
行政院國家科學委員會專題研究計畫 成果報告 

 

非線性隨機控制理論研究及其在非傳統控制領域的應用--
子計畫二：非線性隨機模糊適應控制與其在無線網路之應

用(I) 

研究成果報告(精簡版) 

 
 
 
計 畫 類 別 ：整合型 

計 畫 編 號 ： NSC 95-2221-E-216-034- 

執 行 期 間 ： 95年 08 月 01 日至 96年 07 月 31 日 

執 行 單 位 ：中華大學電機工程研究所 

  

計 畫主持人：李柏坤 

  

計畫參與人員：碩士班研究生-兼任助理：陳世哲、官明穎 

 

  

  

報 告 附 件 ：出席國際會議研究心得報告及發表論文 

 

  

處 理 方 式 ：本計畫可公開查詢 
 
 
 

中 華 民 國   96年 10 月 02 日 
 



1

Fuzzy Adaptive Control of Nonlinear Stochastic
Systems and its Application to Wireless Networks (I)

Project ID: NSC-95-2221-E-216-034

Project Leader: Bore-Kuen Lee
Department of Electrical Engineering

Chung Hua University
Hsinchu, Taiwan 300, R.O.C.

Email: bklee@chu.edu.tw

Abstract— In this study, state estimation problem for the
stochastic T-S fuzzy model with state-dependent noises on the
system matrix and the output matrix is attacked. First, we derive
sufficient conditions for a class of standard fuzzy state observers
to ensure that the state estimation error is mean square bounded.
The observer gain matrices in the fuzzy observer can be obtained
by solving a linear matrix inequality (LMI). Then, the robust H∞
fuzzy filtering problem is considered to minimize the worst-case
ratio of the power of state estimation error to that of the external
noises. The H∞ observer gain matrices can be obtained by solving
two linear matrix inequalities. To further improve estimation
performance, we study the optimal Kalman fuzzy filtering problem
with known statistical information of the process noise and the
measurement noise. It is shown that the the minimum-variance
estimation for the uncertain stochastic T-S fuzzy model is actually
a linear estimation problem from the viewpoint of conditional
expectation. The structure of the developed optimal Kalman fuzzy
filter also very resembles that of the conventional Kalman filter.
Comparison of estimation performances of the developed three
estimators is made via simulation study.

Index Terms— Stochastic T-S fuzzy, fuzzy H∞ filter, fuzzy
Kalman filter

I. INTRODUCTION

For linear stochastic systems with parametric or non-
parametric uncertainty, the robust state estimation problem has
been well addressed. A robust Kalman filter for linear time-
varying systems with stochastic parametric uncertainties has
been constructed in [1]. In [2], a multi-objective robust state
estimator for stochastic discrete time-delay systems with both
deterministic and stochastic uncertainties is considered, where
it is shown that the state estimation error is asymptotically
stable provided some linear matrix inequalities (LMI) hold. In
[3], a robust Kalman filter algorithm is presented for linear
uncertain time-lag systems with randomly jumping parameters,
and exponential stochastic stability for the state estimator is
ensured. The above mentioned state estimators are designed
based on the LMI technique [4] for linear stochastic systems.

State estimation of a nonlinear stochastic system is a more
difficult and complex problem which attracts a lot of re-
searchers’ attention in recent years. Based on linearization
technique, the extended Kalman filter has been well developed

for state estimation of a nonlinear stochastic system [5]. State
estimation based on feedback linearization using a recurrent
neurofuzzy network with an analysis of variance decomposition
structure can be referred to [6]. Recently, the Takagi and Sugeno
(T-S) fuzzy model [7] has been used to deal with the state
estimation problem for nonlinear systems. By interpolating the
fuzzy IF-THEN rules representing the local linear models, the
T-S fuzzy system can closely approximate the input-output
relation of a nonlinear system. State estimation by designing
a local fuzzy observer for each local linear model in the
deterministic T-S fuzzy model by solving a set of LMI’s can
be traced back to [8]. Optimal output predictor for a stochastic
T-S fuzzy ARMAX model by interpolating the local optimal
predictor for each local ARMAX model has been proposed
in [9]. In [10], the LMI technique is used to design an H∞
robust fuzzy filter under the T-S fuzzy structure to minimize the
worst-case effect of bounded disturbances and noise upon state
estimation error. Without using the T-S fuzzy structure, optimal
state estimation based on a fuzzy dynamic model is considered
in [11] for nonlinear systems subject to non-Gaussian noise.

Although T-S fuzzy model has been used for state estimation
for nonlinear systems, it seems that little attention has been
paid to the state estimation problem for uncertain stochastic
T-S fuzzy systems with state-dependent noises. Robust fuzzy
filter design for continuous-time stochastic system with state-
dependent noise in the system matrix is recently proposed in
[12]. In this study, state estimation problem for descrete-time
stochastic T-S fuzzy models with state dependent noises in
the system matrix and the output function is addressed. First,
based on the LMI technique, a class of standard state estimators
will be attained so that the mean square state estimation
error is bounded. Moreover, state estimation problem from the
viewpoint of H∞ filter theory will be attacked. The optimal H∞
fuzzy filter will also be obtained by using the LMI method to
minimize the maximal ratio of the power of state estimation
error to that of the external noises. Finally, to further improve
estimation performance, we shall study the optimal estimation
problem for the T-S fuzzy model. Due to the state-dependent
noise in the system, the coefficients in the T-S fuzzy model
are randomly varying, and, from the control viewpoint, the
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T-S fuzzy model is a nonlinear system. However, from the
viewpoint of conditional expectation, we shall show that the
state estimation problem for the stochastic T-S fuzzy model with
state-dependent noise can be viewed as a linear state estimation
problem. For state estimation of linear systems, the Kalman
filter is an unbiased and minimum variance estimator under
the Gaussian assumption. Based on the above observation, we
shall derive the optimal fuzzy Kalman filter for the considered
stochastic T-S fuzzy system under Gaussian assumption.

This study is organized as follows. Related materials of
probability are introduced in Section II. In Section III, the
considered stochastic T-S fuzzy model with state-dependent
noise is described. In Section IV, a class of standard state
estimators for the considered stochastic fuzzy systems is pre-
sented and analysis of mean square of estimation error is
made. The optimal H∞ fuzzy filter is discussed in Section V.
The optimal fuzzy Kalman filter under Gaussian assumption is
studied in Section VI. Simulation study is made in Section VII.
Conclusions and discussions are given in Section VIII.

Notations

1) For a random vector x, its covariance matrix is denoted by
Σx with Σx = E

©
(x− x̂)(x− x̂)T

ª
, where x̂ = E {x}

is the ensemble mean.
2) Let x, y, and z be three random vectors. The conditional

expectation of x given y is denoted by E {x|y} . The
conditional covariance of x given z is defined as

Σx,x|z = E
©
(x−E {x|z})(x−E {x|z})T |z

ª
The conditional cross-covariance of x and y given z is
defined as

Σx,y|z = E
©
(x−E {x|z})(y −E {y|z})T |z

ª
Similarly, the conditional covariance of x given y and z
is defined as

Σx,x|y, z = E
©
(x−E {x|y, z})(x−E {x|y, z})T |y, z

ª
3) For a vector x and a matrix A, kxk is the Euclidean

norm of x and kAk is the associated matrix induced norm.
The minimal and maximal eigenvalues of A with only
real eigenvalues are denoted as λmin (A) and λmax (A),
respectively. For a random vector x and a deterministic or
random matrix A, the norm kAkms is defined as kAk2ms

, supE{kxk2}=1E
n
kAxk2

o
. A stochastic process xk

is said to be mean square bounded if supk E
n
kxkk2

o
<

∞.

II. PRELIMINARY MATERIALS OF CONDITIONAL
PROBABILITY

In this section, we summarize some basic materials concern-
ing conditional probability, which will be used in the derivation
of the optimal fuzzy Kalman filter. Most of the materials
presented in this section are extracted from [13].

Let zη be the σ-algebra generated by the random variable η
and let E {x} exist. Let {zi}∞i=1 be a set of nondecreasing
σ-algebras. Some properties of conditional expectation are
summarized in the following:

1) E {E {x|z1}} = E {x} .
2) If x is z1−measurable, |x| <∞ a.s., and E {|y| |z1} <
∞ a.s., then E

©
xT y|z1

ª
= xTE {y|z1} a.s.

3) If z1 ⊂ z2 ⊂ z, then E {E {x|z2} |z1} = E {x|z1} .
The concept of conditional independence is introduced below.
Definition 1: Random vectors x and y are called condition-

ally independent given z if

E
n
eiλ

Tx+iμT y|z
o
= E

n
eiλ

Tx|z
o
E
n
eiμ

T y|z
o

where E
n
eiλ

Tx|z
o

and E
n
eiμ

T y|z
o

are the conditional char-
acteristic functions of x and y, respectively.

Lemma 1: (Theorem 1.10 in [13]) (i) If y and
£
xT zT

¤T
are independent, then x and y are conditionally independent
given z. (ii) If x and y are conditionally independent given z,
then for any Borel set B,

P ({x ∈ B} |y, z) = P ({x ∈ B} |z)

and
E {x|y, z} = E {x|z}

Definition 2: Let |x| <∞ a.s. Then x is called conditionally
Gaussian given y if there exist an zy-measurable random vector
x̂ and an zy-measurable random matrix Σ = ΣT ≥ 0 a.s.
such that the conditional characteristic function of x given y is
expressed by

E
n
eiλ

Tx|y
o
= exp

µ
iλT x̂− 1

2
λTΣλ

¶
a.s. (1)

for every constant vector λ. In this case

x̂ = E {x|y} , Σ = E
n
(x− x̂) (x− x̂)T |y

o
a.s. (2)

Note that if x is conditionally Gaussian given y and A (·) as
well as b (·) are Borel measurable functions with almost surely
kA (y)k < ∞ and kb (y)k < ∞, then it follows that A(y)x +
b(y) is also conditionally Gaussian given y.

Lemma 2: If random variable x is independent of random
variables y and z, then

E {xy|z} = E {x}E {y|z}
Proof: Since x is independent of y and z, it follows

fxy|z (x, y|z) = fx (x)
fyz (y, z)

fz (z)
= fx (x) fy|z (y|z)

and thus

E {xy|z} =

Z ∞
−∞

Z ∞
−∞

xyfxy|z (x, y|z) dxdy

=

Z ∞
−∞

xfx (x) dx

Z ∞
−∞

yfy|z (y|z) dy

= E {x}E {y|z}

Lemma 3: Suppose that the zero-mean random variables q1,
q2, and the random vector v are mutually independent
and are all independent of x and z. Also assume
that A (·) , b (·) , ∆A(·), ∆C(·), and ∆b(·) are Borel
measurable functions with almost surely kA (α)k < ∞,
kb (α)k < ∞, k∆A (α)k < ∞, k∆C (α)k < ∞, and
k∆b (α)k < ∞. If x is conditionally Gaussian given
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z and α is zz-measurable, then F (α, x, q1, q2, v) =
(A (α) +∆A(α)q1 +∆C(α)q2 +∆C(α)∆A(α)q1q2)x +
(b (α) + ∆b(α)q2 + B0v) is conditionally Gaussian given z,
where B0 is a constant matrix,

Proof: By Lemma 2, we have

E {F (α, x, q1, q2, v)|z}
= A (α)E {x|z}+∆A(α)E {q1x|z}+∆C(α)E {q2x|z}

+∆C(α)∆A(α)E {q1q2x|z}+ b (α)

= A (α)E {x|z}+∆A(α)E {q1}E {x|z}
+∆C(α)E {q2}E {x|z}
+∆C(α)∆A(α)E {q1q2}E {x|z}+ b (α)

= A (α)E {x|z}+ b (α)

(3)

Hence (A (α) +∆A(α)q1 +∆C(α)q2 +∆C(α)∆A(α)q1q2)x+
(b (α)+∆b(α)q2+B0v) is conditionally Gaussian given z.

Lemma 4: (Lemma 3.1 in [13]) If w =

∙
x
y

¸
is con-

ditionally Gaussian given z, then x and y are conditionally
independent given z if and only if

Σxy|z = E
n
(x−E (x|z)) (y −E (y|z))T |z

o
= 0 a.s. (4)

Lemma 5: (Lemma 3.2 in [13]) Let
∙
x
y

¸
be conditionally

Gaussian given z with conditional covariance∙
Σxx|z Σxy|z
Σyx|z Σyy|z

¸
a.s.

Then (i) Given (y, z), x is conditionally Gaussian with condi-
tional mean

E {x|z, y} = E {x|z}+Σxy|zΣ+yy|z (y −E {y|z}) (5)

and conditional covariance

Σxx|z, y = Σxx|z − Σxy|zΣ+yy|zΣyx|z (6)

where Σ+yy|z is the pseudo inverse of Σyy|z .
(ii) Given z, x − E {x|z, y} is conditionally Gaussian and

independent of y.

III. THE STOCHASTIC T-S FUZZY MODEL

Consider the following stochastic T-S fuzzy model:

System Rule i, 1 ≤ i ≤ L:
IF z1,k is Fi1 and z2,k is Fi2 and ...... and zg,k is Fi,g,
THENxk+1 = (Ai +∆Ai (k))xk +Biuk + wk

Measurement Rule i, 1 ≤ i ≤ L:
IF z1,k−1 is Fi1 and z2,k−1 is Fi2 and ...... and zg,k−1 is Fi,g,
THEN yk = (Ci +∆Ci (k))xk + vk

(7)
where L is the number of IF-THEN rules, g is the number
of premise variables, Fij is the fuzzy set for 1 ≤ i ≤ L and
1 ≤ j ≤ g, and z1,k, . . . , zg,k are the premise variables.
Additionally, xk is the state vector, yk is the measurement out-
put, uk is the control input, and Ai, Bi, Ci are known constant
matrices. The stochastic uncertainties in the system function
and the output function are defined as ∆Ai (k) = ΓAiqi(k)

and ∆Ci (k) = Γciqi(k), respectively. The driving noises qi(k)
is an i.i.d. (independent and identically distributed) processes
of normal distribution N(0, 1). The zero-mean noises wk and
vk are process noise and measurement noise, respectively. Then
the overall stochastic T-S fuzzy system (7) is equivalent to

xk+1 =
LP
i=1

hi (zk) {(Ai +∆Ai (k))xk +Biuk + wk}

yk =
LP
i=1

hi (zk−1) {(Ci +∆Ci (k))xk + vk}
(8)

where zk = [z1,k z2,k . . . zg,k] is the vector of premise
variables,

hi (zk) = μi(zk)PL
i=1

μi(zk)

μi (zk) =
gQ

j=1
Fij (zj,k) ,

(9)

and Fij (zj,k) is the grade of membership of zj,k in Fij . It is
assumed that

PL
i=1 μi (zk) > 0 for any zk. By the definition

of hi (zk), it follows

hi (zk) ≥ 0 ,
LP
i=1

hi (zk) = 1 (10)

The T-S fuzzy system in (8) can be rewritten into a more
compact form as

xk+1 = (Ak +∆Ak)xk +Bkuk + wk

yk = (Ck−1 +∆Ck−1)xk + vk
(11)

where

Ak =
LP
i=1

hi (zk)Ai, ∆Ak =
LP
i=1

hi (zk)∆Ai (k) ,

Ck−1 =
LP
i=1

hi (zk−1)Ci, ∆Ck−1 =
LP
i=1

hi (zk−1)∆Ci (k) ,

∆Ai (k) = ΓAiqi(k), ∆Ci (k) = Γciqi(k),

Bk =
LP
i=1

hi (zk)Bi.

(12)
We shall also make the following definitions:

ΓAk =
LX
i=1

hi (zk)ΓAi ,ΓCk =
LX
i=1

hi (zk−1)ΓCi (13)

Let Fk be the σ−algebra generated by Yk , {y0, ..., yk}. Some
assumptions with respect to the T-S fuzzy model in (11) are
made in the following.

(A1) E{qi(k)qj(m)} = σ2δ (i− j) δ(k −m).
(A2) E{wkw

T
j } = Rwδ (k − j) , E{vkvTj } = Rvδ (k − j) ,

E {qi(k)|Fk−1} = 0, and E
©
q2i (k)|Fk−1

ª
= σ2.

(A3) The premise variables z1,k ...... zg,k are
Fk−measurable. The input uk is dependent on Yk and
thus is also Fk−measurable.

(A4)
∙
x0
y0

¸
is independent of {wk , vk}k≥0 and x0 is

conditionally Gaussian given y0 with conditional mean x̂0 and
conditional covariance Σ0.

From assumption (A1), it follows that

E{∆AT
i (k)∆Aj (m)} = σ2ΓTAiΓAjδ (i− j) δ(k −m)

E{∆CT
i (k)∆Cj (k)} = σ2ΓTCiΓCjδ (i− j) .
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IV. A CLASS OF STANDARD STATE ESTIMATORS FOR
STOCHASTIC FUZZY SYSTEMS

With the T-S fuzzy system in (7), a class of standard state
estimators, which are extensively used in the literature such as
[8], [14], and [11], is given by

x̂k+1 =
LP
i=1

hi (zk)Aix̂k +
LP
i=1

hi (zk)Biuk

+
LP
i=1

hi (zk)Li [yk − ŷk]

ŷk =
LP
i=1

hi (zk−1)Cix̂k

(14)

where the filter gain Li is related to the local linear model in the
i-th rule. With the fuzzy system in (11) and the state estimator
in (14), the state estimation error x̃k+1 = xk+1 − x̂k+1 can be
expressed as

x̃k+1

=
LX
i=1

LX
j=1

hi (zk)hj (zk−1) (Ai − LiCj) x̃k

+
LX
i=1

LX
j=1

hi (zk)hj (zk−1) (∆Ai (k)− Li∆Cj(k))xk

+
LX
i=1

hi (zk) (wk − Livk) (15)

With the fuzzy system in (8) and the state estimation error in
(15), the overall state-space model with the augmented state
vector x̄k =

£
xTk+1 x̃Tk+1

¤T can be expressed as

x̄k+1 = F̃ij(k)x̄k + ηk+1 (16)

where

F̃ij(k) =
LX
i=1

LX
j=1

hi (zk)hj (zk−1) (Fij x̄k +∆Fij(k)x̄k) ,

ηk+1 =
LX
i=1

hi (zk)
³
B̃iuk + Ẽiw̃k

´
,

Fij =

∙
Ai 0
0 Ai − LiCj

¸
,

∆Fij(k) =

∙
∆Ai(k) 0

∆Ai(k)− Li∆Cj(k) 0

¸
,

B̃i =

∙
Bi

0

¸
, Ẽi =

∙
0 I
−Li I

¸
,

w̃k =

∙
vk
wk

¸
.

By assumption (A2) imposed on the driving noise wk and vk,
it follows that

sup
k

E
³°°ηk+1°°2´ ≤ σ̄2η <∞

Before deriving the mean-square stability result for the forced
stochastic fuzzy dynamic equation (16), we shall first consider
the following unforced stochastic fuzzy system

x̄k+1 = F̃ij(k)x̄k (17)

A sufficient condition concerning the mean-square exponential
stability of the unforced system (17) is given in the following
theorem.

Lemma 6: If there exists a symmetric positive definite matrix

P =

∙
P1 0
0 P2

¸
such that the linear matrix inequalities⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1P1 0 AT
i P1 0

0 λ2P2 0 AT
i P2 − CT

j K
T
i

P1Ai 0 P1 0
0 P2Ai −KiCj 0 P2

P1ΓAi 0 0 0
P2ΓAi 0 0 0
0 0 0 0

−KiΓcj 0 0 0

ΓTAiP1 ΓTAiP2 0 −ΓTcjKT
i

0 0 0 0
0 0 0 0
0 0 0 0
P1
2σ2 0 0 0
0 P2

2σ2 0 0
0 0 P1

2σ2 0
0 0 0 P2

2σ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
> 0 (18)

hold for 1 ≤ i ≤ L and 1 ≤ j ≤ L where Ki = P2Li, then

ΛP −
LX
i=1

LX
j=1

hi (zk)hj (zk−1)¡
FT
ijPFij + 2σ

2
¡
ΩT1 PΩ1 +Ω

T
2 PΩ2

¢¢
> 0 (19)

where

Ω1 =

∙
ΓAi 0
ΓAi 0

¸
Ω2 =

∙
0 0

−LiΓCj 0

¸
Λ =

∙
λ1I 0
0 λ2I

¸
Proof: Note that by the definition of the function hi (zk),

to ensure (19), it suffices to guarantee

ΛP −
¡
FT
ijPFij + 2σ

2
¡
ΩT1 PΩ1 +Ω

T
2 PΩ2

¢¢
> 0 (20)

By Schur complement, (20) is equivalent to (18). This com-
pletes the proof.

Theorem 1: If there exist symmetric positive definite matri-
ces P1 and P2 such that the matrix inequalities (18) hold for λ1
and λ2 with 0 ≤ λ1, λ2 < 1, then the stochastic fuzzy system
(17) is mean square exponentially stable with

E
n
kx̄kk2

o
≤

λmaxp

λminp

λk−k0E
n
kx̄k0k

2
o
, ∀k ≥ k0 (21)

where k0 is an arbitrary initial time, x̄k0 is an arbitrary initial
condition, the positive constants λ, λminp and λmaxp are defined
as λ = max(λ1, λ2), λ

min
p = min

1≤i≤2
(λmin (Pi)) and λmaxp =

max
1≤i≤2

(λmax (Pi)), respectively.
Proof: First define a Lyapunov function as

V (x̄k) = xTk P1xk + x̃Tk P2x̃k

= x̄Tk Px̄k (22)
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where the matrices Pi , 1 ≤ i ≤ 2 , are positive definite matrices
satisfying (18). Then we have

λminp E{||x̄k||2} ≤ V (x̄k) ≤ λmaxp E{||x̄k||2} (23)

By referring to (17), the unforced state-space fuzzy system
model is

x̄k+1 =
LX
i=1

LX
j=1

hi (zk)hj (zk−1) (Fij +∆Fij(k)) x̄k (24)

where

∆Fij(k) = Ω1qi(k)− Ω2qj(k)

Ω1 =

∙
ΓAi 0
ΓAi 0

¸
Ω2 =

∙
0 0

−LiΓCj 0

¸
(25)

It follows from the unforced system in (17)
that

V (x̄k+1) = x̄Tk+1Px̄k+1

= (
LX
i=1

LX
j=1

hi (zk)hj (zk−1) (Fij +∆Fij)x̄k)
TP ×

(
LX

m=1

LX
n=1

hm (zk)hn (zk−1) (Fmn +∆Fmn)x̄k)

≤
LX
i=1

LX
j=1

hi (zk)hj (zk−1) x̄
T
k [Fij +∆Fij(k)]

TP ×

[Fij +∆Fij(k)]x̄k (26)

Let z0k be the σ−algebra spanned by {ys}s ≤ k ∪ {xs}s ≤ k .
Now applying the conditional mean operator E {·|z0k} to (26),
we have

E {V (x̄k+1) |z0k}

≤ E

⎧⎨⎩
LX
i=1

LX
j=1

hi (zk)hj (zk−1) x̄
T
k

(FT
ijPFij +E

©
∆FT

ij (k)P∆Fij(k)|z0k
ª
)x̄k
ª

(27)

Note that E
©
qTi (k)qj(k)|z0k

ª
= E

©
qTi (k)qj(k)|zk

ª
as qi(k)

is independent of x̄k . With the definition of ∆Fij(k) in (25),
we have

LX
i=1

LX
j=1

hi (zk)hj (zk−1)E
©
∆FT

ij (k)P∆Fij(k)|z0k
ª

= σ2ΩT1 PΩ1 + σ2ΩT2 PΩ2

−
LX
i=1

h2i (zk)
£
σ2(ΩT2 PΩ1) + σ2

¡
ΩT1 PΩ2

¢¤
≤ σ2ΩT1 PΩ1 + σ2ΩT2 PΩ2

+
LX
i=1

hi (zk)
£
σ2ΩT2 PΩ2 + σ2ΩT1 PΩ1

¤
≤ 2σ2

¡
ΩT1 PΩ1 +Ω

T
2 PΩ2

¢
(28)

Substituting (28) into (27), we can obtain

E {V (x̄k+1) |z0k}

≤
LX
i=1

LX
j=1

hi (zk)hj (zk−1) x̄
T
k F

T
ijPFij x̄k

+2σ2x̄Tk
¡
ΩT1 PΩ1 +Ω

T
2 PΩ2

¢
x̄k

=
LX
i=1

LX
j=1

hi (zk)hj (zk−1) x̄
T
k [F

T
ijPFij

+2σ2
¡
ΩT1 PΩ1 +Ω

T
2 PΩ2

¢
]x̄k

≤ λx̄Tk Px̄k

= λV (x̄k) (29)

where the result in Lemma 6 is used in the above derivation
and λ = max (λ1, λ2). Applying the conditional expectation
operator E {·} again to the both sides of (29), we have

E {V (x̄k+1)} ≤ λE {V (x̄k)}

which implies

E {V (x̄k)} ≤ λk−k0E {V (x̄k0)}

Finally, using the fact of (23), inequality (21) is obtained.
For the forced system in (16), with the exponential stability

of the related unforced system and the uniform mean-square
bounded property of the forced term ηk+1, we readily have the
following result by referring to Theorem 2 in [9].

Theorem 2: Assume that the initial state x0 and initial esti-
mation error x̃0 of the system (16) are mean-square bounded,
i.e., E

©
x̄20
ª
< ∞. If there exist symmetric positive definite

matrices P1 and P2, such that the matrix inequalities (18) hold
for λ1 and λ2 with 0 ≤ λ1, λ2 < 1, then x̄k is mean square
bounded.

V. OPTIMAL H∞ FILTER FOR STOCHASTIC FUZZY
SYSTEMS

In this section, we shall discuss the H∞ filter design problem
for the stochastic fuzzy system in (8) and the state estimator
structure in (14). From (16), the augmented system including
the system and the estimation error dynamics can be expressed
as

x̄k+1 =
LX
i=1

LX
j=1

hi (zk)hj (zk−1) (F̃ij(k)x̄k + Ẽiw̃k) (30)

Let us consider the following suboptimal H∞ performance for
the augmented system

E

(
NX
k=1

x̄Tk+1Qx̄k+1

)
≤ E

(
x̄T0 Px̄0 + ρ2

NX
k=1

w̃T
k w̃k

)
(31)

where ρ is a prescribed noise attenuation level, and P is a pos-

itive definite weighting matrix. Here we set P =
∙
P1 0
0 P2

¸
and Q =

∙
Q1 0
0 Q2

¸
.
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Theorem 3: If there exist matrices Ki for 1 ≤ i ≤ L
and positive definite matrices P1 as well as P2 such that the
following linear matrix inequalities⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1−Q1

2 0 AT
i P1 0

0 P2−Q2

2 0 AT
i P2 − CT

j K
T
i

P1Ai 0 P1 0
0 P2Ai −KiCj 0 P2

P1ΓAi 0 0 0
P2ΓAi 0 0 0
0 0 0 0

−KiΓcj 0 0 0

ΓTAiP1 ΓTAiP2 0 −ΓTcjKT
i

0 0 0 0
0 0 0 0
0 0 0 0
P1
2σ2 0 0 0
0 P2

2σ2 0 0
0 0 P1

2σ2 0
0 0 0 P2

2σ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
> 0 (32)

⎡⎢⎢⎣
ρ2I 0 0 −KT

i

0 ρ2I P1 P2
0 P1

P1
2 0

−Ki P2 0 P2
2

⎤⎥⎥⎦ > 0 (33)

hold for 1 ≤ i ≤ L and 1 ≤ j ≤ L, then the suboptimal
H∞ control performance in (31) is attained and the observer
gain matrix Li is obtained via the equation Ki = P2Li, i.e.,
Li = P−12 Ki.

Proof: Let us choose a Lyapunov function for the system
(30) as

V (x̄k) = E{x̄Tk Px̄k} (34)

where P is a positive definite matrix. By the Lyapunov function,
we obtain

V (x̄k+1)− V (x̄k)

= E

⎧⎪⎨⎪⎩
⎡⎣ LX
i=1

LX
j=1

hi (zk)hj (zk−1) (F̃ij(k)x̄k + Ẽiw̃k)

⎤⎦T P

×
"
(

LX
m=1

LX
n=1

hm (zk)hn (zk−1) (F̃mn(k)x̄k + Ẽmw̃k)

#
−x̄Tk Px̄k

ª
≤ E

⎧⎨⎩
LX
i=1

LX
j=1

hi (zk)hj (zk−1)
h
(F̃ij(k)x̄k + Ẽiw̃k)

TP

(F̃ij(k)x̄k + Ẽiw̃k)
i
− x̄Tk Px̄k

o
≤ 2E

⎧⎨⎩
LX
i=1

LX
j=1

hi (zk)hj (zk−1) x̄
T
k F̃

T
ij (k)PF̃ij(k)x̄k

⎫⎬⎭
+2E

⎧⎨⎩
LX
i=1

LX
j=1

hi (zk)hj (zk−1) w̃
T
k Ẽ

T
i PẼiw̃k

⎫⎬⎭
−E

©
x̄Tk Px̄k

ª
(35)

We shall separately analyze the first term and the second term
at the right hand side of (35). First let z0k be the σ−algebra
spanned by {ys}s ≤ k ∪ {xs}s ≤ k . Using the conditional mean
operator E {·|z0k} upon the first term at the right hand side of
(35), we have

E

⎧⎨⎩
LX
i=1

LX
j=1

hi (zk)hj (zk−1) x̄
T
k F̃

T
ij (k)PF̃ij(k)x̄k

⎫⎬⎭
= E

⎧⎨⎩E

⎧⎨⎩
LX
i=1

LX
j=1

hi (zk)hj (zk−1) x̄
T
k [Fij +∆Fij(k)]

T

×P [Fij +∆Fij(k)]x̄k|z0k}}

= E

⎧⎨⎩
LX
i=1

LX
j=1

hi (zk)hj (zk−1) x̄
T
k

E
©
[Fij +∆Fij(k)]

TP [Fij +∆Fij(k)]|z0k
ª
x̄k
ª

= E

⎧⎨⎩
LX
i=1

LX
j=1

hi (zk)hj (zk−1)

x̄Tk (F
T
ijPFij +E

©
∆FT

ij (k)P∆Fij(k)|z0k
ª
)x̄k
ª

= E

⎧⎨⎩
LX
i=1

LX
j=1

hi (zk)hj (zk−1) x̄
T
k F

T
ijPFij x̄k

⎫⎬⎭
+E

⎧⎨⎩
⎡⎣x̄Tk LX

i=1

LX
j=1

hi (zk)hj (zk−1)

E
n
∆FT

ij (k)P∆Fij(k)|F
0

k

o
x̄k

io
(36)

With the definition of ∆Fij(k) in (25), assumptions (A1) and
(A2), we get

LX
i=1

LX
j=1

hi (zk)hj (zk−1)E
©
∆FT

ij (k)P∆Fij(k)|z0k
ª

= σ2ΩT1 PΩ1 + σ2ΩT2 PΩ2

−
LX
i=1

hi (zk)hi (zk−1)
£
σ2(ΩT2 PΩ1) + σ2

¡
ΩT1 PΩ2

¢¤
≤ σ2ΩT1 PΩ1 + σ2ΩT2 PΩ2

+
LX
i=1

hi (zk)hi (zk−1)
£
σ2ΩT2 PΩ2 + σ2ΩT1 PΩ1

¤
≤ 2σ2

¡
ΩT1 PΩ1 +Ω

T
2 PΩ2

¢
(37)

where we have used the fact that E
©
qTi (k)qj(k)|z0k

ª
=

E
©
qTi (k)qj(k)|zk

ª
as qi(k) is independent of x̄k. Substituting
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(37) into (36), one can obtain

E

⎧⎨⎩
LX
i=1

LX
j=1

hi (zk)hj (zk−1) x̄
T
k F̃

T
ij (k)PF̃ij(k)x̄k

⎫⎬⎭
≤ E

⎧⎨⎩
LX
i=1

LX
j=1

hi (zk)hj (zk−1) x̄
T
k F

T
ijPFij x̄k

⎫⎬⎭
+2σ2E

⎧⎨⎩
LX
i=1

LX
j=1

hi (zk)hj (zk−1) x̄
T
k

¡
ΩT1 PΩ1

+ΩT2 PΩ2
¢
x̄k
ª

= E

⎧⎨⎩
LX
i=1

LX
j=1

hi (zk)hj (zk−1) x̄
T
k

£
FT
ijPFij

+2σ2
¡
ΩT1 PΩ1 +Ω

T
2 PΩ2

¢¤
x̄k
ª

(38)

Then, substituting (38) into (35), we have

V (x̄k+1)− V (x̄k)

≤ E

⎧⎨⎩
LX
i=1

LX
j=1

hi (zk)hj (zk−1)×©
x̄Tk
£
2(FT

ijPFij + 2σ
2
¡
ΩT1 PΩ1 +Ω

T
2 PΩ2

¢
)− P

¤
x̄k
ªª

+E

⎧⎨⎩
LX
i=1

LX
j=1

2hi (zk)hj (zk−1) w̃
T
k Ẽ

T
i PẼiw̃k

⎫⎬⎭
(39)

If there exist a positive matrix Q and a scalar ρ such that

2(FT
ijPFij + 2σ

2
¡
ΩT1 PΩ1 +Ω

T
2 PΩ2

¢
)− P < −Q

(40)
2ẼT

i PẼi < ρ2I

(41)

then

V (x̄k+1)− V (x̄k)

≤ E

⎧⎨⎩
LX
i=1

LX
j=1

hi (zk)hj (zk−1)
¡
−x̄TkQ1x̄k

¢
+ ρ2w̃T

k w̃k

⎫⎬⎭
≤ E

©
−x̄TkQ1x̄k + ρ2w̃T

k w̃k

ª
(42)

Summing (42) from k = 0 to k = N , we have

V (x̄N+1)−V (x̄0) ≤ −E
(

NX
k=1

x̄Tk+1Q1x̄k+1 + ρ2
NX
k=1

w̃T
k w̃k

)
(43)

and by the definition of the Lyapunov function V (x̄k) in (34),
we get

E

(
NX
k=1

x̄Tk+1Qx̄k+1

)
≤ E

(
x̄T0 Px̄0 + ρ2

NX
k=1

w̃T
k w̃k

)
(44)

Therefore, the H∞ control performance is achieved with a
prescribed ρ2 provided that the two inequalities (40) and (41)
hold. By the Schur complement, (40) is equivalent to (32) by

using Ki = P2Li. Similarly, (41) is equivalent to (33). This
completes the proof.

VI. OPTIMAL FUZZY KALMAN FILTER UNDER GAUSSIAN
ASSUMPTION

Due to the random coefficients in the stochastic nonlinear
system (11), taking the conditional expectation E {·|Yk} to both
sides of (11) leads to

E {xk+1|Yk} = AkE {xk|Yk}+Bkuk a.s.
E {yk+1|Yk} = CkE {xk+1|Yk} a.s.

where the random terms uk, Ak, Bk and Ck are available
given the measurement data set Yk. We can find that from
the conditional expectation point of view, the state estimation
problem of the considered stochastic T-S fuzzy model can be
viewed as the state estimation problem of time-varying linear
systems.

Lemma 7: For the stochastic system (11) under assumptions

(A1)-(A4), both xk and
∙
xk+1
yk+1

¸
are conditionally Gaussian

given Yk = {y0, y1, · · · , yk}.
Proof: By assumption (A4) and the smoothing property

of the conditional mean, we get

E
n
eiλ

Tx0+iμ
Tw0 |y0

o
= E

n³
eiλ

Tx0
´
E
n
eiμ

Tw0 |x0, y0
o
|y0
o

= E
n
eiμ

Tw0
o
E
n
eiλ

Tx0 |y0
o

= exp

µ
iλT x̂0 −

1

2
λTΣ0λ−

1

2
μTRwμ

¶
It follows that

∙
x0
w0

¸
is conditionally Gaussian given y0

with finite conditional mean and covariance. Then, from the
stochastic system equation (11), we can find that∙

x1
y1

¸
=

µ∙
A0 I

C0A0 C0

¸
+

∙
∆A0 0

C0∆A0 0

¸¶ ∙
x0
w0

¸
+

∙
0 0

∆C0A0 ∆C0

¸
+

∙
0 0

∆C0∆A0 0

¸ ∙
x0
w0

¸
+

µ∙
B0u0

C0B0u0

¸
+

∙
0

∆C0B0u0

¸
+

∙
0
I

¸
v1

¶
Note that

∙
A0 I

C0A0 C0

¸
and

∙
B0u0

C0B0u0

¸
are

F0−measurable. By the definitions in (12), we have

∆A0 =
LP
i=1

hi (z0)ΓAiqi(0) and ∆C0 =
LP
i=1

hi (z0)Γciqi(1)

so that by Lemma 3, both
∙
x1
y1

¸
and x0 are conditionally

Gaussian given y0 and the conditional means and conditional
covariances are finite a.s. By induction, assume that given

Yk−1, both xk−1 and
∙
xk
yk

¸
are conditionally Gaussian with

a.s. finite conditional means and conditional covariances. By
Lemma 5, given Yk, xk is conditionally Gaussian with a.s.
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finite conditional mean and conditionally covariance. Also note
that wk is independent of {xs, ys}s≤k. Since the conditional
characteristic function

E
n
eiλ

Txk+iμ
Twk |Yk

o
= E

n
E
n
eiλ

Txkeiμ
Twk |xk, Yk

o
|Yk
o

= E
n³

eiλ
Txk
´
E
³
eiμ

Twk |xk, Yk
´
|Yk
o

= E
n
eiμ

Twk
o
E
n
eiλ

Txk |Yk
o

= exp

µ
iλT x̂k −

1

2
λTΣkλ−

1

2
μTRwμ

¶
is Gaussian,

∙
xk
wk

¸
is conditionally Gaussian with a.s. finite

conditional mean and conditional variance given Yk. In par-
ticular, given Yk, xk is conditionally Gaussian with a.s. finite
conditional mean and conditional covariance.

Finally, with the system equation (8), we have∙
xk+1
yk+1

¸
=

∙
Ak +∆Ak

CkAk + Ck∆Ak +∆CkAk +∆Ck∆Ak

I
Ck +∆Ck

¸ ∙
xk
wk

¸
+

∙
Bkuk

CkBkuk +∆CkBkuk + vk+1

¸
Similarly, by Lemma 3, we can conclude that given Yk, both

xk and
∙
xk+1
yk+1

¸
are conditionally Gaussian with a.s. finite

conditional means and conditional covariance. By induction,
the proof is complete.

With the above lemma, the optimal Kalman filter algorithm
is constructed in the follow theorem.

Theorem 4: For the stochastic fuzzy system in (11) with
assumptions (A1)-(A4), the state xk is conditionally Gaussian
given Yk = [y0, y1, · · · , yk], with conditional mean x̂k and con-
ditional covariance Σk = (xk −E (xk|Yk)) (xk −E (xk|Yk))T
as follows

x̂k+1 = Akx̂k +Bkuk +Kk (yk+1 − CkAkx̂k − CkBkuk)
(45)

Σk+1 = Rk −KkCkRk (46)

with initial values x̂0 and Σ0, where the time-varying filter gain
Kk is given by

Kk = RkC
T
k (CkRkC

T
k +Rv + Λk)

−1 (47)

and

Rk = AkΣkA
T
k +Ψk +Rw (48)

Ψk = σ2
LX
i=1

h2i (zk)ΓAi(Σk + x̂kx̂
T
k )Γ

T
Ai (49)

Λk = σ2
LX
i=1

h2i (zk)ΓCiΞkΓ
T
Ci (50)

Ξk = Rk + (Akx̂k +Bkuk)(Akx̂k +Bkuk)
T (51)

The related one-step ahead prediction x̂k+1|k , E {xk+1|Yk}
is

x̂k+1|k = Akx̂k +Bkuk (52)

and the prediction error covariance matrix
E{(xk+1 −E {xk+1|Yk}) (xk+1 −E {xk+1|Yk})T |Yk} is
equal to Rk.

Proof: Using Lemma 5, by identifying z with Yk, y with
yk+1, and x with xk+1 in Lemma 7, we obtain

E {xk+1|Yk, yk+1}
= E {xk+1|Yk+1}
= E {xk+1|Yk}+Σxy|zΣ+yy|z (yk+1 −E {yk+1|Yk}) a.s.

(53)

where

Σxy|z = E {(xk+1 −E (xk+1|Yk))
× (yk+1 −E (yk+1|Yk))T |Yk

o
(54)

Σyy|z = E {(yk+1 −E (yk+1|Yk))

× (yk+1 −E (yk+1|Yk))T |Yk
o

(55)

Note that from the stochastic fuzzy system in (11), we have

E {xk+1|Yk} = AkE {xk|Yk}+Bkuk a.s. (56)
E {yk+1|Yk} = CkE {xk+1|Yk} a.s. (57)

Before we compute Σxy|z and Σyy|z , it is helpful to derive an
expression for Rk = Σxx|z. By the stochastic fuzzy system in
(11), we have

Rk

= E
n
(xk+1 −E{xk+1|Yk}) (xk+1 −E{xk+1|Yk})T |Yk

o
= E {[Ak (xk −E (xk|Yk)) +∆Akxk + wk]

× [Ak (xk −E (xk|Yk)) +∆Akxk + wk]
T |Yk

o
= AkE

n
(xk −E (xk|Yk)) (xk −E (xk|Yk))T |Yk

o
AT
k

+
LX
i=1

h2i (zk)ΓAiσ
2E
©
xkx

T
k |Yk

ª
ΓTAi +Rw

= AkΣkA
T
k +Ψk +Rw

where Ψk is defined in (49). Substituting (56) and (57) into
(54), we find that

Σxy|z

= E {(xk+1 −E {xk+1|Yk}) [Ck (xk+1 −E {xk+1|Yk})
+∆Ckxk+1 + vk+1]

T |Yk
o

= E {(xk+1 −E {xk+1|Yk})
× (xk+1 −E {xk+1|Yk})T CT

k |Yk
o

= RkC
T
k (58)
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A similar computation for (55) leads to

Σyy|z

= E{[Ck (xk+1 −E {xk+1|Yk}) +∆Ckxk+1 + vk+1]

× [Ck (xk+1 −E {xk+1|Yk}) +∆Ckxk+1 + vk+1]
T |Yk}

= CkE{(xk+1 −E {xk+1|Yk})
× (xk+1 −E {xk+1|Yk})T |Yk}CT

k

+E{vk+1vTk+1k|Yk}+E{∆Ckxk+1x
T
k+1∆C

T
k |Yk}

= CkRkC
T
k +Rv

+E{
LX
i=1

LX
j=1

hi (zk)hj (zk) qi(k + 1)qj(k + 1)

×ΓCixk+1xTk+1ΓTCj |Yk}
= CkRkC

T
k +Rv

+σ2
LX
i=1

h2i (zk)ΓCiE{xk+1xTk+1|Yk}ΓTCi

= CkRkC
T
k +Rv + σ2

LX
i=1

h2i (zk)ΓCiΞkΓ
T
Ci

= CkRkC
T
k +Rv + Λk (59)

where Λk is defined in (50). Substituting (58) and (59) into
(53), we obtain the recursive equations for x̂k in (45) and (47).
It remains to show (46). By applying (58) and (59) to (6) in
Lemma 5 and noting that Σyx|z = ΣTxy|z, we have

Σk+1 = E{(xk+1 −E {xk+1|Yk+1})
× (xk+1 −E {xk+1|Yk+1})T |Yk+1}

= E{(xk+1 −E (xk+1|Yk, yk+1))
× (xk+1 −E (xk+1|Yk, yk+1))T |Yk, yk+1}

= Σxx|z − Σxy|zΣ+yy|zΣyx|z
= Rk −RkC

T
k (CkRkC

T
k +Rv + Λk)

−1CkRk

which verifies (46).

VII. SIMULATION EXAMPLE

In this section, a simulation example is given to confirm the
performance of the proposed fuzzy Kalman filter and fuzzy H∞
filter for the stochastic fuzzy system. Consider the following
stochastic T-S fuzzy system:

Rule 1:
IF yk−1 is F11 and yk−2 is F21,
THEN

xk+1 = (A1 +∆A1 (k))xk +B1uk + wk

yk = (C1 +∆C1 (k))xk + vk

Rule 2:
IF yk−1 is F11 and yk−2 is F22,
THEN

xk+1 = (A2 +∆A2 (k))xk +B2uk + wk

yk = (C2 +∆C2 (k))xk + vk

Rule 3:
IF yk−1 is F11 and yk−2 is F23,

THEN

xk+1 = (A3 +∆A3 (k))xk +B3uk + wk

yk = (C3 +∆C3 (k))xk + vk

Rule 4:
IF yk−1 is F12 and yk−2 is F21,
THEN

xk+1 = (A4 +∆A4 (k))xk +B4uk + wk

yk = (C4 +∆C4 (k))xk + vk

Rule 5:
IF yk−1 is F12 and yk−2 is F22,
THEN

xk+1 = (A5 +∆A5 (k))xk +B5uk + wk

yk = (C5 +∆C5 (k))xk + vk

Rule 6:
IF yk−1 is F12 and yk−2 is F23,
THEN

xk+1 = (A6 +∆A6 (k))xk +B6uk + wk

yk = (C6 +∆C6 (k))xk + vk

Rule 7:
IF yk−1 is F13 and yk−2 is F21,
THEN

xk+1 = (A7 +∆A7 (k))xk +B7uk + wk

yk = (C7 +∆C7 (k))xk + vk.

Rule 8:
IF yk−1 is F13 and yk−2 is F22,
THEN

xk+1 = (A8 +∆A8 (k))xk +B8uk + wk

yk = (C8 +∆C8 (k))xk + vk

Rule 9:
IF yk−1 is F13 and yk−2 is F23,
THEN

xk+1 = (A9 +∆A9 (k))xk +B9uk + wk

yk = (C9x+∆C9 (k))k + vk

The related matrices in the above fuzzy system are defined
as follows:

A1 =

∙
0.5 0.3
0.01 0.6

¸
, A2 =

∙
0.4 0.7
0.02 0.5

¸
,

A3 =

∙
0.3 0.4
0.03 0.5

¸
, A4 =

∙
0.2 0.3
0.04 0.6

¸
,

A5 =

∙
0.1 0.3
0.01 0.5

¸
, A6 =

∙
0.15 0.3
0.04 0.6

¸
,

A7 =

∙
0.25 0.3
0.03 0.5

¸
, A8 =

∙
0.35 0.3
0.02 0.5

¸
,

A9 =

∙
0.45 0.3
0.01 0.5

¸
,

B1 =
£
1 2

¤T
, B2 =

£
1 3

¤T
, B3 =

£
2 1

¤T
,

B4 =
£
2 3

¤T
, B5 =

£
1 2

¤T
, B6 =

£
1 3

¤T
,

B7 =
£
2 1

¤T
, B8 =

£
2 3

¤T
, B9 =

£
1 2

¤T
,
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C1 =
£
1 3

¤
, C2 =

£
2 1

¤
, C3 =

£
1 2

¤
,

C4 =
£
2 3

¤
, C5 =

£
2 1

¤
, C6 =

£
2 3

¤
,

C7 =
£
1 3

¤
, C8 =

£
1 2

¤
, C9 =

£
2 3

¤
,

ΓA1 =

∙
0.2828 0.1414
0.1414 0.4243

¸
, ΓA2 =

∙
0.1414 0.2828
0.2828 0.24243

¸
,

ΓA3
=

∙
0.2828 0.28228
0.1414 0.1414

¸
, ΓA4

=

∙
0.1414 0.1414
0.4243 0.4243

¸
,

ΓA5
=

∙
0.4243 0.2828
0.1414 0.4243

¸
, ΓA6

=

∙
0.5657 0.1414
0.4243 0.2828

¸
,

ΓA7 =

∙
0.2828 0.2828
0.2828 0.2828

¸
, ΓA8 =

∙
0.4243 0.1414
0.1414 0.4243

¸
,

ΓA9
=

∙
0.2828 0.4243
0.5657 0.5657

¸
,

ΓC1 =
£
0.0424 0.0283

¤
, ΓC2 =

£
0.0141 0.0283

¤
,

ΓC3 =
£
0.0566 0.0283

¤
, ΓC4 =

£
0.0141 0.0354

¤
,

ΓC5 =
£
0.0212 0.0283

¤
, ΓC6 =

£
0.0495 0.0169

¤
,

ΓC7 =
£
0.0141 0.0707

¤
, ΓC8 =

£
0.0198 0.0283

¤
,

ΓC9 =
£
0.0849 0.0283

¤
,

The premise variables are chosen as yk−1 as well as yk−2 and
the membership functions for these premise variables are given
in Fig. 1.

The input signal is chosen as u(t) = 5 sin(t) , while
noises wk and vk are zero-mean Gaussian white noise with
Rw =

∙
0.25 0
0 0.25

¸
and Rv = 0.25, respectively. The white

process qi(k) is zero-mean with variance σ2 = 0.02. The initial
condition of the sate x(k) is given by∙

x1(0)
x2(0)

¸
=

∙
10
10

¸
The initial conditions of all the estimators in the simulation
study are all set as ∙

x̂1(0)
x̂2(0)

¸
=

∙
0
0

¸
1) Conventional State Observer Design: For the standard

state observer given in (14), the main work is to solve the LMI
(18) to find the local observer gain matrix Li for the i-th rule of
the fuzzy observer. We set λ1 = 0.8, λ2 = 0.8, and Q1 as well
as Q2 are both identity matrices. We solve the linear matrix
inequality (18) by using the Matlab LMI Toolbox to obtain the
observer gain matrices as

L1 =

∙
0.1677
0.1610

¸
L2 =

∙
0.2594
0.1378

¸
L3 =

∙
0.1601
0.1386

¸
L4 =

∙
0.1152
0.1660

¸
L5 =

∙
0.0937
0.1341

¸
L6 =

∙
0.1062
0.1658

¸
L7 =

∙
0.1244
0.1383

¸
L8 =

∙
0.1420
0.1367

¸
L9 =

∙
0.1594
0.1350

¸
Note that the standard state observer given in (14) is a

prediction-type estimator given by

x̂k+1 = Akx̂k +Bkuk +
9X

i=1

hi (zk)Li (yk − Ck−1x̂k) (60)

With the same observer gain matrices Li, we can also construct
a filtering-type estimator as follows

x̂k+1 = Akx̂k +Bkuk

+
9X

i=1

hi (zk)Li (yk+1 − CkAkx̂k − CkBkuk)

(61)

which is expected to have better estimation performance than
the prediction-type estimator as the additional information yk+1
is used.

2) Optimal H∞ Filter Design: For the optimal H∞ filter
design, we solve the LMI’s in (32) and (33). The minimal value
of ρ is ρ = 5.9648,

P1 =

∙
2.6506 2.0855
2.0855 15.8677

¸
P2 =

∙
1.6453 −0.4782
−0.4782 1.7285

¸
,

and the observer gain matrices are

L1 =

∙
0.1947
0.1376

¸
L2 =

∙
0.2861
0.1479

¸
L3 =

∙
0.1747
0.1213

¸
L4 =

∙
0.1649
0.1356

¸
L5 =

∙
0.1008
0.1113

¸
L6 =

∙
0.1627
0.1355

¸
L7 =

∙
0.1360
0.1170

¸
L8 =

∙
0.1589
0.1179

¸
L9 =

∙
0.1388
0.0974

¸
Note that the considered optimal H∞ filter in Section V is of
prediction type. As discussed in the previous section, we can
also construct a filtering-type estimator related to the optimal
H∞ filter.

3) The Optimal Fuzzy Kalman Filter: We shall simulate both
the filtering-type optimal fuzzy Kalman filter in (45)-(50) and
the prediction-type one in (52). The initial condition of the
conditional covariance matrix Σk is given by

Σ0 = 2× 103 ×
∙
1 0
0 1

¸
4) Comparison of Estimation Performance: The standard

fuzzy estimator, the optimal H∞ fuzzy filter, and the optimal
Kalman fuzzy filter of both prediction type and filtering type
will be compared by verifying the standard deviation σx of the
state estimation error by counting 10000 sample points. For
the three estimators of filtering type, estimations of x1(t) and
x2(t) of the stochastic T-S fuzzy system are shown in Fig. 2
(a) and Fig.3 (a), respectively. The related estimation errors are
shown in Fig. 2(b) and Fig. 3(b). While for the three estimators
of prediction type, estimations of x1(t) and x2(t) are shown
in Fig. 4 and Fig. 5, respectively. The standard deviations of
estimation errors of these estimators are compared in Table I.
In this table, it is shown that all the filtering-type estimators
outperform the prediction-type ones. In the class of filtering-
type estimators, the standard deviation of the estimation error
for the optimal Kalman fuzzy filter is much less than those of
the other two filters. However, the performances of the filtering-
type estimators are very close.

Now we turn to evaluate the robustness of the three esti-
mators. Note that the designs of the standard fuzzy estimator
and the H∞ fuzzy optimal estimator are irrelevant to Rv and
Rw. Here, the optimal Kalman fuzzy filter will be computed
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with the covariance matrices Rv and Rw given above. However,
in the simulation of the system responses, we use different
settings of these two covariance matrices, including (Rv1 =
4Rv, Rw1 = 4Rw), (Rv2 = 8Rv, Rw2 = 8Rw), and (Rv3 =
16Rv, Rw3 = 16Rw). The standard deviations of the state
estimation errors for various state estimators under different
settings are compared in Table II. It is surprising to find that the
optimal Kalman fuzzy filter derived in (45)-(50) has the most
robust performance with the smallest standard deviation of the
state estimation error, although there are large uncertainties of
the noise covariance matrices in implementing the filter.

VIII. CONCLUSION AND DISCUSSION

In this study, the state estimation problem for the stochastic
T-S fuzzy model with state-dependent noise on the system
matrix and the output matrix has been attacked. First, we
have derived sufficient conditions for a class of standard fuzzy
state observer to ensure that the state estimation error is
mean square bounded. The observer gain matrices in the fuzzy
observer can be obtained by solving a linear matrix inequality.
Then, the optimal H∞ fuzzy filtering problem is considered
to minimize the worst-case ratio of the power of the state
estimation error to that of the external noises. The optimal H∞
observer gain matrices can be obtained by solving two linear
matrix inequalities. To further improve estimation performance,
we have studied the optimal Kalman fuzzy filtering problem
with the known statistical information of the process noise
and the measurement noise of the uncertain stochastic T-S
fuzzy model. It is shown that the minimum-variance estimation
for the uncertain stochastic T-S fuzzy model is actually a
linear estimation problem from the viewpoint of conditional
expectation. Actually, The structure of the developed optimal
Kalman fuzzy filter also very resembles that of the conventional
Kalman filter. Comparison of estimation performances of the
developed three estimators is made via simulation study which
verifies the optimal and robust performance of the optimal
Kalman fuzzy filter.
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Kalman
Filtering

Standard
Filtering

H∞
Filtering

σx 2.9796 9.8979 13.3157
Kalman
Pred.

Standard
Pred.

H∞
Pred.

σx 26.4816 26.6690 26.5136

TABLE I
COMPARISON OF STANDARD DEVIATIONS OF ESTIMATION ERRORS OF THE

THREE ESTIMATOR OF BOTH THE FILTERING TYPE AND THE PREDICTION

TYPE.

Rv/Rw
Kalman
Filtering

Standard
Filtering

H∞
Filtering

Rv1/Rw1 3.9955 10.6300 13.7755
Rv2/Rw2 4.5206 11.7857 15.6592
Rv3/Rw3 4.9618 13.2356 17.4602

Rv/Rw
Kalman
Pred.

Standard
Pred.

H∞
Pred.

Rv1/Rw1 28.4393 28.8041 26.5136
Rv2/Rw2 31.0104 31.1080 31.1867
Rv3/Rw3 35.3288 35.7794 35.2731

TABLE II
STANDARD DEVIATIONS OF ESTIMATION ERRORS UNDER DIFFERENT

SETTINGS BY VARYING THE COVARIANCE MATRICES Rv AND Rw.
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Fig. 2. (a) x1(t) and its estimation (b) Estimation error of x1(t). (Optimal
Kalman fuzzy filter,standard fuzzy estimator and the optimal H∞ fuzzy filter
(61))
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Fig. 3. (a) x2(t) and its estimation (b) Estimation error of x2(t). (Optimal
Kalman fuzzy filter,standard fuzzy estimator and the optimal H∞ fuzzy filter
(61))

0 50 100 150 200 250 300
-100

-50

0

50

100

k

x 1,
k

x1,k and its estimates

 

 
x1,k
Estimate of x 1,k by the optimal fuzzy one step prediction

Estimate of x 1,k for a standard fuzzy  one step prediction via LMI design

Estimate of x 1,k by the H
∞

 fuzzy one step prediction via LMI design

0 50 100 150 200 250 300
-100

-50

0

50

100

k

E
st

im
at

io
n 

er
ro

rs
 o

f x
1,

k

 

 
Estimation error of x 1,k by the optimal fuzzy one step prediction

Estimation error of x 1,k for a standard fuzzy one step prediction via LMI design

Estimation error of x 1,k by the H
∞

 fuzzy one step prediction via LMI design

Fig. 4. (a) x1(t) and its estimation (b) Estimation error of x1(t). (Optimal
fuzzy one-step ahead predictor,standard fuzzy one-step ahead predictor and the
optimal H∞ fuzzy one-step ahead predictor (60)via )
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fuzzy one-step ahead predictor,standard fuzzy one-step ahead predictor and the
optimal H∞ fuzzy one-step ahead predictor (60)via )



表 Y04 

行政院國家科學委員會補助國內專家學者出席國際學術會議報告 

                                                           96 年 03 月 28 日 

報告人姓名  

李柏坤 

 

服務機構

及職稱 

 

 中華大學電機系 

教授 

   時間 

   會議 

   地點 

 96 年 3 月 21 日至 

 96 年 3 月 23 日 

香港 

本會核定

補助文號

國科會計畫 95-2221-E-216-034

中核定出席國際會議經費六萬元

會議 

名稱 

 (中文) 2007 年工程與計算機科學聯合國際會議 (IMECS 2007) 

 (英文) The International MultiConference of Engineers and Computer 
Scientists 2007 (IMECS 2007) 

發表 

論文 

題目 

1. (中文) 使用 PID 類型的學習法則的適應模糊控制器 

 (英文) Adaptive Fuzzy Control using PID-Type Learning Algorithm 

2.(中文) 適應性增長與刪除類神經控制器運用於線型陶瓷伺服馬達 

 (英文) Design of Adaptive Growing-And-Pruning Neural Control for LPCM 
Drive System 

 

附
件
三 



表 Y04 

報告內容應包括下列各項： 

一、 參加會議經過 
此次 International Association of Engineers 舉辦的 The International MultiConference of 
Engineers and Computer Scientists 2007 (IMECS 2007)，整個聯合研討會包含 

[1] International Conference on Artificial Intelligence and Applications (ICAIA)、 
[2] International Conference on Bioinformatics (ICB)、 
[3] International Conference on Control and Automation (ICCA)、 
[4] International Conference on Computer Science (ICCS)、 
[5] International Conference on Communication Systems and Applications (ICCSA)、 
[6] International Conference on Data Mining and Applications (ICDMA)、 
[7] International Conference on Electrical Engineering (ICEE)、 
[8] International Conference on Imaging Engineering (ICIE)、 
[9] International Conference on Industrial Engineering (ICINDE)、 
[10] International Conference on Internet Computing and Web Services (ICICWS)、 
[11] International Conference on Operations Research (ICOR)、 
[12] International Conference on Scientific Computing (ICSC) 、 
[13] International Conference on Software Engineering (ICSE)。 

此次 IMECS 2007聯合研討會，於96年3月21日到96年 3月23日，在香港Regal Kowloon 
Hotel 舉行。本人在 3 月 20 上午 10:20 自中正機場乘坐班機前往香港。 

 

    本人於 ICCA 研討會發表發表兩篇論文，分別是 
(1) Adaptive Fuzzy Control using PID-Type Learning Algorithm，於 3 月 21 日 10:45 的 ICCA 
II Session 發表。 
(2) Design of Adaptive Growing-And-Pruning Neural Control for LPCM Drive System，於 3
月 21 日 16:00 的 ICCA IV Session 發表。 
上面兩篇文章也被推薦競選 Best Paper Award。 
 
    同時我也積極參與 International Conference on Artificial Intelligence and Applications 
(ICAIA)、International Conference on Bioinformatics (ICB)以及 International Conference on 
Electrical Engineering (ICEE)等研討會。其中並參加 3 月 22 日，林志民教授(Prof. Chih-Min 
Lin)於 ICCA 研討會之專題演講(ICCA 2007 Invited Talk)，演講題目為 Design and 
Application of Adaptive Cerebellar Model Articulator Controller。 
 
    希望藉由此 IMECS 2007 聯合研討會與讓世界各國之研究團隊切磋，提升國際間學

術交流，互相激勵研究靈感，以求在研究上更進一步之突破。 
 
3 月 23 日，於結束我參加在 ICCA V Session 之研討會報告，即準備 Check out，前

往機場搭乘 17:05 由香港起飛的班機返回台灣，結束這次的 IMECS 2007 國際會議之行。
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二、與會心得 
(1) 從此次研討會中認識了很多來自全世界各地的菁英學者，是此次最大的收

穫，對於將來推動國際學術交流，有相當大的幫助。 
(2) 從此次研討會所發表的論文來看，各國有關智慧型控制系統發展都有顯著

的研究成果，國內於學理分析方面算相當不錯，但於系統整合與應用則有

待改善。 

(3) 智慧型控制理論應用於生物資訊，也受到全世界的重視，國內應該即起直

追。 

 

三、考察參觀活動(無是項活動者省略)  
主辦單位無舉辦任何考察參觀活動。 

 

四、建議 
(1) 於最近才成立的 International Association of Engineers，非常積極的舉辦國

際聯合研討會，使得全世界各地的菁英學者，能夠共聚ㄧ堂。我覺得國

內也可以由幾個學會或中國工程師協會，舉辦國際聯合研討會。 
(2) 香港的交通建設與觀光產業有高度的結合，使得舉辦國際研討會有相當

好的基礎，這一點是我們還比不上的，要提升台灣的整體學術地位，舉

辦國際聯合研討會，促進學術交流，是必要的一步，我們在交通建設與

觀光產業的結合，還需要加油。 
(3) 香港的國際化，已經非常根深蒂固，同時以此為基礎邁向國際之競爭，

與香港相比，台灣的自由化與國際化還有待大家的努力。  
 

 

五、攜回資料名稱及內容 
(1) 完整論文光碟片。 
(2) 論文摘要紙本。 

 

六、其他 
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