ts} C Q= [-1,1].

(A2) There is no control law switching happened at
the boundary x =1 — h at ¢ = t, and there are
switching operations after ¢ = ¢.

(A3) A continuous switching of finite times happens
at the positive boundary x = 1 — h since t = t,.

The above three cases are also applied to the situ-
ation that z(0) < —(1 — h). If |z(0)] < 1 —h, then
the adaptive fuzzy control will be applied at ¢ = 0 and
there are two possible cases.

(B1) There is no switching of control laws for ¢ > 0,
ie, {z®)t >0} CQ, =[-1,1].

(B2) There are switching operations after ¢ = 0.

Combining the situations (Al1)-(A3) and (B1)-(B2),
we can conclude that there are two possibilities for the
trajectory {x(t),t > 0}.

(C1) There is a finite time ¢, such that z(¢) € €2, and
the adaptive fuzzy control is used for ¢ > t¢y,.

(C2) A switching of control law at either z = 1 — h
or x = —(1 — h) happens infinite times.

Note that Cases (C1) and (C2) are mutually exclu-
sive, since the time to complete a switching is greater



than or equal to a constant h/fn.x &s indicated in
Lemma 6. However, Case (C2) is excluded by Lemma
10 and thus the result in part (i) is confirmed.

(Part ii) Note that a switching at either x = 1 — h
or x = —(1 — h) can only happen for finite times
following from part (i). Define a set of time intervals
{(fz-,tvi)}ii‘”l where Ny is a finite positive integer,
Zf;vl (£; —t;) < oo, and the adaptive VSS control
is only applied in (Z;,#;) for 1 < i < Ny. Then,
following from (12) and (13), we have

ti
aE) —a(E) = [F1|a:(t)\2dt
ti
< Fl‘rzz,nla)c(fi - fl)
i
/r1|x(t)\3dt
t;

< Flzimax( T El)

62(51) — ég(t_l) =

where
lz(t)]

sup
te(fufi)

Limax —

Since ¢ (t) and éx(t) are kept invariant when the
adaptive fuzzy control law is applied, we have

él (Ez) = él (tvi—l)
ea(ts) = éa(tioa)

and thus

IA
>
AR

=
+
=

—

7N\

amd

Ny
< 62({1) +I <1<Hil§§vx?,max> Z(fz - {2)
< o0

Since the adaptive fuzzy control is applied for t > #y,,,
we have ¢;(t) = é1(fn, ) and éx(t) = éa(tn, ) for
t > fx, . This completes the proof. [ ]

B. Convergence analysis

Following from Lemma 11, the adaptive fuzzy con-
trol is applied for ¢t > ¢4, where ¢y, is a finite time and
z(t) € Q, for t > t;,. Recall that {Q,,}75 % is a
partition of the universe of discourse 2. Particularly,
let Qp0=Qp -1 UQy 1 = 7%,7%1 and thus
0 € Q. Now define sets S; for 1 <+¢ < 2L — 2 such
that

Si={t|z(t) € Qui, t >y, }

and denote the time length o (.S;) as the Borel measure
of the set S;.

Lemma 12: The the time length o (S;) is finite for
1<¢:<L-3and L+2 < i< 2L — 2.Therefore
there is a finite time ¢, with ¢; > ¢y, such that z(¢) €
Q.0 = UL ,Q,; and the adaptive control is used
for ¢ > t;.

Proof: (Part i: for i = 1 and ¢ = 2L — 2) First,
by contradiction, assume that o (Sar,—2) = co. In this
case, there are two possibilities: (i) there is a finite
time ¢, such that z(t) € Qg ar_2 for ¢t > t, > ty,
and (ii) the trajectory x(t) keeps visiting the connected
region €, or_o in infinite disjoined time intervals.
We can use the same methodology as done in the
proof of Lemma 5 to verify that the first possibility
is impossible. In the following, we shall also show
that the second possibility is impossible and thus
0 (Sar,—2) < oo. For the second possibility, since
x(t) is a continuous function of ¢, there is a subset
U;?il(ti;t_i) C Sar_9 such that tfo <t < 'Ei < tit1,
z(t;) =vp_1,and > .2, (¢ —t;) = oo. Note that for
any z(t) € Qg 21,2, only the (L—1)—th and the L—th
rules of the fuzzy system will be fired and thus

0" (@) = B (D, (2(0) +0L (), (@(1)
Also as Q2,2 C [0,1], following from Lemma 3,
we have 0,1 (t) > 0, 01,(¢) > 0, and both 6, () as
well as f,(t) are monotone increasing functions of ¢.
Moreover, for z(t) € Q,or—2, i€, vp_1 < z(t) <
dr, we have pup,  (x(t)) is monotone decreasing with
0 < pp,_,(z(t)) < % and pp, (z(t)) is monotone
increasing with 3 < pup, (x(t)) < 1. Now for [¢t;, %],
we have

() =0ut) = [ r, elr)atr)ar

> pp, (Vo) vpo1 (fi — )
Since f1,(t) is monotone increasing, i.e., Or(ti+1) >
01 (t;) as tir1 > ¢;, we have
OL(tiv1) —00(t:) > 0o(E)—0o(t:)
> pp, (Y1) vpo1 (ti— )

Therefore, recursively using the above inequality, one
can obtain

N
Or(tn+1) > 00(t) + pp, (Vo—1)vL-1 Z (ti — t3)
i=1

Since i, () is monotone increasing in the interval
[Yr_1,dr], for ¢ € [tny1,Enga], We have

0" (1w (t)) A
Or1(r, , (2(8) + 0 (Opr, (@(2))
01 O pp, (2(1))

or, (tN+)pp, (Vo-1)

i, (o) [0 ()

AVALY,

v

i=1

N
+hp, (Yo—1)7V-1 Z (ti — tz)]



Suppose that we choose N such that

N
Zt—t

i=1

1259 (71;—1)71;—1

Then one can lead to

z(tng1)

s+ [ [ratn) -

tN+1

0 (NE(a(r)] dr

IN

ot [ e = i, (e [0 80)
A |

EN41

N
+ip, (V-1 Z (t: — ti)‘| } dr

i=1
< Yr-1

which contradicts the assumption that z(fyy1) >
v1_1- Therefore, we have o (S21,—2) < co. The above
analysis can be also applied to the case i = 1 to show
that o (S1) < oo.

(Part ii: for i =2 and i = 2L — 3)

First, by contradiction, assume that o (Sa7,—3) = co.
In this case, there are two possibilities: (i) there is
a finite time t, such that z(¢t) € Q,25_3 for ¢t >
ta > ty, and (ii) the trajectory z(t) keeps visiting
the connected region Q,or_3 in infinite disjoined
time intervals. We can use the same methodology as
done in the proof of Lemma 5 to verify that the first
possibility is impossible. In the following, we shall
also show that the second possibility is impossible and
thus o (S27,_3) < oo. For the second possibility, since
z(t) is a continuous function of ¢, there is a subset
Ufi](tzazz) C SQL,3 such that tf <t < {z < tit1,
z(t;) =dr_1, and >, (¢; — t;) = co. Note that for
any z(t) € Qy.2r,—3, only the (L—1)—th and the L—th
rules of the fuzzy system will be fired and thus

0" (&) = Opr (D, (2(0) +0r (g, ((1))

Also as 01,3 C [0,1], following from Lemma 3,
we have 6;_1(t) >0, 0.(t) > 0, and both 6,,_,(t) as
well as 6 (t) are monotone increasing function of ¢.
Moreover, for z(t) € Quar—_3, i, dp—1 < z(t) <
Yr—1, We have pp,  (x(t)) is monotone decreasing

with 2 < pp, (z(t)) < 1land pp, (z(t)) is monotone
increasing with 0 < pp, (z(¢)) < 3. Now for [t;, %],
we have

t;
ba(8) = Bia(t) = [, Galr)a(rdr

ti

> g, (vp—1)do—1 (G — ti)
Since  6,_1(t) is monotone increasing, i.e.,
Or_1(tiv1) > 0p_1(%;) as tip1 > £;, we have
1) =01 (1)

éL—1(ti+1)*9L—1(ti) > 0
>

P, (Yp_1)do—1 (t — t;)

Therefore, recursively using the above inequality, one
can obtain

Or—1(tn+1)
N

> O a(t) +pp,  (vpo1)dooa Y (G —ti)

=1

Since p1x,  (x) is monotone decreasing in the interval
l[dp—1,7v5 1], for t € [tn41,En41], We have

0" (1)e((t))
L1 pp,, (@(t) + 0L g, (x(1)
é 1(O)pp, , (1))

1N+ )pp, (Yo-1)

Hpy (”/Lq) {éLfl(tl)

AV VAR
>

Y

N
g, (Vp-0)do1 Yy (fi— ti)]

=1
Suppose that we choose N such that
fmax . i
P'FL_l('VL—l) OL_l(tl)

MFL,l(VL—1)dL—1

(t; — t;)

Mz

i=1

Then one can lead to

r(tny1)
= altvi)+ [ [1lelr) =0 ()Gt ar
< drp-a Jr/t o fmax — pp,_ (Yp—1) [éL—l(tl)
N
i, (Yp-1)do1 Yy (fi— ti)] } dr
=1
< dp1

which contradicts the assumption that x(tni1) >
dr,_1. Therefore, we have o (S27,—3) < oco. The above
analysis can be also applied to the case 7 = 2 to show
that o (S2) < 0.

(Part iii, the other cases) The other cases can be
treated by the same methods as done in the previous
two parts except for the cases ¢ = L —1and ¢ = L
This completes the proof. |

Theorem 5: Assume that f(z) is a convex function
in [0,1] and a concave function in [—1,0]. Then
Jim (1) = 0 and 0(t) is bounded over [0, o) .

Proof: Note that if the fuzzy system F'(z, §) consists
of a fuzzy singleton, Mamdani product inference en-
gine, center average defuzzifier, and triangular member
ship functions, then 67 f(d;) for 1 < ¢ < L,
F(d;,0") f(d;) for 1 < ¢ < L, F(z,0) is a
piecewise linear approximator of f(z) in £, [10]. If
f(z) is a convex function in [0, 1], then

f(=)

—M@)er <o, forze0,1]  (57)



On the other hand, if f(z) is a concave function in
[—1,0], then

f(z) =T (x)0* >0, for z € [-1,0]  (58)

Now consider the following positive definite function

1, 1ors
Ve, = 21: + 20 0
By applying the closed-loop dynamic equation (31),
we get
Vo = {f(x) — 9T§(:1:)} + 66

= o[f@) — €@y~ (@0 + 0 [¢a]
= o[f@) - @p] <0 (59)

where we have invoked inequalities (57) and (58). In-
equality (59) implies that 6(¢) is bounded over [t ¢, 0o).
Note that 6(¢) is also bounded over [0,%).
Now we consider another positive definite function
15, 1.7,
The time derivative of V5 along the system trajectory
of the closed-loop system dynamics defined in (31) is
given by

(60)

‘./2 =
AT
= o[f@) -0 &) +0 e
= zf(zx)>0
By the symmetric property of f(z) in (5), we have
Vp>0, ifz#0
Vo=0, ifz=0

which implies that V;(t) is non-decreasing for ¢ > ¢;.
Since 4(¢) and z(t) are bounded over [tf, o), Va(t)
converges to a finite positive limit . If V5(¢) converges
to a finite positive limit, i.e.,

lim V(1) = Cv,

then, by the monotone increasing property of V4 (t),
we have

%J;Q(t) + %9(t)T9(t) <Cy,

and thus
[z(t)] < /20y,
o] < veew
Now compute the second-order differential of V5(¢) as
the follows

A

zf(x) + xmx

(0 + L2 (1) - €7 @)

Vat) =

It is easy to see that V5 (¢) is @ bounded function of ¢
from the following inequality

00|
< |r@ +2 L2 |1 - @)
< (@i L2)) (11 + " wi])
< U+ 10) (o + 000 1001
< (fmax +Ky) (fmax+\/ﬂ)

and thus Va(t) is uniformly continuous. Then, by
Barbalat’s lemma [9], we get

Jim Va(t) =0
which is equivalent to

lim z(t) f(z(t)) =0

t—oo

Since, by (5), zf(x) = 0 if and only if x = 0, the
above equation implies that

lim z(t) =0
t—oo

This completes the proof. [ |
Example 1: In the example, we consider the case

f(x) =2z + 22 |x| (61)

and thus

[ ] c ] = [ 2 2 }
We note that the plant in this example is a highly unsta-
ble system. Therefore, with the initial state (0) = 5,
the state x(¢) usually bursts within very short time
interval without a proper feedback control. The settings
of the adaptive VSS controller are given as

r = 1
é(0) = 0
é(0) = 0
and those of the adaptive fuzzy controller are given as
000) = 0
r, = 101

Note that in the derivation of the main result, the
learning rate matrix I'y is set as I. Actually, the main
results hold for any positive definite matrix I'y. The
hysteresis size & is given as 1 such that 1 — h = 2.
The responses of z(t), &(t), u(t) are shown in Fig.
3, Fig. 4, and Fig. 5, respectively. For a very short
time period after ¢ = 0 before ¢é;(¢) and é;(¢) are
large enough, the closed-loop system is unstable and
the state «(t) bursts faster and faster. However, such
a high amplitude of x(¢) will also rapidly increase the
values of ¢, () and éx(t) as shown in Fig. 4. This also
results in a high peak of w(¢) as shown in Fig. 5, which

in turns tends to stabilizes the system. When ¢ (¢) and



x(t)
T

5
tin sec.

Fig. 3. The evolution of the state z(¢) in Example 1 with z(0) = 5.

éo(t) are large enough such that #(t,) < 0 at some
time ¢,, with ¢, < 0.1 seconds, then z(¢) and thus
u(t) begin to decrease and the growth of & (¢) and
éo(t) will slow down. At some time ¢; with ¢, = 0.21
seconds, xz(t) hits the switching boundary =1 — h.

After t = t1, the adaptive fuzzy controller will take
over the system. However, since the parameter vector
6 is not well trained yet, the system remains unstable
and the state x(t) still tries to escape away from the
switching boundary. However, when z(¢;) = 1 at some
time £, the adaptive VSS controller will be in charge
of the system and x(¢) will be forced back to x(t3) = 1
at some time ¢,. Until the parameter vector 0, actually
0, and mainly 05, is well trained as shown in Fig. 6,
there is a continuous switching of 18 times occurred
at the boundary x = 1 — h, as observed in Fig. 3.
Within the time period of this continuous switching, the
value of the fuzzy system F(x,0) evaluated at t = ¢;
when a switching occurs increases as i increases. When
Fla(t;))—F(x(t;), 0(t;)) is too large, then a switching
t = t; will be inevitable. At the end of this continuous
switching, the adaptive fuzzy control is applied again at
t = t19 = 1.85. At some time ¢, after ¢ = ¢19, we have
flz(ty)) < F(z(ty), é(tq)) and z(t) begins to decay to
zero. When z(t) = 0, F(z(t),0(t)) is still larger than
zero. Since f(z) < 0 for z < 0 in this example, and 0,
as well as -, have not been well trained until now, x(t)
will be pass through « = 0 and reach another boundary
x = —1. Then, adaptive VSS control takes over the
system again and another continuous switching of finite
time at « = —(1 — h) happens. After the second
continuous switching, there is no switching any more
and x(t) converges to zero asymptotically. From Fig.
5, we see that the amplitude of the control signal w(t)
of the adaptive fuzzy controller is much smaller than
that of the adaptive VSS controller. That is why we say
that the adaptive VSS control is for coarse control and
the adaptive fuzzy control is suitable for fine control.

c,-hat(t)

I L I I L I I
0 1 2 3 4 5 6 7 8 9 10

o,-hat(t)

5
tin sec.

Fig. 4. The responses of ¢jand éx in Example 1 with é1(0) =0
and é2(0) = 0.

50

u(t)
T

-150

-200

-250

-300
0

tin sec.

Fig. 5. The evolution of the control input w(¢) in Example 1.

61-hat(t)
T

4 5 6 0
62-hat(t)
0 T T T T T T T T T
-4 i i i i | , H H
0 1 2 3 4 5 6 7 8 9 10
03-hat(t)
0,5‘ T T /\ T T T T T ‘
0
ol R L
0 1 2 3 5 7 8 9 10
04-hat(t)
5 T
0 /v/ |
0 1 2 3

5
65-hat(t)
T

L L L L I I I
1 2 3 4 5 6 7 8 9 10
tin sec.

Fig. 6. The responses of 61 (t), O2(t),03(t),0a(t) and 5 () in
Example 1 with 6(0) = 0.



V1. CONCLUSION AND DISCUSSION

In the field of adaptive fuzzy control, there has been
a severe deficiency by assuming the premise variables
will usually stay within the universe of discourse in the
derivation of stability of the adaptive control system.
To overcome this deficiency, we develop a switching
adaptive control scheme using only essential qualitative
information of the plant to attain asymptotical stability
of the adaptive control system for a typical first-order
nonlinear system without imposing the mentioned se-
vere assumption. The switching adaptive control sys-
tem consists of an adaptive VSS controller for coarse
control, an adaptive fuzzy controller for fine control,
and a hysteresis switching mechanism. An adaptive
VSS control scheme is proposed to force the state to
enter the universe of discourse in finite time. While the
premise variable is within the universe of discourse,
an adaptive fuzzy control is proposed to learn the
capability to stabilize the plant. At the boundary of the
universe of discourse, a hysteresis switching scheme
between the two controllers will be proposed. We
show that after finite times of switching, the premise
variables of the fuzzy system will remain within the
universe of discourse and stability of the closed-loop
system can be attained by applying Lyapunov direct
method.

Future studies of this work are described as follows.

(i) Extension of the proposed scheme to nonlinear
systems with strict feedback form

(if) Extension to framework of stochastic control
systems.
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