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Studies of four-wave mixing effects in optical fiber amplifiers and
wavelength converters
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Abstract

The project proposal derived the
coupled equations of forward and backward
spectral field components to describe the
nonlinear interaction between the forward
and backward waves in optical amplifiers
and wavelength converters, e.g. four-wave
mixing, Raman effect, and Brillouin effect.
The proposed method is able to completely
describe the forward and backward waves
both in spectral and temporal domains
beyond the slowly varying envelope
approximation at the expense of time-
consuming numerical simulation. Therefore,
the use of PC cluster for parallel computing
is necessarily for reducing computing time to
tolerable level. However, the equipment
budget of this project is pruned almost all. As
it is hard for simulation, this project studies
the optical amplifiers based on power
coupled equations instead so that simulation
time is tolerable but the original project
objective is changed. Nevertheless, this
project has published two papers in Optics
Express and Optics Communications and
submitted a paper to Journal of Optical
Society of America B. This report only gives
the technical content of the submitted paper
but not yet published paper.

A perturbation method is used to study
the interaction among signal, pump, and
metastable population density for the fast
light in an erbium-doped fiber amplifier. The



impact of temporal pump depletion (TPD) on
the fast light is investigated, in which TPD is
the response of pump power to the temporal
variation of metastable population density.
The effect of TPD was neglected in the
conventional perturbation method shown in
literatures because of small signal power
assumption. It is found that negative group
velocity is under estimated and gain
coefficient is over estimated without
considering the TPD. The effects of high
order dispersions, which are induced by the
interaction of the optical fields and erbium
ions, on the fast light are also shown.

Keywords: Erbium-doped fiber amplifiers,
Dispersion, Fast light
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The propagation of the optical pulse in
the highly dispersive medium with slow or
fast light was interested [1-10]. Several
experimental techniques were developed to
show such interesting phenomena. It was
reported that the slow and fast light can be
easily observed by using the effect of
coherent population oscillation (CPO) in an
erbium-doped fiber amplifier (EDFA) [9,10].
Through the interaction between the fields
and erbium ions in an erbium-doped fiber
(EDF), there is the spectral absorption dip of
narrow bandwidth when pump power is not
enough to provide gain. On the contrary,
when pump power is high enough, there is
the spectral gain dip of narrow bandwidth.
According to Kramers-Kronig relations, the
EDF becomes a highly dispersive medium
for the pulse in the presence of either spectral
absorption or gain dip. The spectral
absorption and gain dips result in slow and
fast light, respectively. Reference [10]
showed the case with 9-m EDF strongly
pumped by a 980-nm semiconductor laser
diode. The 1550-nm input pulse of 0.5 ms
width and 0.5 mW power superimposing on a
strong continuous wave (CW) control beam
of the same wavelength was launched into
the pumped EDF. Pulse back-propagation

owing to fast group velocity was reported to
be experimentally observed and the group
index is estimated to be about -4,000.
Because the interested pulse width is
much longer than polarization de-phasing
time, the interaction of the pulse and the
population of doped erbium ions in an EDF
can be described by the coupled equations of
wave equation and rate equation. Reference
[9] used a perturbation method to derive the
time delay and gain (loss) coefficient of a
sinusoidal modulated wave. This method
linearizes the coupled equations by assuming
that the power of the sinusoidal modulated
wave is much less than that of control beam.
Under this assumption, the temporal
variation of ground level population density
corresponding to the sinusoidal modulated
wave can also be assumed to be much less
than the steady state population density of
ground level corresponding to the control
beam. From the linearized coupled equations,
the group velocity and gain coefficient of the
sinusoidal modulated wave can be obtained.
However, in this paper, we show that this
perturbation method is not accurate in an
EDFA even for the case that the assumption

of perturbation is wvalid. The results
numerically solved from the complete
coupled equations without linearlization

show that the gain coefficient and the
absolute value of group velocity are over
estimated and under estimated, respectively.
We find that the inaccuracy is due to the
temporal pump depletion (TPD) that is not
included in the above perturbation method.
The pump power depleted by the control
beam is not time varying. Pulse depletes
metastable population density. Pump power
is absorbed more when metastable
population density is depleted. The TPD is
the pump power temporal variation
responding to the temporal variation of the
metastable population density absorbed by an
optical pulse. In this paper, we develop the
perturbation method including the TPD
effect. It is shown that our method is accurate
compared with the results directly solved
from the complete coupled equations. The
impact of the TPD on gain coefficient and



group velocity is shown. In addition, the
pulse delay time and pulse shape distortion
resulting from high order dispersions induced
by CPO in an EDFA are also studied.
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The energy levels of an EDFA can be
approximated as a three-level system.
However the decay rate from upper level to
metastable level is much faster than the
decay rate from metastable level to ground
level. Because the population density of
upper level is negligible, the signal and pump
powers in an EDFA can be described by the
following equations [11]
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where Psis the signal power including pulse
power and control beam power; P, is forward
pump power; ngs and ng, are the group
indexes of signal and pump in the absence of
doped erbium ions, respectively; c is the light
velocity in vacuum; «, and «, are the

intrinsic fiber loss coefficients at signal and
pump wavelengths, respectively; o, and

«,, are the absorption coefficients at signal

and pump wavelengths, respectively, which
are due to doped erbium ions when
population is completely in ground level;

a, and «a, are the gain coefficients at

signal and pump wavelengths, respectively,
which are due to doped erbium ions when
population is completely in metastable level.
In Egs.(1) and (2), N,=n,/n is the
normalized metastable population density, in
which n, and n; are the population density of
the metastable level and doping density,
respectively.

The normalized metastable population
density can be described by the rate equation

[11]
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where 7 is the life time of metastable level
and
Pkth — A\éhvknt ' (4a)
Ol|kT
P = Ahv,n, , (4b)
(agk+alk)7

where k= s and p; hvs and hv, are the photon
energies of signal and pump, respectively;
and A, is the effective doping area.

Equations (1)-(3) are the coupled
equations that describe the interaction of the
optical fields and doped erbium ions. The
coupled equations can be numerically solved
with the initial conditions

Ps(z = Ovt) = Pco + Pao (t) ! (5)

P(z=0,t)=P,, (6)
where P is the input control beam power;
Pao(t) is the input pulse power envelope; and
Ppo is the input forward pump power. In this
paper, we will consider the Gaussian input
pulse

P =Poexp[ ~(t/T,) ], ()
where P is the pulse peak power and the
FWHM pulse width T, = 2[In(2)]"*T, .

For the considered EDF, 7= 10.5 ms,
Ae=3.14 um?, and the EDF length L= 10 m.

The delay time contributed from the group
index ng in an EDFAis Ln, /c =50 ns for ng

= 1.5. As the delay time is much less than the
interested millisecond pulse width, the terms
with ng and ng in Egs.(l) and (2),
respectively, are negligible. The other
numerical parameters of the EDF are: at 980
nm wavelength, «,= 1.7 dB/km, «,=1.04

m™, and a,, =0; at 1550 nm wavelength,

a,= 0.4 dB/km, a,=0.716 m™, and o, =



0.845 m™. We take pulse width T,= 0.5 ms
and pump power Pp= 180 mW to show
numerical results in section 4, where the
control beam power P¢y and peak power Py
are varied.

For CPO effect, it requires pulse power
Pa(z,t) be much less than control beam power
Pc(z) [12]. Under this requirement, we may
take the assumption of small pulse power for
linearizing Egs.(1)-(3), 1i.e., the power
P.(z,t)=P.(z) +P,(z,t), in which P.(z)>>
|P.(z,1)|. For simplicity the z dependence of
all variables will not be shown in the
following, unless they are specified. The

normalized metastable population density
can be written as N, (t) = N, + N, (t), where

Nc and Na(t) are the normalized metastable
population densities corresponding to P.and
Pa(t), respectively, hence |N |>>|N,(t) .
Signal power depletes pump power through
metastable  population  density.  The
corresponding pump power can be written as
P,(t) =P, + P, (t), where Pycand Py,(t) are
pump powers corresponding to Ncand Na(t),
respectively, hence P, >>|P,,(t)].

The powers and normalized metastable
population density can be written as

P.() =P, +[P(Qexp(-iQ)dQ,  (8)

P,(t) = P, + [ P, (@) exp(-i)dQ2, (9)
N, (t) = N, + j N, (Q) exp(-iQt)d Q2 ,(10)
where P,(Q), P,(Q),and N,(Q) are the

Fourier transforms of Pa(t), Ppa(t), and Na(t),
respectively.

Substituting Egs.(8)-(10) into Eq.(3) and
equating the terms of the same order of
magnitude, we have

R Poc -1
N, :(Pth + P':h J(wcr) '

p
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p P, P P,
x{( P?“ + P‘ih}—(P—?ﬁ P"iS]NC} (12)
S p S p

where @, is the resonant angular frequency
defined according to [9] and

@, =(1+i.°+ P’).CJz'_l.
PSIS P‘;S
Substituting EQs.(8)-(12) into Egs.(1)
and (2), and equating the terms of the same
order of magnitude, we have the coupled
equations

dR
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where the coefficients
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For the case without TPD, the gain
coefficient and propagation constant of

P.(Q) are the real and imaginary parts of Cs,

respectively. The terminology “propagation
constant” usually refers to electric field. But
for the present analysis, it refers to power
envelope. The group index of P4(t) can be
obtained from the derivative of the

(21)



propagation constant with respect to Q at
Q=0. However, TPD always exists. Thus,
gain coefficient and propagation constant of

I53(Q) must be solved from the coupled

equations EQs.(14)-(17). The following
shows the numerical solving procedures.

Step 1:

The CW powers P and P, along the EDF
are solved from Eqgs.(14) and (15) with the
boundary conditions P¢(z=0)= P and Py
(z=0)= Py, in which N is given by Eq.(11).
Note that Eqgs.(14) and (15) are independent
of Egs.(16) and (17).

Step 2:

P.(z,Q?) and P,(z,Q2) are solved from
Egs.(16) and (17~) with the boundary
conditions P(z=0,Q)=1 and
P.(z=0,0)=0. Note that the coefficients

given by EQs.(18)-(21) along the EDF
require the CW powers P. and Py solved in
Step 1.

Step 3:
The transmittance of pulse envelope spectral
component of angular frequency Qat z is

T(2,Q)=P,(z,Q), which can be written as
T(z,Q):‘T(z,Q)‘exp[iH(z,Q)]
0(z,Q) is the phase of T(z,Q). The gain
coefficient  g,(z,Q2) and propagation
constant S, (z,€2) of the spectral component
of pulse envelope are

and

9.(2.Q)=

In(T (z+Az,Q)) - In(T (2,Q)) 2
Az ’

5.(2.0)= 0(z+A2,Q)-6(z,Q) 23)

Az
At the output of the EDFA, the
accumulated gain y,(€2) and phase shift

¢,(Q) are
7,(Q) =In(T (z=L,Q)),
$.(Q)=60(z=L0Q).

(24)
(25)

The group delay time along the EDF
evaluated at =0 can be calculated as
Tdo(z) =

'[Z ﬁa(Z’,AQ) —ﬂa(Z’,—AQ) dz’

0 2AQ '
However, we will show in the next section
that actual pulse delay time is significantly
influenced by high order dispersions. The
approximate solution of output pulse shape is

P(z=Lt)=

[ Bo@exply, (@) +ig, (@) -i0tdQ, (27)

where f’aO(Q) is the Fourier transform of
input pulse envelope Pao(t). Because the
boundary condition P (z=0,Q)is set to be
unit, the approximate solution of temporal
pump power variation is

P.(z=Lt)=

[Po@T, (Qexp(-iQ)dQ,  (28)
where T (Q)=P,(z=L,Q) is the
spectrum solved in Step 2. The integration in
Egs.(27) and (28) can be numerically
calculated with an inverse fast Fourier
transform (FFT) routine.

Gain coefficient and propagation
constant are even and odd functions,
respectively, for the CPO in a two-level
system [12]. In the next section, it is shown
that the accumulated gain y,(Q2)and phase

shift ¢, (€2) defined in Eq.(24) and (25) are

also even and odd functions, respectively.
Thus we may expand them as

7.(Q) +ig,(Q) =

iiy Qk+iii¢ Qf
tA:O k! ak = k! ak

where Q is an integer; y, and ¢, are the

coefficients obtained by numerically fitting
7,(Q) and ¢,(Q) with Eq.(29). For the

cases considered in this paper, we take Q= 11.
7« and ¢,  represent  dispersion

coefficients that are the derivatives of
7,(Q) and ¢,(Q) at Q =0, respectively.
From Eq.(26), ¢, =T,,(z=L). In Eq.(29),
the even order and odd order terms can be

(26)

(29)

k:odd



called the gain dispersion and phase shift
dispersion, respectively. For studying the
effect of dispersion induced by CPO on pulse
shape, we define the partial accumulated gain
and phase shift as

7" (@ +ig" (@) =

M

Ziy Qk+i§:i¢ o
Rl LRl T i

k:even

where M is an integer not larger than Q; y,,
and ¢, are given by EQ.(29). Replacing
7. Q+ig (@  in Eq@7) by
7y Q) +ig™ (Q), we have the output pulse

(30)

k:odd

shape P, ™(t) which results from the partial

accumulated gain and phase shift.

For the case without TPD, we may solve
Egs.(14) and (16) with the coefficient cs=0.
From the solutions, the output pulse shape,
gain coefficient, and propagation constant
can be calculated with similar methods
shown above.

It is found that the approximate solutions
solved from Eqs.(14)-(17) are nearly the
same as the exact solutions solved from
Egs.(1)-(3) when the control beam power P
is about one hundred times larger than the
peak pulse power Py. In this section, we take
the ratio P,/P,=10 [10], which will

result in slight discrepancy between the
approximate solution and the exact solution.
The propagation characteristics of the fast
light with P,,/P,,= 10 and 100 are similar.

The cases with P, = 0.5 mW, 0.1 mW, and
2.5 mW are considered in the following three
sub-sections.

(i) Peo= 0.5 mW

Figs. 1(a)-1(f) show the numerical results
with Pc= 0.5 mW. Fig. 1(a) shows the input
and output pulse shapes, in which the input
pulse shape is enlarged one hundred times so
that it can be clearly shown. The approximate
solutions with and without TPD are also
shown in Fig. 1(a). One can see that, without
TPD, pulse gain is over estimated and pulse
delay time is under estimated. The
discrepancy between the exact solution and

the approximate solution with TPD is due to
the pulse peak power that is not small enough
compared with control beam power. Fig. 1(b)
shows the pump power temporal variation
and normalized metastable population
density at EDF output end, in which the
approximate solutions Ppa(t) and Na(t) are
also shown. Ppa(t) and Na(t) are calculated
from Egs. (28) and (12), respectively. For

the case without TPD, P, = 0 in Eq.(12).

One can clearly see that the depletion of
metastable population density is under
estimated for the case without considering
TPD, which leads to the under estimation of
CPO effect. Figs. 1(c) and 1(d) show the gain
coefficient and propagation constant spectra,
respectively, at several distances. In Figs. 1(c)
and 1(d), the approximate solutions with and
without TPD are shown. At 2.5 m distance,
the gain coefficient spectra for the cases with
and without TPD are about the same because
TPD is not yet significantly built up, so are
the propagation constant spectra. After about
5 m distance, for the case without TPD, the
gain coefficient and the negative slope of the
propagation constant at Q =0 are over
estimated and under estimated, respectively.
Thus the pulse gain and negative group
velocity are over and under estimated,
respectively. Figs. 2(a) and 2(b) show the
accumulated gain and phase  shift,
respectively, for the approximate solutions
with and without TPD. From the results, we
study the effect of gain dispersion and phase
shift dispersion on pulse propagation in the
following.

For the case with TPD shown in Fig. 2(a),
the gain dip of narrow bandwidth will result
in serious high order dispersions. First order
dispersion accelerates fast light without pulse
distortion. Higher order dispersion not only
distorts pulse shape as is shown in Fig. 1(a),
but also delays pulse and slows down fast
light. Fig. 1(e) shows the pulse peak power
delay time Tpea, the group delay time Tgo
calculated from Eq.(26) with TPD, and the
group delay time Ty calculated for the case
without TPD. One can see that, |[Tqo| of the
case with TPD is much larger than that of the



case without TPD. In Fig. 1(e), Tpeax is only
about a half of Ty with TPD. Average group
index can be calculated as nayg = cTq/L, In
which Tq is delay time. nag= -3443,
-6176, and -1093 for Ty = Tpeak, Tdo With TPD,
and Tgo without TPD, respectively. Fig. 1(f)
shows the output pulse shapes P.™(t) with
partial high order dispersions, in which the
cases with M= 0, 1, 2, 3, 5, 9, and 11 are
shown. In Fig. 1(f), the approximate solution
with TPD calculated from Eq.(27) without
dispersion expansion is also shown for
comparison. From Fig. 1(f), one can see
how the combined effect of high odd order
dispersions slows down fast light. The peak
power delay time of P.(t) is ¢, which
agrees with Tgyo calculated from Eq.(26). The
third order dispersion increases pulse delay
time and slows down fast light. Thus the
absolute value of peak power delay time is
decreased. The fifth order dispersion
accelerates fast light but it is not able to
recover the slow down resulting from the
third order dispersion. The dispersions of
order larger than fifth further slightly
increase pulse delay time and slow down fast
light. Including up to the eleventh order
dispersion, P,™(t) is about the same as the
pulse shape calculated from Eq.(27).
Therefore, the group velocity of fast light
cannot be defined as the velocity derived
from the slope of propagation constant at
Q=0. From Figs. 1(e) and 1(f), one can see
the significant modification of group velocity
by high order dispersions.

It is interesting to note that, comparing
P.2(t) with P,P(t) shown in Fig. 1(f), one
can see that the second order gain dispersion
significantly narrows pulse width. It can be
easily derived that if there only exists the
second order gain dispersion, the output
FWHM pulse width of the Gaussian input
pulse given by Eq.(7) is

T,=2[n@-27,/] . @Y

If y,,< T//2, pulse width is narrowed;

otherwise, it is broadened. For the case
shown in Fig. 1(f), To= 0.3 ms (T,= 0.5 ms)

and y,,= 0.0417 ms®, we have T,,= 0.137

ms and the pulse is significantly compressed.
The compressed pulse width enhances the
un-symmetric pulse shape distortion due to
the third order dispersion, in which ¢,,=

0.0133 ms®. The dispersions of order higher
than three smooth out the oscillating tail of
P.3(t). The resulting FWHM pulse width is
0.42 ms. In general pulse width may be
broadened or narrowed depending on system
parameters, such as pulse width, control
beam power, and pump power [13] Under
small  signal  assumption,  dispersion
coefficients change with control beam power
and pump power.

(i) Peo= 0.1 mW

With lower P¢, pump power depletion
by amplified control beam power is less and
metastable  population  density  (gain)
recovery is better. This effect results in less
pulse shape distortion but slowing down fast
light induced by CPO. Figs. 3(a)-3(f) show
the numerical results the same as Figs.
1(a)-1(f), respectively, except that Pyp= 0.1
mW and input pulse shape is enlarged five
hundred times in Fig. 3(a). Comparing Fig.
3(a) with Fig. 1(a), one can see that the
output pulse shape maintains better and the
absolute value of pulse peak power delay
time is decreased as expected. Comparing
Fig. 3(b) with Fig. 1(b), one can see that the
depletions of pump power and metastable
population density are larger because of
higher pulse gain and output pulse power.
From Fig. 3(c), at 2.5 m and 5 m distances,
the gain coefficients for the cases with and
without TPD are about the same because
pulse power is still low and TPD is not yet
significantly built up, so are the propagation
constant spectra shown in Fig. 3(d). At 7.5 m
distance, TPD is high enough so that the
difference between the cases with and
without TPC becomes apparent. From Fig.
3(e), we have average group indexes Nay=
-1794, -2223, and -877 for the pulse peak
power delay time Tpea, Tao With TPD, and
Tqo without TPD, respectively.



Figs. 2(a) and 2(b) also show the
accumulated gain and phase  shift,
respectively, for the case with Pe= 0.1 mW.
The wide bandwidth of the gain dip for this
case decreases high order dispersions so that
pulse shape maintains better. For this case,
7., = 00101 ms®, we have T,,= 0.44 ms

from Eq.(31) and pulse compression owing
to y,, isslight. From Fig. 3(f), one can see

that, including only up to the fourth order
dispersion, P,(t) is about the same as the
pulse shape calculated from EQ.(27). The
resulting FWHM pulse width is slightly
narrowed and is 0.472 ms. The fast light
slowed down due to the third order
dispersion is less significant than the case
with Pg= 0.5 mW.

(iii) Peo= 2.5 mW

From the results shown above, it seems
that we may enhance average negative group
index and increases the absolute value of
pulse delay time by increasing P,. However
the increase of input control beam power not
only enhances the first order dispersion
coefficient ¢, , but also higher order

dispersion coefficients ¢, (k>1). The

enhanced higher order dispersion coefficients
may result in serious pulse shape distortion
and slowing down fast light. For example,
Figs. 4(a) and 4(b) show the same case as
Figs. 1(a) and 1(f), respectively, except that
Po= 2.5 mW and input pulse shape is
enlarged twenty times in Fig. 4(a). One can
see that ¢, = -0.41 ms, which is about

80% pulse width, but the combined effect of
higher order dispersions decreases pulse peak
power delay time to be -0.144 ms (-4320
average group index) and seriously distorts
pulse shape. From Fig. 4(b), P.*Y(t) is not
able to approximate the pulse shape
calculated from EQ.(27). The inclusion of
more high order terms is required. It is
noticed that P,®(t) is slightly broadened
instead of narrowing. For this case, y,, =
0.0918 ms?, which is large enough to

broaden pulse width. From EQ.(31), Tw.=
0.509 ms. Because Ty is close to 0.5 ms

input pulse width, P,®(t) almost overlaps
P.8(t) in Fig. 4(f). Careful system parameter
optimization is able to improve the absolute
value of peak power delay time under a
certain constraint of pulse shape distortion
[13]. However, as the first order dispersion is
enhanced, higher order dispersions are
usually  enhanced  accordingly.  The
optimization should compromise between the
first order dispersion and higher order
dispersions.

RN ERE

Fast light can be realized by utilizing the
CPO effect in an EDFA, in which a pulse
superimposing on a strong CW control beam
is launched into the EDFA. Pulse depletes
metastable population density. Pump power
is absorbed more when metastable
population density is depleted. In literatures,
the perturbation method analyzing the fast
light in an EDFA did not consider this pump
power depletion. Thus the CPO effect is
under estimated and the derived gain
coefficient and propagation constant are
inaccurate. We have developed the
perturbation method for solving the time
varying parts of the signal power, pump
power, and metastable population density.
The coupled equations of the spectral
components of the signal power, pump power,
and metastable population density are
derived. From the coupled equations, we can
accurately solve the gain coefficient and
propagation constant of the fast light in an
EDFA. It is found that pulse gain and
negative group velocity are over and under
estimated, respectively, if temporal pump
depletion is not considered. From the solved
gain coefficient and propagation constant, we
also study the pulse delay time and shape
distortion resulting from high order
dispersions induced by CPO. The gain
dispersion resulting from accumulated gain is
shown. Accumulated gain is the integration
of gain coefficient along an EDF, which is an
even function of frequency. The second order
gain dispersion may symmetrically broaden



or compress pulse depending on the value of
its coefficient. The changes of pulse shape by
higher even order gain dispersions are
complicated because of the combined effect
with high odd order phase shift dispersions.
The phase shift dispersion results from the
accumulated phase shift, which is the
integration of propagation constant along an
EDF and is an odd function of frequency.
The first order phase shift dispersion
un-distortedly leads to negative pulse delay
time. Higher odd order phase shift
dispersions un-symmetrically distort pulse
shape and change pulse delay time. For the
shown examples, the third order and fifth
order dispersions result in slowing down and
accelerating fast light, respectively. Thus the
group velocity of fast light cannot be simply
defined as the velocity derived from the first
derivative of propagation constant. The
presented perturbation method can also be
applied to analyzing the fast light in the other
resonant medium with optical pumping.

The technical content shown above has
been submitted to Journal of Optical Society
of America B [14]. In addition, this project
has published two papers regarding the
designs of Raman fiber amplifiers in Optics
Express and Optics Communications [15,16].
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Figure 1: With input control beam power P,= 0.5
mW, (a) input and output pulse shapes, (b) pump
power temporal variation and normalized metastable
population density at EDF output end, (c) gain
coefficient spectra at several distances, (d)
propagation constant spectra at several distances, (e)
pulse peak power delay time Ty and the group delay
time Ty along EDF evaluated at €2 =0, and (f) output
pulse shapes P,™(t) synthesized up to several M
dispersion orders and the approximate solution with
TPD calculated from Eq.(27) without dispersion
expansion. The exact solution is solved from
Egs.(1)-(3). The approximate solutions with and
without TPD are shown in figures (a)-(e) for

comparison.
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Figure 2: (a) Accumulated gain spectra and (b)
accumulated phase shift spectra for the cases with
Po=0.1 mW, 0.5 mW, and 2.5mW.
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Figure 3: The same as Fig. 1 except that input control
beam power P,= 0.1 mW.
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Figure 4: With input control beam power Pyo= 2.5
mW, () input and output pulse shapes, and (b) output
pulse shapes P,™(t) synthesized up to several M
dispersion orders and the approximate solution with
TPD calculated from Eq.(27) without dispersion
expansion. In figure (b), the corresponding values of
M are also indicated by arrows. The exact solution is
solved from Egs.(1)-(3). The approximate solutions
with and without TPD are shown in figure (a) for
comparison.
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