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Abstract—In this study, state estimation problem for the
stochastic T-S fuzzy model with state-dependent noises on the
system matrix and the output matrix is attacked. First, we derive
sufficient conditions for a class of standard fuzzy state observers
to ensure that the state estimation error is mean square bounded.
The observer gain matrices in the fuzzy observer can be obtained
by solving a linear matrix inequality (LMI). Then, the robust H
fuzzy filtering problem is considered to minimize the worst-case
ratio of the power of state estimation error to that of the external
noises. The H., observer gain matrices can be obtained by solving
two linear matrix inequalities. To further improve estimation
performance, we study the optimal Kalman fuzzy filtering problem
with known statistical information of the process noise and the
measurement noise. It is shown that the the minimum-variance
estimation for the uncertain stochastic T-S fuzzy model is actually
a linear estimation problem from the viewpoint of conditional
expectation. The structure of the developed optimal Kalman fuzzy
filter also very resembles that of the conventional Kalman filter.
Comparison of estimation performances of the developed three
estimators is made via simulation study.

Index Terms— Stochastic T-S fuzzy, fuzzy H., filter, fuzzy
Kalman filter

I. INTRODUCTION

For linear stochastic systems with parametric or non-
parametric uncertainty, the robust state estimation problem has
been well addressed. A robust Kalman filter for linear time-
varying systems with stochastic parametric uncertainties has
been constructed in [1]. In [2], a multi-objective robust state
estimator for stochastic discrete time-delay systems with both
deterministic and stochastic uncertainties is considered, where
it is shown that the state estimation error is asymptotically
stable provided some linear matrix inequalities (LMI) hold. In
[3], a robust Kalman filter algorithm is presented for linear
uncertain time-lag systems with randomly jumping parameters,
and exponential stochastic stability for the state estimator is
ensured. The above mentioned state estimators are designed
based on the LMI technique [4] for linear stochastic systems.

State estimation of a nonlinear stochastic system is a more
difficult and complex problem which attracts a lot of re-
searchers’ attention in recent years. Based on linearization
technique, the extended Kalman filter has been well developed

for state estimation of a nonlinear stochastic system [5]. State
estimation based on feedback linearization using a recurrent
neurofuzzy network with an analysis of variance decomposition
structure can be referred to [6]. Recently, the Takagi and Sugeno
(T-S) fuzzy model [7] has been used to deal with the state
estimation problem for nonlinear systems. By interpolating the
fuzzy IF-THEN rules representing the local linear models, the
T-S fuzzy system can closely approximate the input-output
relation of a nonlinear system. State estimation by designing
a local fuzzy observer for each local linear model in the
deterministic T-S fuzzy model by solving a set of LMI’s can
be traced back to [8]. Optimal output predictor for a stochastic
T-S fuzzy ARMAX model by interpolating the local optimal
predictor for each local ARMAX model has been proposed
in [9]. In [10], the LMI technique is used to design an H.,
robust fuzzy filter under the T-S fuzzy structure to minimize the
worst-case effect of bounded disturbances and noise upon state
estimation error. Without using the T-S fuzzy structure, optimal
state estimation based on a fuzzy dynamic model is considered
in [11] for nonlinear systems subject to non-Gaussian noise.
Although T-S fuzzy model has been used for state estimation
for nonlinear systems, it seems that little attention has been
paid to the state estimation problem for uncertain stochastic
T-S fuzzy systems with state-dependent noises. Robust fuzzy
filter design for continuous-time stochastic system with state-
dependent noise in the system matrix is recently proposed in
[12]. In this study, state estimation problem for descrete-time
stochastic T-S fuzzy models with state dependent noises in
the system matrix and the output function is addressed. First,
based on the LMI technique, a class of standard state estimators
will be attained so that the mean square state estimation
error is bounded. Moreover, state estimation problem from the
viewpoint of H, filter theory will be attacked. The optimal H,
fuzzy filter will also be obtained by using the LMI method to
minimize the maximal ratio of the power of state estimation
error to that of the external noises. Finally, to further improve
estimation performance, we shall study the optimal estimation
problem for the T-S fuzzy model. Due to the state-dependent
noise in the system, the coefficients in the T-S fuzzy model
are randomly varying, and, from the control viewpoint, the



T-S fuzzy model is a nonlinear system. However, from the
viewpoint of conditional expectation, we shall show that the
state estimation problem for the stochastic T-S fuzzy model with
state-dependent noise can be viewed as a linear state estimation
problem. For state estimation of linear systems, the Kalman
filter is an unbiased and minimum variance estimator under
the Gaussian assumption. Based on the above observation, we
shall derive the optimal fuzzy Kalman filter for the considered
stochastic T-S fuzzy system under Gaussian assumption.

This study is organized as follows. Related materials of
probability are introduced in Section Il. In Section Ill, the
considered stochastic T-S fuzzy model with state-dependent
noise is described. In Section IV, a class of standard state
estimators for the considered stochastic fuzzy systems is pre-
sented and analysis of mean square of estimation error is
made. The optimal H,, fuzzy filter is discussed in Section V.
The optimal fuzzy Kalman filter under Gaussian assumption is
studied in Section VI. Simulation study is made in Section VII.
Conclusions and discussions are given in Section VIII.

Notations

1) For arandom vector z, its covariance matrix is denoted by
Y, With B, = E{(z — &)(z — &)"'}, where & = E {z}
is the ensemble mean.

2) Let z, y, and z be three random vectors. The conditional
expectation of x given y is denoted by E{z|y}. The
conditional covariance of x given z is defined as

Seale = B {(z — E{z|2})(@ - B{z]z})" |2}

The conditional cross-covariance of 2 and y given z is
defined as

Seglz = E{(z — E{alz})(y - E{ylz})"]2}

Similarly, the conditional covariance of x given y and z
is defined as

Sealy, » = B {(x = E{aly, 2})(z - E{zly, 2}y, =}

3) For a vector = and a matrix A, ||z| is the Euclidean
norm of = and || A|| is the associated matrix induced norm.
The minimal and maximal eigenvalues of A with only
real eigenvalues are denoted as Apin (A) and Apax (A),
respectively. For a random vector x and a deterministic or
random matrix A, the norm || A]|,,. is defined as ||A||fnS

2 .
= SupE{”sz}:lE{HAxH } A stochastic process xj,

is said to be mean square bounded if sup, £ {||$k||2} <
Q.

Il. PRELIMINARY MATERIALS OF CONDITIONAL
PROBABILITY

In this section, we summarize some basic materials concern-
ing conditional probability, which will be used in the derivation
of the optimal fuzzy Kalman filter. Most of the materials
presented in this section are extracted from [13].

Let £ be the o-algebra generated by the random variable n
and let E{x} exist. Let {F;};°, be a set of nondecreasing
o-algebras. Some properties of conditional expectation are
summarized in the following:

1) E{E{z|F1}} = E{a}.
2) If x is F1—measurable, |z| < oo a.s., and E{|y| |F1} <
oo as., then E {zTy|F1} =T E{y|F1} as.
) fFyCcFacCF,then E{E{x|F2}|F1} =E{z|F1}.
The concept of conditional independence is introduced below.
Definition 1: Random vectors x and y are called condition-
ally independent given z if

E {ei)‘T””““Ty\z} =F {ei)‘T"”\z} E {ei“Ty\z}

where E ie”%’z and Ejei“T?ﬂz are the conditional char-
acteristic functions of = and y, respectively.

Lemma 1: (Theorem 1.10in [13]) (i) If yand [ =7 =T }T
are independent, then = and y are conditionally independent
given z. (ii) If x and y are conditionally independent given z,
then for any Borel set B,

P({z € B}y, 2) = P({z € B} |2)

and
Efzly, 2} = E{x|z}

Definition 2: Let |z| < oo a.s. Then x is called conditionally
Gaussian given y if there exist an /¥-measurable random vector
% and an FY-measurable random matrix ¥ = 7 > 0 as.
such that the conditional characteristic function of x given y is
expressed by

; 1
E {e”‘%\y} = exp <i/\T§3 — EATZ/\) a.s. Q)
for every constant vector A. In this case

i=Efay}, S=E{@-3) (-2 ly} as. @
Note that if = is conditionally Gaussian given y and A (-) as
well as b (-) are Borel measurable functions with almost surely
lA (y)|l < oo and ||b(y)|| < oo, then it follows that A(y)x +
b(y) is also conditionally Gaussian given y.
Lemma 2: If random variable z is independent of random
variables y and z, then

Efay|z} = E{x} E{y|z}
Proof: Since z is independent of y and z, it follows

and thus
Efaylz} =

/Z /Z Y faylz (T, y|z) dzdy
- /O; xfy () dz /O; yfyz (ylz) dy

E{z} E{y|z}

[ |

Lemma 3: Suppose that the zero-mean random variables ¢,
g2, and the random vector v are mutually independent
and are all independent of =z and 2. Also assume
that A(), b(-), AA(-), AC(-), and Ab(-) are Borel
measurable functions with almost surely ||A(a)| < oo,
[b(e)] < oo, [[AA(a)]| < oo, [[AC(a)]| < oo, and
|Ab(a)]] < oo. If x is conditionally Gaussian given



z and « is F*-measurable, then F(«o,z,q1,q92,v) =
(A(a) + AA(a)gs + AC(a)g2 + AC()AA(a)q1g2) . +
(b () + Ab(a)g2 + Bov) is conditionally Gaussian given z,
where By is a constant matrix,

Proof: By Lemma 2, we have

E{F(a,z,q1,q2,v)|z}
A(a) E{z]z} + AA(a)E{q1z|z} + AC() E {qo7|2}
+AC(a)AA(a) E {q1¢2(2} + b ()
A(a) E{z|z} + AA()E{q1 } E{z|z}
+AC(a)E{q2} E {z|z}
+AC(a)AA(a)E{q192} E{z|2} + b ()
A(a) E{z|z} +b(a)
3

Hence (A (o) + AA(a)q1 + AC(a)g2 + AC(a)AA(a)q1g2) o+

(b () + Ab(a)ge + Bgv) is conditionally Gaussian given z. m
Lemma 4: (Lemma 3.1 in [13]) If w

ditionally Gaussian given z, then = and y are conditionally
independent given z if and only if

Spye = B{ (@ = B(2l2)) (y - E@l2)" |2} =0as. ()

Lemma 5: (Lemma 3.2 in [13]) Let 5
Gaussian given z with conditional covariance

|: E:c:c|z E:cy|z :| a.s.

Yyalz yylz
Then (i) Given (y, z), z is conditionally Gaussian with condi-
tional mean

is con-

be conditionally

E{alz, y} = E{zlz} + 0.8, (v — E{yl2}) ()
and conditional covariance
_ +
wa\z, y wa\z - Exu|z2yy‘zzyw|z (6)

where Z;y . is the pseudo inverse of ¥, ..
(ii) Given z, x — E{z|z, y} is conditionally Gaussian and
independent of y.

I1l. THE STOCHASTIC T-S FUzzY MODEL
Consider the following stochastic T-S fuzzy model:

System Rule 4,1 < i < L:

IF 21 is Fj1 and 2o is Fjo and and z, 1 is F; g,
THENzj 1 = (AZ + AA; (k‘)) T + Biug + wy
Measurement Rule 7,1 < i < L:

IF 21,k—1 is Fi and 22 k—1 is Fio and
THEN vy, = (CZ‘ + AC; (k’))l‘k + vk

and zg ;1 IS F g,

()
where L is the number of IF-THEN rules, ¢ is the number
of premise variables, F;; is the fuzzy set for 1 < ¢ < L and
1 <j <y, and 2z, ., Zg are the premise variables.
Additionally, z;, is the state vector, y;, is the measurement out-
put, uy is the control input, and A;, B;, C; are known constant
matrices. The stochastic uncertainties in the system function
and the output function are defined as AA; (k) = T4,q:(k)

and AC; (k) =T, q;(k), respectively. The driving noises g; (k)
is an i.i.d. (independent and identically distributed) processes
of normal distribution N (0, 1). The zero-mean noises wy, and
vy, are process noise and measurement noise, respectively. Then
the overall stochastic T-S fuzzy system (7) is equivalent to

L
Tht+1 = hZ (Zk) {(AZ + AAZ (k)) T + B{U,k + wk}
i=1

7

=L ®)

where z, = [z1k 226 ... 2k IS the vector of premise
variables,
) _ py (k)
hz (Zk) - EiL:l i (75)
g ©)
pi (2i) = Hle'j (2jk) 5
Jj=

and F;; (zj) is the grade of membership of z;; in Fj;. It is
assumed that S°7 i, (z) > 0 for any z;. By the definition
of h; (zx), it follows

hi(z) 20, _ilhi (2) =1 (10)

The T-S fuzzy system in (8) can be rewritten into a more
compact form as

Tht1 = (Ak + AA;C) T + Brug + wy,

11
e = (Cr—1 + ACk_1)z) + g (1)
where
L L
i=1 i=1

L L
Cr—1= > hi(z—1)Ci, ACk—1 =3 hi(z—1) AC; (k),
i =1

=1 =
AA; (k) =T4,qi(k), AC; (k) =T, q:(k),
L
i=1
(12)
We shall also make the following definitions:
L L
Ta, =Y hi(z)Ta,To, =Y hi(z1)To,  (13)
i=1 i=1
Let F;, be the o—algebra generated by Y3, = {0, ..., yx}. Some
assumptions with respect to the T-S fuzzy model in (11) are
made in the following.
(A1) E{gi(k)q;(m)} = 0?6 (i — ) 8(k —m).
(A2) E{wkij} = Ryo(k—37), E{vkvjr} =R, (k—37),
E{q;(k)|Fr-1} =0, and E {q?(k)\fk_l} = o2,
(A3) The premise variables =z Zg) are
Fr—measurable. The input wu; is dependent on Y, and
thus is also }jmeasurable.

(A4) zo is independent of {wy , vx},s, and z is
0 >

conditionally Gaussian given g, with conditional mean &, and
conditional covariance Y.
From assumption (A1), it follows that

E{AAT (k) A4; (m)} = o°T4Ta;6(i—j)d(k —m)
E{ACT (k) AC; (k)} o TET e, 6 (i—j).



IV. A CLASS OF STANDARD STATE ESTIMATORS FOR
STOCHASTIC FuzzY SYSTEMS

With the T-S fuzzy system in (7), a class of standard state
estimators, which are extensively used in the literature such as
[8], [14], and [11], is given by

L L
> hi(2r) Aidg + D2 hi (2k) Biug,

Th1 =
=1 i=1
L A
+ > hi (2k) Li [yk — Okl (14)
=1
L
Uk = > hi (zp—1) Cidy,
=1

where the filter gain L; is related to the local linear model in the
i-th rule. With the fuzzy system in (11) and the state estimator
in (14), the state estimation error Zx.1 = @11 — Tra1 Can be
expressed as

Tkl

ZZ (2k) by (z5-1) (AA; (k) — LiAC; (k)

7

(zk-1) (Ai — LiCy) Ty,

nMr«

~

+ h‘ (Zk) (U}k — Livk) (15)
i=1

With the fuzzy system in (8) and the state estimation error in
(15), the overall state-space model with the augmented state
vector T, = [ «f,, Il ]T can be expressed as

Zhy1 = Fij(k)Zk + Npyn (16)

L L
Fy(k) = D03 hi(z) by (2k1) (FijZk + AF;(k)Tk)

i=1 j=1
L
Ng+1 = th (Zk) (Bzuk + Ezwk) s
1=1
A; 0
Fi="1% A,—Licj}’
B AA; (k) 0
AFGR) = | A(k) - LAC,(K) 0 ] :
. (B, ] - [ 0 I
B’L: _0:|7E1_|:_L7; I:|a
~ [ Vk
wE = wy, :| .

By assumption (A2) imposed on the driving noise wy, and vy,
it follows that

sup F (||77k+1||2) <oy <0

Before deriving the mean-square stability result for the forced
stochastic fuzzy dynamic equation (16), we shall first consider
the following unforced stochastic fuzzy system
= FUUC)@']C

Tht1 17)

A sufficient condition concerning the mean-square exponential
stability of the unforced system (17) is given in the following
theorem.

Lemma 6: If there exists a symmetric positive definite matrix

pP= [ ];1 ]2 } such that the linear matrix inequalities
2
M Py 0 AT P, 0
0 A2 Po 0 AT p, — CJTKZT
P A; 0 Py 0
0 PA; — KC; 0 P
PiTy, 0 0 0
P4, 0 0 0
0 0 0 0
| —K,T, 0 0 0
rhp 4P 0 —TTKT T
0 0 0 0
0 0 0 0
0 0 0 0
it o 0 0 >0 (18)
0 2 0 0
0 0 0
0 0 0 2
hold for 1 <i< L and 1 <j < L where K; = P,L;, then

AP — ZZh )

1=1 j=1

(FEPF; +20% (] POy + QF PQ2)) > 0

[ T4 0 3 0 0
w-eh o] e[k 0

M0
A= 0 Xl
Proof: Note that by the definition of the function h; (zy),
to ensure (19), it suffices to guarantee

Zk 1)

(19)

where

AP — (FLPF; +20” (O] Py + Q5 PQy)) >0 (20)

By Schur complement, (20) is equivalent to (18). This com-
pletes the proof. [ ]

Theorem 1: If there exist symmetric positive definite matri-
ces P; and P5 such that the matrix inequalities (18) hold for A,
and X\; with 0 < A1, Ay < 1, then the stochastic fuzzy system
(17) is mean square exponentially stable with

p{1a} < e {lal} vz @

where kg is an arbitrary initial time, 7, is an arbitrary initial
condition, the positive constants A\, A7 and A\;*** are defined
_ min __ : . : max __
as A = max(A1, A2), A, . = 11%11_1%12 (Amin (P;)) and A,
112%;(2 (Amax (F5)), respectively.
Proof: First define a Lyapunov function as

V (Zg) al Pray, 4 2T Pty

=zl Py (22)



where the matrices P; , 1 < i < 2, are positive definite matrices
satisfying (18). Then we have
MUES||Z]?) < V(Z

k) < A Bz ?} (23)

By referring to (17), the unforced state-space fuzzy system
model is

The1 = ZZh 21) hj (zeo1) (Fy + AF (k) 2 (24)
=1 j=1
where
AFjj(k) = Qigi(k) — Qag;(k)
_ s, O
o= )
0 0
A )
It follows from the wunforced system in (17)
that
V(z

_T _
k1) = T PTrp
L

|
A@h

s
I
-

> hi(2k) hy (z5-1) (Fij + AF;)@) " P x
j=1

M=
M=

3
I
H
S
I
_

~1)Z [FZJ+AF1J( )]TPX

IA
[]=
&
—~
N
kol
~
>
<
—~
I
ET‘
,_.

=
S
<
+1
>
&
o,
—
Z
&
S

(26)

Let /7, be the o—algebra spanned by {y }, - , U {zs}, < -
Now applying the conditional mean operator E {-|F}.} to (26),
we have

E{V (Z41) [F}

H|

(F§PFyj + E {AF[ (k) PAFy (k)|F 1)@} (27)

Note that E {q; (k)q;(k)|F },} = E {%‘T(k)%(k”lrk} as ¢;(k)
is independent of Zz, . With the definition of AF;;(k) in (25),
we have

L L
ZZ (24) hy (25-1) E {AFJ (k) PAF; (k)|F 1}

= QQTpgl + U2QTPQQ

—Zh2 Zk

2(QF P + 0® (9 PQy)]

< 2QlTPQl + 0207 PQ,
L
+> " hi () [0°QF POy + 020 PO, |
=1
< 207 (Qf PQy + QF PQy) (28)

Substituting (28) into (27), we can obtain
E{V (Zrt1) [F i}

< ZZ}L ) hyj (zu-1) 3f FS PFy;y,
=1 j5=1
+202*T (Qf PQy + Q3 PQy) 7
= ZZ}L ) hj (zo-1) T [F PFy;
=1 j5=1
+202 (Q PQy + QF PQy)]zy,
< A\l Piy
AV (Z) (29)

where the result in Lemma 6 is used in the above derivation
and A = max (A1, Ag). Applying the conditional expectation
operator F {-} again to the both sides of (29), we have

E{V (Zr41)} < AE{V (Z1)}
which implies
E{V (2)} S NTRE{V (@,)}

Finally, using the fact of (23), inequality (21) is obtained. ™

For the forced system in (16), with the exponential stability
of the related unforced system and the uniform mean-square
bounded property of the forced term 7, ,, we readily have the
following result by referring to Theorem 2 in [9].

Theorem 2: Assume that the initial state zo and initial esti-
mation error Zy of the system (16) are mean-square bounded,
ie, E{z§} < oo. If there exist symmetric positive definite
matrices P, and P, such that the matrix inequalities (18) hold
for Ay and Ay with 0 < Aq, A2 < 1, then Z; is mean square
bounded.

V. OPTIMAL H,, FILTER FOR STOCHASTIC Fuzzy
SYSTEMS

In this section, we shall discuss the H, filter design problem
for the stochastic fuzzy system in (8) and the state estimator
structure in (14). From (16), the augmented system including
the system and the estimation error dynamics can be expressed
as

(zk—1) (Fij(k)Zy + Egiy)

> )

1=1 j=1

Tapr = (30)

Let us consider the following suboptimal H, performance for
the augmented system

N N
E {Zi«{HQg—:kH} <E {zOTP:zo + p? Zw,{wk} (31)

k=1 k=1
where p is a prescribed noise attenuation level, and P is a pos-
P 0 ]

itive definite weighting matrix. Here we set P = 0 P
2

andQ_[%1 632}



Theorem 3: If there exist matrices K; for 1 < ¢ < L
and positive definite matrices P; as well as P, such that the
following linear matrix inequalities

[ Dt 0 AT P 0
0 L 0 Ar'p,—CIKT
PlAi 0 Pl 0
0 PQAl - KiCj 0 P2
PiTy, 0 0 0
Pl 4, 0 0 0
0 0 0 0
| —K,T, 0 0 0
i ThP 0 -TTKF ]
0 0 0 0
0 0 0 0
0 0 0 0
£ 0 0 0 >0 (32)
0 2 0 0
0 0 % 0
0 0 0 Ly
pP’I 0 0 -KF
0 pQI Pl P2
0 P, % >0 (33)

hold for 1 < ¢ < L and 1 < j < L, then the suboptimal
H, control performance in (31) is attained and the observer
gain matrix L; is obtained via the equation K; = P,L;, i.e.,
L;=Py'K;.
Proof: Let us choose a Lyapunov function for the system
(30) as
V(zk)

— B{al Pxy) (34)

where P is a positive definite matrix. By the Lyapunov function,
we obtain

V(Zkt1) — V(Tk)

T

m=1n=1
—:Ezpjk}
L ~ ~
< B{SS hia) by (i) [(Fw (k)zy, + By, P
i=1 j=1

IN
[\)
&=
——
i
<
ﬂ‘

L L
S hi(zk) hy (2 1)x£FT(k)PFij(k)a‘:k}

(35)

We shall separately analyze the first term and the second term
at the right hand side of (35). First let F}, be the o—algebra
spanned by {y.}, - , U {zs}, < ;- Using the conditional mean
operator E {-|F 1.} upon the first term at the right hand side of
(35), we have

E{L Zh (z) hj (21—1) };FFi?(k)PEj(k)fk}
= {E{;z;hl k) by (zk—1) T4 [Fyy + AF; (k)"
P[Ej+AJFz-j( k)Tl i)}
- {ZZh 21) hyj (25-1) ZF
E{| ZFI ;lAﬂj(k)]TP[Fij + AF;(R)]|F} 2}
- E{ 1Z;hl 2) hy (25-1)

>
E:T(FTPF i+ E{AFS (k)PAF; (k)| F . })Zn}
>

= E Zh k) hj (zu-1) T} L PF;y,
=1 j=1
L L
Eq |20 hila

i=1 j=1
E {Aﬂf(k)PAmj(knF,;} fk} }

(2k—1)

(36)

With the definition of AF;;(k) in (25), assumptions (Al) and
(A2), we get

WAL

=1 j=1

= QQTPQl + 2L PQ,

7Zh Zk

Zk 1) [UQ(Qgpﬂl) +O'2 (Q?PQQ)]

< QQTPQl + o2QL PQ,
+ Z hi (z1) hi (zi—1) [O’QQgPQQ + O’QQ?PQJ
< (Q{PQ1 + Q5 PQy) (37)
where we have used the fact that E{q! (k)q;(k)|F ).} =

E {qf (k)q;(k)|F 1} as g;(k) is independent of xk Substltutlng



(37) into (36), one can obtain

P{E S

=1 j=1

(2-1) fﬁi?(k)Pﬁij(k)xk}

L L
< E > hi(2k) hy (zk-1) Tf Fiy PFy
i=1 j=1
L L
+20°E Q> > hi(zk) by (2k1) T (4 Py
i=1 j=1

P Y

=1 j=1

+202 (Q?PQl + Qg‘PQQ)} J_S’k}

(2k-1) T} [F5PFy;

(38)
Then, substituting (38) into (35), we have
V(fﬁkﬂ) = V(zy)
< F ZZh Zk Z}C 1)
=1 j=1

{zi [2(F} PF;; +20” (Qf Py + Q5 PQy)) —

{zzﬂz .

=1 j=1
If there exist a positive matrix ¢ and a scalar p such that
2F5PF;+20° (A PQy + Q3 PQy)) - P < —Q

P]zi}}

(zk—1) Wy, ETPE wk}

(39)

2ETPE; < pI

(41)
then
V(Zk41) — V(Tk)
< {Zzh 2) hj (2-1) (_Elejk) +p wkTﬁ/k}
=1 j=1
< E{-%[ Q&) + p*0j, ¥ } (42)

Summing (42) from k£ =0to k = N , we have

N N
V(@ns1)—V(Zo) < —-E {Zj£+1Qljk+l +p? Zwkka
k=1 k=1
(43)
and by the definition of the Lyapunov function V (Zy) in (34),

we get
'(Dk} (44)

Therefore, the H,, control performance is achieved with a
prescribed p? provided that the two inequalities (40) and (41)
hold. By the Schur complement, (40) is equivalent to (32) by

N

E {Z Th1 QTh 1

k=1

N

} < E{ngpxo +p° Y )

k=1

using K; = P,L;. Similarly, (41) is equivalent to (33). This

completes the proof. ]

V1. OPTIMAL Fuzzy KALMAN FILTER UNDER GAUSSIAN
ASSUMPTION

Due to the random coefficients in the stochastic nonlinear
system (11), taking the conditional expectation E {-|Y}} to both
sides of (11) leads to

E{wp1|Ye}
E{yr+1|Y}

where the random terms wuy, Ax, Br and C) are available
given the measurement data set Y. We can find that from
the conditional expectation point of view, the state estimation
problem of the considered stochastic T-S fuzzy model can be
viewed as the state estimation problem of time-varying linear
systems.

Lemma 7: For the stochastic system (11) under assumptions

(A1)-(A4), both z; and { Th+1

. Yk+1
g|Ven Yk = {y()u Y1,

) yk}
Proof: By assumption (A4) and the smoothing property

of the conditional mean, we get

E {eiATro+i;Lng |y0}

E { (eu%o) E {emTwOWo, yo} \yo}
E {ei”Two} E {ei’\T“ |yo}

1 1
exp (i/\Ti“o — 5/\T20/\ — §uTRwu)

ALE {$k|Yk} + Bpuy a.s.
CkE{CL'k+1‘Yk} a.s.

are conditionally Gaussian

that | *°

Wo
with finite condiLonaI mean and covariance. Then, from the
stochastic system equation (11), we can find that

]

It follows is conditionally Gaussian given 1y

o AQ 1 + AAO 0 Zo
B COAO CO COAAO 0 Wo
n 0 0 n 0 0 o
ACOAO ACO ACOAAQ 0 wo
BQUQ 0 0
t (|: C()B()UQ :| t [ ACOB()UO :l T l: I :|U1>
AQ I Bouo
Note that Cody C and Co Botg are
Fo—measurable. By the definitions in (12), we have

L L
AAy = Z h; (ZO) FAiQi<O) and ACy = Z h; (ZO) FciQi(l)
=1 =1

Z1

so that by Lemma 3, both and z( are conditionally

1
Gaussian given yo and the conditional means and conditional
covariances are finite a.s. By induction, assume that given

Yi_1, both zx_; and Zj’“

k
a.s. finite conditional means and conditional covariances. By
Lemma 5, given Y, x is conditionally Gaussian with a.s.

are conditionally Gaussian with



finite conditional mean and conditionally covariance. Also note
that wy, is independent of {xs, ys}s<x. Since the conditional
characteristic function

E {ei)\Txk+inwk|Yk}
= F {E {eMT"”"ewTw’“|xk, Yk} \Yk}
= B{(M) B (e Vi) i}
= gl By )
= exp (i)\Ti:k — %)\TE;C/\ — %,U/TRM/,L)

T

is Gaussian, is conditionally Gaussian with a.s. finite

conditional meankand conditional variance given Yj. In par-
ticular, given Yy, x, is conditionally Gaussian with a.s. finite
conditional mean and conditional covariance.

Finally, with the system equation (8), we have

B3
Yk+1

A + AAg
[ CrAy + CLAAL + ACLAL + ACLAA,

I Tk
Cy + ACk Wi

n By
CyBruy + AC, Bruy, + 41

Similarly, by Lemma 3, we can conclude that given Y}, both

Tp41

x;, and are conditionally Gaussian with a.s. finite

conditional ]r€n+elans and conditional covariance. By induction,
the proof is complete. [ |

With the above lemma, the optimal Kalman filter algorithm
is constructed in the follow theorem.

Theorem 4: For the stochastic fuzzy system in (11) with
assumptions (A1)-(A4), the state z;, is conditionally Gaussian
given Yz = [yo, 1, - , yx], with conditional mean Z; and con-
ditional covariance Xy, = (z — E (x| Yx)) (zx — E (zx|Y2))"
as follows

Try1 = Aplr + Brug + Ky (Ypg1 — CrArZr — CrpBrug,)
(45)

Yit1 = R — KiCr Ry, (46)

with initial values &y and X, where the time-varying filter gain
K}, is given by

Ky = ReCL(ChRiC + Ry + Ay) ™ (47)
and

Ry = ASpAL +9, 4+ R, (48)

L
U, = o° Z h? (z) Ta, (Sk + &xdf )T, (49)

i=1

L
A = 0> B2 (z) Do, ETE, (50)

i1
Exr = Ry + (Ap@k + Byug)(Arde + Brur)”  (51)

The related one-step ahead prediction 24 2 E{rp1|Ye}
is

jk+1|k = Akik + Brug (52)

and the prediction error covariance matrix
E{(wxs1 — E{wera|Ve}) (o1 — E{wen Vi)' Vi) s
equal to Ry.

Proof: Using Lemma 5, by identifying z with Y}, y with
Yr+1, and x with 41 in Lemma 7, we obtain

E{xi1|Ye, yet1}
= E{zr1|Yisa}
= Ef{zin|Vi} + 2020 L (e — E{yen[Va)) as.

(53)
where
ny|z = E{(:L'k+1 - FE (xk+1‘yk))
<@ — B e [¥i) Vi) (64)
Yiyy|z E{(yr+1 — E (Yr+1/Ye))
< (s = B (e [¥i) Vi (69)

Note that from the stochastic fuzzy system in (11), we have

Bz Y} =
E{ypt1|Yr} =

ALE {$k|Yk} + Bruy a.s.
CpE {xk-&-l‘Yk} a.s.

(56)
(7)
Before we compute >, . and X, it is helpful to derive an

expression for R, = X,,.. By the stochastic fuzzy system in
(11), we have

By,
= E {(fﬂkﬂ — E{zp1|Vi}) (g1 — E{zpa[Vi})” |Yk}
= F {[Ak (;I}k —F ($k|Yk)) + AApx + wk]
X [Ak (ka - F ($k|Yk)) + AAgxy, + wk]T |Yk}
= 4B {(w — B (axYi)) (ax — E (] Vi)) " Vi } AT
L
+ Z h? (Zk) FA,iOQE {J}kmgufk} in + R,

=1

= AR AL 4+ 0+ R,

where W, is defined in (49). Substituting (56) and (57) into
(54), we find that
Ea;y|z
= E{(zr+1 — E{ze1|Ye}) [Ck (k1 — E{@ii1|Ye})
+ACKzEs1 + ki) |Yk}
= E{(zr+1 — E{@ps1|Ye})
X (wr11 — E g V)T CF 1Y}
R,CF

(58)



A similar computation for (55) leads to

b

yylz

= FE{[Ck (k1 — E{xk41|Yi}) + ACkTp41 + Vit1]

X [Ck (@141 — E{xp41|Yi}) + ACkzps1 +vpg1]” Vi)

= CpE{(zk+1 — E{zr11|Yx})
X (Tp1 — F {$k+1|Yk})T |Yk}CkT

+E{ve 104411 Ve } + B{ACkz 127 ACT Y3}

= CkRkCg + R,

L L
+E{D Y hi(z) hy (2) qik + D (k +1)
i=1 j=1
XFCi$k+1$£+1ng|Yk}
= CLR:C{ +R,
L

+o° Z h (zi) Do, E{xr1xy4q | Vi) TG,
i=1

L
= CpRiCY + Ry + 0 7 () Te,Eal'E,
=1

= OpRpCL + R, + Ay

(59)

where Ay is defined in (50). Substituting (58) and (59) into
(53), we obtain the recursive equations for z;, in (45) and (47).
It remains to show (46). By applying (58) and (59) to (6) in

Lemma 5 and noting that X, . = ¥T , we have

ylz
E{(ze41 — E{zr1 [V })

X (zh1 — E{arn [V DT Vi)
= E{(@kr1 — E(@e41]Ye: Yrt1))

Y1 =

X (Tpr1 — B (@r41|Ye, yb+1))" [Yiy Ui}

— +
= Ez:z:|2 - Zmy\zEymzzya:\z

= Ry — RkCE(CkRkC]? + R, + Ak)ilckRk

which verifies (46).

VII. SIMULATION EXAMPLE

In this section, a simulation example is given to confirm the
performance of the proposed fuzzy Kalman filter and fuzzy H.,
filter for the stochastic fuzzy system. Consider the following

stochastic T-S fuzzy system:

Rule 1:
IF yr—1 is F1q and yx_o iS Fo,
THEN
Tht1 = (Al + AA; (k)) T + Biug + wy
Y = (01 + ACy (k))xk + vk
Rule 2:
IF yrp—1 is F1y and yi_o is Fho,
THEN
Tht1 = (A2 =+ AAQ (/{Z)) T + Boup + wy,
Y = (CQ + ACy (k‘))l‘k + Uk
Rule 3:

IF yrp—1 is F1y and yi_o is Fys,

THEN
Tpr1 = (Asz+ AAs (k) z + Baug + wy
Y = (03 + ACs (k))xk + v
Rule 4:
IF yp—1 is Fio and yy_o is Fyy,
THEN
Tht1 = (A4 + AA, (k‘)) T + Bauy + wy,
Y = (04 + ACy (k))a:k + v
Rule 5:
IF Yk—1 is Fio and Yk—2 is FQQ,
THEN
Tpr1 = (As+ AAs (k) xg + Byug + wg
Y = (C5 + ACs (k‘))xk + vk
Rule 6:
IF yp—1 is Fio and yg_o is Fpg,
THEN
Tht1 (A6 + AAg (k) zx + Bouk + wy,
ye = (Cs+ ACs (k))z + vk
Rule 7:
IF yp—1 is Fiz and yy_o is Fyy,
THEN
Tht1 = (A7 + AA; (k‘)) T + Brug + wy,
Y = (07 + AC, (/ﬂ))ﬂ:k + V.
Rule 8:
IF Yk—1 is Fis and Yk—2 is FQQ,
THEN
Tpr1 = (As+ AAg(k))zy + Bgug + wy
Y = (Cg + ACs (k))xk + v
Rule 9:
IF yp—1 is Fiz and yy_o is Fpg,
THEN
Tpt1 = (Ag =+ AAg (k)) T + Bouy + wy,
ye = (Cox+ ACy (k))r + vk
The related matrices in the above fuzzy system are
as follows:
[ 0.5 0.3 ] [ 04 0.7 ]
A= | 0.01 06 | 4y = | 0.02 05 |
03 04 0.2 0.3
Az = | 0.03 05 | Ay = | 0.04 06 |
0.1 0.3 0.15 0.3
As = | 001 05 | As = | 0.04 06 |
0.25 0.3 0.35 0.3
Ar = | 0.03 05 | As = | 0.02 05 |°
0.45 0.3
A = | 0.01 05 |’
B = 2];, By=1 3]; Bs= |
By=| 3]T, B;=|1 ]T, Bs = |
Br=| 1]°, Bs=[2 3], By=]|

defined
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Ci=[1 3], Co=[2 1], C3=[1 217,
=12 3], cs=[2 1], Cs=[2 317,
Cr=11 3], Cs=[1 27, Co=[2 3],
r. - [0.2828 0.1414 ] r [ 01414 0.2828
AT 101414 04243 | A2 =1 02828 0.24243 |’
L, - [ 0.2828 0.28228 I, — [ 0.1414 0.1414
A3 = 01414 0.1414 |0 A1 T | 04243 0.4243
r. - [ 0.4243 0.2828 | r. - [ 0.5657 0.1414
A5 7101414 0.4243 | A6 = 1 0.4243  0.2828
r - [ 0.2828 0.2828 | r. - [ 0.4243 0.1414
A1 =1 0.2828 0.2828 |’ As =1 0.1414  0.4243
r, — [ 0.2828 0.4243 | )

0 0.5657 0.5657 |’
e, = [ 0.0424 0.0283 ], T¢, =[ 0.0141 0.0283 ],
T, = [ 0.0566 0.0283 |, T¢, = 0.0141 0.0354 |,
o, = 0.0212 0.0283 |, T¢, =/ 0.0495 0.0169 |,
e, = [ 0.0141 0.0707 |, Tg, = 0.0198 0.0283 ],
Tc, = | 0.0849 0.0283 |,

The premise variables are chosen as y;_1 as well as y;_o and
the membership functions for these premise variables are given
in Fig. 1.

The input signal is chosen as u(t) = b5sin(¢) , while
noises w;, and vy are zero-mean Gaussian white noise with
Ry, = 025 0 and R, = 0.25, respectively. The white

0 0.25
process ¢;(k) is zero-mean with variance o2 = 0.02. The initial
condition of the sate (k) is given by

28]-[ %]

The initial conditions of all the estimators in the simulation
{ 21(0)

study are all set as
10
Z200) | | O

1) Conventional State Observer Design: For the standard
state observer given in (14), the main work is to solve the LMI
(18) to find the local observer gain matrix L; for the i-th rule of
the fuzzy observer. We set A1 = 0.8, Ay = 0.8, and @ as well
as Qo are both identity matrices. We solve the linear matrix
inequality (18) by using the Matlab LMI Toolbox to obtain the
observer gain matrices as

[ 0.1677 | [10.2594 ] [ 0.1601 |

L= | 0.1610 | La= | 0.1378 | Ls= | 0.1386 |
0.1152 0.0937 0.1062

La= | 0.1660 | Ls = | 0.1341 | Lo = | 0.1658 |
0.1244 0.1420 0.1594

Lr= | 0.1383 | Ls = | 0.1367 Lo = | 0.1350 |

Note that the standard state observer given in (14) is a
prediction-type estimator given by

9
ri1 = Ariy + Bruk + > hi (21) Li (ye — Cr1d1) (60)
1=1
With the same observer gain matrices L;, we can also construct
a filtering-type estimator as follows

Tp41 = Al + Brug

9
+ Z hi (i) Li (ye+1 — CuArtr — CrBrug)
=1

(61)

which is expected to have better estimation performance than
the prediction-type estimator as the additional information v 1
is used.

2) Optimal H,, Filter Design: For the optimal H., filter
design, we solve the LMI’s in (32) and (33). The minimal value
of p is p = 5.9648,

p _ [ 26506  2.0855 p,_ [ 1.6453  —0.4782
171 2.0855 15.8677 27| —04782 1.7285 |’
and the observer gain matrices are
0.1947 0.2861 0.1747
Ly=1 01376 La=1 ¢ 1479 Ls=1 019213
0.1649 0.1008 0.1627
La=1 01356 | 5= o113 | = | 01355
0.1360 0.1589 0.1388
L =1 01170 Ls =1 (1179 Lo =1 00074

Note that the considered optimal H, filter in Section V is of
prediction type. As discussed in the previous section, we can
also construct a filtering-type estimator related to the optimal
H filter.

3) The Optimal Fuzzy Kalman Filter: We shall simulate both
the filtering-type optimal fuzzy Kalman filter in (45)-(50) and
the prediction-type one in (52). The initial condition of the
conditional covariance matrix X is given by

1 0
_ 3
Yo=2x10 X[O 1}

4) Comparison of Estimation Performance: The standard
fuzzy estimator, the optimal H, fuzzy filter, and the optimal
Kalman fuzzy filter of both prediction type and filtering type
will be compared by verifying the standard deviation o, of the
state estimation error by counting 10000 sample points. For
the three estimators of filtering type, estimations of z;(¢) and
xo(t) of the stochastic T-S fuzzy system are shown in Fig. 2
(@) and Fig.3 (a), respectively. The related estimation errors are
shown in Fig. 2(b) and Fig. 3(b). While for the three estimators
of prediction type, estimations of z1(¢) and x(t) are shown
in Fig. 4 and Fig. 5, respectively. The standard deviations of
estimation errors of these estimators are compared in Table I.
In this table, it is shown that all the filtering-type estimators
outperform the prediction-type ones. In the class of filtering-
type estimators, the standard deviation of the estimation error
for the optimal Kalman fuzzy filter is much less than those of
the other two filters. However, the performances of the filtering-
type estimators are very close.

Now we turn to evaluate the robustness of the three esti-
mators. Note that the designs of the standard fuzzy estimator
and the H,, fuzzy optimal estimator are irrelevant to R, and
R,,. Here, the optimal Kalman fuzzy filter will be computed



with the covariance matrices R, and R, given above. However,
in the simulation of the system responses, we use different
settings of these two covariance matrices, including (R,, =
4R,, Ry, = 4Ry), (Ry, = 8Ry, Ry, = 8Ry,), and (R,, =
16R,, Ry, = 16R,). The standard deviations of the state
estimation errors for various state estimators under different
settings are compared in Table Il. It is surprising to find that the
optimal Kalman fuzzy filter derived in (45)-(50) has the most
robust performance with the smallest standard deviation of the
state estimation error, although there are large uncertainties of
the noise covariance matrices in implementing the filter.

VI1Il. CONCLUSION AND DISCUSSION

In this study, the state estimation problem for the stochastic
T-S fuzzy model with state-dependent noise on the system
matrix and the output matrix has been attacked. First, we
have derived sufficient conditions for a class of standard fuzzy
state observer to ensure that the state estimation error is
mean square bounded. The observer gain matrices in the fuzzy
observer can be obtained by solving a linear matrix inequality.
Then, the optimal H,, fuzzy filtering problem is considered
to minimize the worst-case ratio of the power of the state
estimation error to that of the external noises. The optimal H
observer gain matrices can be obtained by solving two linear
matrix inequalities. To further improve estimation performance,
we have studied the optimal Kalman fuzzy filtering problem
with the known statistical information of the process noise
and the measurement noise of the uncertain stochastic T-S
fuzzy model. It is shown that the minimum-variance estimation
for the uncertain stochastic T-S fuzzy model is actually a
linear estimation problem from the viewpoint of conditional
expectation. Actually, The structure of the developed optimal
Kalman fuzzy filter also very resembles that of the conventional
Kalman filter. Comparison of estimation performances of the
developed three estimators is made via simulation study which
verifies the optimal and robust performance of the optimal
Kalman fuzzy filter.
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Kalman Standard Hoo

Filtering Filtering Filtering

ox | 2.9796 9.8979 13.3157

Kalman Standard Hoo

Pred. Pred. Pred.

os | 26.4816 26.6690 26.5136
TABLE |

COMPARISON OF STANDARD DEVIATIONS OF ESTIMATION ERRORS OF THE
THREE ESTIMATOR OF BOTH THE FILTERING TYPE AND THE PREDICTION

TYPE.
Kalman Standard Hoo
Ry /R Filtering Filtering Filtering
Ry, /Rw, | 3.9955 10.6300 13.7755
Roy /[Ru | 45206 11,7857 15.6592
Ry, /Ruw, | 4.9618 13.2356 17.4602
Kalman Standard Hoo
Ry/Ruw Pred. Pred. Pred.
Ry, /Ruw, 28.4393 28.8041 26.5136
Ry /Ruws 31.0104 31.1080 31.1867
Ry;/Ruw 35.3288 35.7794 35.2731
TABLE 11

STANDARD DEVIATIONS OF ESTIMATION ERRORS UNDER DIFFERENT
SETTINGS BY VARYING THE COVARIANCE MATRICES R, AND Ry.
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