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Abstract—A nonlinear stochastic system associated with
archery can be separated into two parts, that is, the
nonlinear part related to the desired aiming adjustment
and the stochastic part associated with the muscle strength
stability. The T-S fuzzy model is then adopted to combine
the several linear aggressive moving average with an ex-
ogenous input (ARMAX) models to represent the nonlinear
part. In other words, the ARMAX is adopted to model the
aiming trajectory recorded during the last 1.5 second be-
fore releasing the arrow. Thus, the important knowledge
base for the T-S fuzzy model is attempted to obtain from
these linear ARMAX models based on each archer for
analyzing his archery performance. Through the statistic
correlation approach, the individual and grouping char-
acteristics are obtained from it. During that 1.5 period, the
desired adjustments of archers without considering their
muscle strength are the main interest in this paper. For
expertise archers, their desired aiming style should not
contain high frequency which is corresponding negative
pole of the model. Therefore, a Hamming window is im-
plemented to remove the high frequency effect resulted
from the muscle strength effect. The direct effect on the
performance has been found and discussed.

Keywords—ARMAX,
Hamming windows

aiming trajectory, correlation,

. INTRODUCTION

Lots of archery researches have been conducted
from different approaches in order to find the key point
for improving their performance of this fine and highly
skilled sport. The most important focus will be the sta-
bility of aiming style, so how to use systematic methods
to evaluate it falls in the direction. A biomechanical
study on the final push-pull archery has been conducted
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by Leroyer et al. [1]. The purpose of their study is to
analyze archery performance among eight archers of
different abilities by means of displacement pull-hand
measurements during the final push-pull of the shoot.
The archers showed an irregular displacement negatively
related to their technical levels. Displacement signal
analysis showed high power levels in both 0-5 Hz and
8-12Hz ranges. The latter peak corresponds to electro-
myographic tremor observed during a prolonged
push-pull effort. The results are discussed in relation to
some potentially helpful training procedures such as
biofeedback and strength conditioning. Landers etal. [2]
have examined novice archers to determine whether (a)
hemispheric asymmetry and heart rate deceleration occur
as a result of learning, and (b) these heart rates and
electroencephalograph (EEG) patterns are related to
archery performance. The electromyography (EMG)
technology which measures the activation patterns in
forearm muscles related to contraction and relaxation
strategy during archery shooting, has been applied by
Ertan et al., [3] to analyze for archers with different
levels of expertise; elite, beginner, and non-archers, re-
spectively. They found that elite archers’ release started
about 100 ms after the fall of the clicker, whereas for
beginners and non-archers, their release started after
about 200 and 300 ms, respectively. How the novice
archers apply the taught training information under dif-
ferent conditions and guided them to promote their motor
skills required for better archery performance have in-
vestigated by Lavisse et al. [4].

The aiming stability is the key factor affects the
archery performance has been indicated by Shiang et al.
[5], and it can be determined by the size of aiming locus.
They further pointed out that the aiming locus pattern is
also a useful index to determine the performance. The
effects of heart variable rate (HVR) related to the stabil-
ity of archer has been measured by C.-T. Lo. [6]. By the
frequency-domain analysis of the HVR and three main
frequency domains, such as very low frequency (VLF),
low frequency (LF), and high frequency (HF). The VLF
component is much less defined and the HF generally
represents parasympathetic activity. The LF is influ-
enced by both sympathetic and parasympathetic activity,
and the ratio of HF to LF represents the balance of para-
sympathetic and sympathetic activity. The results
showed that the HF was higher, the LF was lower, and
the LF/HF ratio was lower for the best performance.



Analysis of correlation between the aiming ad-
justment trajectory and the shot points has been studied
[7] by Lin et al. Aiming trajectory can be modeled as a
nonlinear stochastic system. The desired aiming ad-
justment is modeled as the deterministic but nonlinear
part, and the muscle strength stability is modeled as the
stochastic part. Several linear aggressive moving average
with an exogenous input (ARMAX) models to represent
the nonlinear part via the T-S fuzzy scheme. Thus, the
important knowledge base for the T-S fuzzy model is
needed to obtain from these linear ARMAX models. In
this paper, ARMAX [8] is adopted to model the aiming
trajectory for each shot associated with each archer. We
then define related variables for identifying their role
upon the performance. The direct effect on the per-
formance related to these variables will be analyzed. The
Hamming window is implemented to recovery the de-
sired and anticipated adjustments of archers. Correlation
method is designed to obtain the individual and grouping
characteristics.

Notations:

TR: the radius distance of the arrow from target center.
X: the horizontal direction.

Y: the vertical direction.

ay, ay: the coefficients of AR part of ARMAX model.
bx, by: the exogenous inputs along both directions.

|bx], |bx|: the absolute value of the exogenous inputs.
Px1, Py1: the first dominate real pole of ARMAX model.
Px2r, Py2r: the real part of complex pair pole or the
second dominate real pole.

Px_1, Py_1: the pole is 1.

Rx1, Ry1: the corresponding residue of Px1 and Py1.
Rx2, Ry2: the corresponding residue of Px2 and Py2.
Rx2r, Ry2r: the real parts of Rx2 and Ry2.

Rx2a, Ry2a: the absolute values of Rx2 and Ry2.

Rx_1, Ry_1: the residue of Px_1 and Py_1.

Ux1: the combined effect of Px1 and Rx1.

Uy1: the combined effect of Pyl and Ry1.

Ux2: the real part of combined effect of Px2 and Rx2.
Uyz2: the real part of combined effect of Py2 and Ry2.
Ux_1: the combined effect of Px_1 and Rx_1 (the same
as Rx_1).

Uy_1: the combined effect of Py_1 and Ry _1 (the same
asRy_1).

Ux, Uy: the total effect of exogenous inputs bx and by.
UR: UR =JUx? +Uy?

T-x, T-y: the settling time of Ux and Uy, respectively.
T-d: | T-x - T-y| the absolute value of difference between
settling times of T-x and T-y.

Ax, Ay: the phase angle of Px2 and Py2, respectively.
C(v1,v2): the correlation between variables v1 and v2
based on individual archer.

CG(v1,v2): the correlation between TR and C(v1,v2)
based on twelve archers (global sense).

CGA(v1,v2): the correlation between TR and |C(v1,v2)|
based on twelve archers (global sense).

Il. METHODS

The exerted force related to the intended and de-
sired adjustment to compensate the existing offset (the
exogenous part) is modeled as the AR part of the
ARMAX. It notes that a negative pole existing at the AR
part is corresponding to the high frequency oscillation,
so it is not belonged to the desired and intended adjust-
ment. This high frequency oscillation is reasonable to be
modeled as the stability of muscle strength. The original
recorded data processed by the proposed ARMAX
model do obtain the undesired negative pole in the AR
part, even though the pole is very close to -1. Therefore,
the most common Hamming window is applied to
separate the high frequency oscillation (the effect of
muscle strength stability) from the AR part which is de-
signed the desired adjustments.

The exogenous part of the ARMAX can be used to
describe the main adjustment of the aiming trajectory to
compensate the offset between the aiming point and the
center of the target. For example, the current aiming
point is located at the left of the center of the target, and
archers usually will exert a steady force to move the bow
right forward the center of the target. This steady con-
stant force is then modeled as a constant bx. Because of
the setting of this model, the right forward constant force
is represented by a positive constant. Similarly, the con-
stant by is designated for the vertical direction case.

The MA part of the ARMAX is utilized to model
the muscle strength of archers. These three coefficients
are related to two zeros of the transfer function. Likewise
the stability analysis based on them may have connection
with the poles of AR part. The mean and variance of the
driving noise can indicate the accuracy and fairness of
the proposed ARMAX model.

The original aiming trajectory, the smoothing tra-
jectory by the Hamming window, and the estimated tra-
jectory from the previous one are depicted in Fig. 1 for
comparison. It is obvious that the muscle strength sta-
bility can be separated as the stochastic part, and the
ARMAX with order 3 can model the smoothing trajec-
tory well. We now denote the desired aiming trajectories
along both directions as Ux and Uy. They are related to
the poles of the system and the associated residue, and in
the z-domain can be written as

Ux(z) = 3 Z3b;
(Z—l)(Z —a,Z _axzz_axii) (1)
{ Rx_ 1 R« Rx2 Rx3 }
=z + + +
(z-1) (z-Px1) (z-Px2) (z-Px3)
(@)= (z-1)(z° —aZ zbzy—a z-a,)
yl y2 y3 (2)

Ry 1 Ryl Ry2 Ry3
=1z + + +
(z-1) (z-Pyl)) (z-Py2) (z-Py3)

The intended horizontal and vertical adjustments of
the exerting force Ux(k) and Uy(k) in the time series,




relating to the offset bx, by, and the AR part of the
ARMAX are written as

Ux(k) = Rx_1+ Rx1(Px1)* + Rx2(Px2)* + Rx3(Px3)"
=Ux_1(k) +Ux1(k) + Ux2(k) + Ux3(k) 3)
Uy(k) = Ry _1+Ryl(Pyl) + Ry2(Py2)" + Ry3(Py3)"
=Uy _1(k) +Uyl(k) +Uy2(k) + Uy3(k) 4)

Their initial values (k=0) are as the same as their
associated residue, and their final values (k=90) are de-
fined as Ux_1=Rx_1, Uxl=Ux1(90), Ux2=Ux2(90),
Ux3=Ux3(90), Uy_1=Ry_1, Uyl=Uy1(90), Uy2=Uy2(90),
and uy3=Uy3(90) for comparing their role playing in the
aiming trajectory time series.

The intended horizontal and vertical adjustments of
the exerting force along both directions Ux(k) and Uy(k)
have been defined, and their initial values and the final
values are also evaluated for comparison. Now the
physical meanings of them are illustrated by the graph.
Three components of the Ux(k), in which the dominate
exponential type of adjustment Ux1(k), the oscillation
type with exponential decay envelope adjustment
Ux2(k)+Ux3(k) and the constant type Ux_1 are depicted
in Fig. 2, respectively. Similarly, those components of
the Uy(k), Uy2(k)+Uy3(k) and Uy_1 are also shown in
Fig. 3. Moreover, the initial values of Ux2(k)+Ux3(K) is
equal to Rx2+Rx3, and in case of the complex pair of Px2
and Px3, we have Rx2+Rx3 =2Rx2r, which is most
common in this experiment. The final values of
Ux1=Ux1(90), Ux2+Ux3=Ux2(90)+Ux3(90) can be
checked at the last points of the graph Fig. 2. The settling
time T-x=m is defined that the five consecutive time in-
stances in which |Ux(k)- mean(Ux(86~90)) |<0.05*
mean(Ux(86~90)), for k=m, m+1, ..., m=4. Accordingly,
the longest settling time m=85. The same definition is
also applied for T-y, so the absolute value of difference
between these two settling times is then formulated as
| T-x - T-y|. The settling time T-x of Fig. 2 is m=84 be-
cause the dominate pole Px1=0.999 is too close to 1. The
settling time T-y of Fig. 3 is m=69 which is also domi-
nated by the Py1=0.965. Usually, the settling time can be
dominated by the complex pole pair with a slow expo-
nential decay envelope, that is, the combined effect of the
real part of Px2 (Px2r), its initial value Rx2+Rx3 =2Rx2r
and Rx_1. Sometimes, the oscillation frequency also
plays an important role in the settling time T-X, so the
oscillation frequency (27/7) is the same as the phase
angle of the complex pole pair, so they are defined as
follows:

Ax=tan (imagnary(Px2)/ Px2r) )

Ay=tan™(imagnary(Py2)/ Py2r)

The oscillation frequency Ax=0.608 = 27/10.334 with
the period T=10.33 and Ay=0.422=27r/14.889 with the
period T= 14.889 can be observed from Figs. 2 and 3.

I11. RESULTS AND DISCUSSION

We note that the variable TR is the most important
variable which is directly related to the performance of
archers. The sorting method according to the value TR
based on twelve shots of each archer is conducted, and
the first shot is corresponding to the best shot for indi-
viduals. Then the mean of TR of twelve shots of indi-
vidual archer is calculated as the criterion for categorized
these twelve archers, similarly, the archer 1 is the archer
with the best performance with the smallest mean of TR.
Because the ARMAX model is adopted to model the
aiming trajectory associated with each shot and each
archer, the essential variables and their physical mean-
ings related to this model are defined and illustrated in
previous section.

In this paper, the main objective is to find the cru-
cial effects which are suitable for describing the per-
formance of archers, and to propose some conceivable
suggestions for each archer based on group sense or
global sense. According to the individual affiliated cor-
relation and its mean of TR, the correlation approach is
managed to repeat again to obtain the group or global
senses and defined as CG(v1,v2). The results are listed in
the lower triangle of Table 1. Since the range of C(v1,v2)
is form -1 to 1. If both positive and negative C(v1,v2)
have the same effect relative to the key variable TR, then
the effect will become unclear by utilizing the CG(v1,v2)
approach alone. In order to recover this missing effect,
the absolute value of C(v1,v2) relative to the variable TR
is defined as CGA(v1,v2). The results of CGA(v1,v2) are
also shown in the upper triangle of Table 1. For con-
venience the threshold 0.45 for correlation coefficients
CG and CGA is applied to screen out the strong rela-
tionship for further analysis.

Base on the associated correlations CG and CGA,
we design an inference algorithm to classify them into
several groups. The inference basically is derived from
the sufficient condition and necessary condition. Due to
the interval of the correlation [-1,1], if the mean of cor-
relation( C ) is greater than zero, then the positive cor-
relation (PC) becomes the sufficient condition and the
negative correlation (NC) is the necessary condition.
Similarly, for the CGA case the absolute value of C is
needed to implement to result in new interval [0,1], in
which the zero is corresponding to low correlation (LC)
and the value 1 is associated with high correlation (HC).
Since CG and CGA are conducted with TR, the larger and
positive CG indicates that the good performance (GP) is
related to the more negative correlation, in other words
the bad performance (BP) is relative to the more positive
correlation. If the mean of correlation is greater than zero,
we can say that if the correlation is positive (PC) then the
corresponding performance is good (GP). Thus we use
the abbreviation PCGP to represent the above inference
that is equivalent to the abbreviation BPNC.

In case of |CG| = |CGA|, they are four possible cases
as outline in the Fig. 4-1. The first case is CGA>0 and
CG>0 indicates that the original correlation C is distrib-



uted inside the interval [0 1], the mean of C is greater
than zero, by following the previous inference we can
obtain the positive correlation as the dominate sufficient
condition which infers PCBP and the equivalent GPLC.
The second case (CGA>0, CG<0) and third case
(CGA<0, GA>0) have the same interval [-1 0] which is
different from the first case and the fourth case (CGA<O,
GA<Q). Thereafter, the mean of correlation associated
with the second and third cases is less than zero, so we
can deduce NCBP (GPLC) for the second case and the
deduction NCGP (BPLC) for the third case.

The performance is directly related to the variable
TR, so in this section we focus on this particular one. We
start with the horizontal axis in which three significant
correlations CG or CGA associated with variable Ux1,
Px1, and Ux exist. The last two variables with positive
correlations CGA suggest that for the better archer these
two variables should have little effect on the perform-
ance. For the first variable Ux, related to the Px1 and Rx1,
we have a negative CG=C(C(TR,Ux1),TR) value indi-
cates that the better performance have a positive
C(TR,Ux1). The positive C(TR,Ux1) can be further ex-
plained that the better performance is, the smaller value
Ux1 is.

For the vertical case, there is only one significant
CGA(0.52) with the variable by, so it suggests that the
lower correlation C(by, TR) is good for better perform-
ance. The variable by is related to the vertical offset at the
1.5 second instance, so this deduction is reasonable. The
good performance of archers should have very consistent
adjustments along the vertical direction regardless of the
vertical offset. Another three variables Py1(CG=-0.89),
Ay(CG=-0.69), and T-y(CG=-0.56) all have negative
correlations, so they all indicate that the better per-
formance is connected with positive correlations C(TR,
Pyl), C(TR, Ay) and C(TR, T-y).

The most significant one is related to Pyl which is
the dominate pole along the vertical direction, its positive
correlation implies that the better performance is asso-
ciated with the smaller value of pole, in which the expo-
nential decay is fast. This implication is conceivable.
Variable Ay is defined as the phase angle of the complex
pair Py2 and Py3, and it is also corresponding to the os-
cillation frequency of the desired adjustment. So the
positive C(TR, Ay) have the physical meaning that the
slower oscillation adjustment frequency along the ver-
tical direction can result in better performance. The fast
decay of the dominate pole and the slower oscillation
adjustment frequency can always result in a fast settling
time, so it is confirmed with a positive C(TR, T-y). Be-
cause the smaller radius (better performance) and the fast
settling time have a positive relationship. The large T-d
(CG=0.78) time difference can be easily resulted form
the fast settling time T-y along the vertical direction, so
this deduction can double confirmed by positive C(TR,
Pyl), C(TR, Ay) and C(TR, T-y).

The last significant variable Ry2a (CG=0.76) indi-
cates that the negative correlation C(TR, Ry2a) in which
the better performance can be achieved by larger Ry2a.

This variable is a function of many variables, so it is not
easy to explain its effect straight forward. In this section,
the direct effect on the performance has been elaborately
discussed their physical meanings and their relationship
connected to each other.

IVV. CONCLUSIONS

The most popular aggressive moving average with
an exogenous input (ARMAX) has been adopted and
tried to model the aiming trajectories of the twelve
archers. It is noted that the recorded trajectories have
been processed to represent the last 1.5 second before
releasing the arrow. Variables defined from the model
are utilized to identify their roles affecting the perform-
ance in direct or indirect way through the individual and
global statistic correlation approaches. Based on the sig-
nificant results, some conceivable checking points are
suggested for archers to improve their performance. The
desired adjustments of archers without affecting by the
stability of muscle strength are the main target in this
paper. The desired aiming style of expertise should not
be a high frequency adjustment. The Hamming window
can smooth out the muscle strength effect to obtain their
desired one.

A simple inference based on the sufficient and
necessary conditions principle has been proposed to link
these variables and the performance. Variables have the
most important direct effect on the performance have
been analyzed as much as possible. Variable Ux, related
to the Px1 and Rx1, has a negative CG value indicates
that the better performance have a positive C(TR,Ux1).
The positive C(TR,Ux1) further suggests that the better
performance is relative to the smaller value Ux1.

For the vertical case, there is only one significant
CGA(0.52) with the variable by, so it suggests that the
lower correlation C(by, TR) is good for better perform-
ance. Archers with good performance are supposed to
have very consistent adjustments along the vertical di-
rection regardless of the vertical offset. The dominate
pole Pyl has positive correlation with TR implies that the
better performance is associated with the smaller value of
pole or fast exponential decay. We have deduced that the
slower oscillation adjustment frequency Ay is directly
related to better performance. The fast decay of the
dominate pole and the slower oscillation adjustment
frequency are also linked to a fast settling time T-y.
Moreover, the large T-d (CG=0.78) time difference can
be easily resulted form the fast settling time T-y, so this
deduction can double confirmed by positive C(TR, Py1),
C(TR, Ay) and C(TR, T-y).
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Figure 1: Comparison among the original aiming tra-

jectory, trajectory smoothing by the Hamming window

and the estimated trajectory
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Figure 2: Three components of the intended adjustment
Ux along the horizontal direction.
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Figure 3 Three components of the intended adjustment
Uy along the vertical direction.
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Figure 4-1: Performance Inference Procedure 1
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Us_L {.48] 048 0.52] 0.52 .56] 0.68] 0.63 0.52] 048 0.55) 058 045

Ux 0.49 (46| Q.46 046 049 045

Uyl -0.48) 047 046/ -0.46 045 4.57] -0.61 .57

UvZ 0.50] -0.46 0.57] 0.57

W3 0.50) -0.46 0.57] 0.57

Uy | 0.57 052 052 049

Uy 043 061] 061 .45 445

UR .46 .56 049] 951

Td 0.78 0.64] .64 -0.50 .50




