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一、 中文摘要

在此研究中, 我門已完成隨機 T-S 模糊 ARMAX 模式之適

應最小變異量控制。 對於一個隨機 T-S 模糊 ARMAX 模式, 首

先我們推導其最佳向前一步的預估模式; 基於此預估模式, 我們

使用隨機梯度方法來估測其中之參數。 接著於採用之直接適應

控制結構下, 我們推導其適應控制律, 使得針對一個參考模式的

輸出追蹤誤差的變異量能夠最小化。 我們推導此適應控制系統

的穩定度及其性能分析, 同時藉由模擬研究已驗證所推導之理論。

關鍵詞: 模糊適應控制、 隨機T-S 模糊 ARMAX 模式

Abstract

Adaptive minimum variance control for stochastic T-S fuzzy
ARMAX model is addressed in this study. From the fuzzy
ARMAX model, a fuzzy one-step ahead prediction model is first
introduced. A stochastic gradient algorithm is then proposed to
identify the parameters of the related one-step-ahead predictor.
Under the direct adaptive control scheme, minimum variance
control is applied to find the control law to make the output
track a desired reference signal. Stability and performance of the
adaptive stochastic fuzzy control system are rigorously derived.
Simulation study is also made to verify the developed results.

Keywords: Fuzzy adaptive control, Stochastic T-S fuzzy AR-
MAX model

二、 緣由與目的

Recently, based on the Takagi-Sugeno model, fuzzy modeling
for nonlinear dynamic systems and identification problem are
discussed in [1]-[3]. Meanwhile, fuzzy control scheme has been
employed for tracking control of nonlinear systems based on
the adaptive feedback linearization techniques [4]-[8]. In the
previously mentioned literature, the external disturbances or
noises are considered to be deterministic for the convenience
of control design. However, in many practical applications
[9][10], external noises are inevitable and are more adequately
described by random processes. In this situation, the systems
to be controlled are always modeled by stochastic systems. A

nonlinear stochastic system can be approximated by a fuzzy
stochastic system [11]-[16]. However, it is more difficult to
design a control law to achieve the optimal tracking of fuzzy
stochastic systems because the membership functions of the
fuzzy stochastic system are also functions of the random
premise variables. This will make the identification problem
and the control design of the stochastic fuzzy systems more
difficult and complicated.

Up to date, the stochastic fuzzy modeling and adaptive con-
trol issues are seldom addressed in the literature. A stochastic
adaptive control scheme for the state-space T-S fuzzy model
based on the LQG control theory is proposed in [17]. Non-
adaptive LQG fuzzy controllers are also considered in [11] and
[12]. On the other hand, the NARMAX (nonlinear ARMAX)
model has been presented for modeling nonlinear processes.
The NARMAX model can be reduced to a quasi-ARMAX
system by linearization or approximation. Fuzzy system iden-
tification and nonlinear model predictive control based on the
quasi-ARMAX model are discussed in [13][14][15]. Besides
the quasi-ARMAX model, the fuzzy ARMAX model has been
used to forecast the short-term load of a power system in [16].
However, these algorithms proposed by the above mentioned
literature are given without vigorous proofs.

Adaptive minimum variance control for stochastic T-S fuzzy
ARMAX model will be addressed in this study. From the fuzzy
ARMAX model, a fuzzy one-step ahead prediction model will
be first introduced. A stochastic gradient algorithm will then
be proposed to identify the parameters of the related one-
step-ahead predictor. Under the direct adaptive control scheme,
minimum variance control will be applied to find the control
law to make the output track a desired reference signal. Stability
and performance of the adaptive stochastic fuzzy control system
will be rigorously derived.

The remainder of this study is organized as follows. System
description and problem formulation for the identification of
the fuzzy ARMAX model are described in Section 3.1. General
stochastic stability results of the T-S fuzzy model are attacked
in Section 3.2. Then the one-step ahead predictor for the fuzzy
ARMAX model is introduced in Section 3.3. Based on the



developed predictor, a stochastic gradient algorithm, together
with the parameter convergence properties, for identifying the
parameters of the optimal one-step ahead predictor are given
in Section 3.4. Adaptive minimum variance control design is
discussed in Section 3.5. Stability and tracking performance of
the adaptive minimum variance fuzzy control system are proved
in Section 3.6. Simulation study is discussed in Section 3.7.
Conclusions and discussions are given in Section ??.

Notations and Definitions

Let ‖x‖ be the Euclidean norm of a vector x. Let A(q−1) be

a polynomial with A(q−1) =
n∑

i=0

aiq
−i. The companion matrix

ΞA associated with the polynomial A(q−1) is defined as

ΞA =
[

0(n−1)×1 In−1

−an −an−1 · · · −a1

]
三、 研究方法及成果

A. System modeling and problem formulation

The i-th rule of the considered stochastic fuzzy T-S ARMAX
model is given by:

Plant Rule i:

If
z1(k) is Fi1 and z2(k) is Fi2

and · · · · · · and zg0(k) is Fig0

Then
Ai(q−1)y(k + 1)
= Bi(q−1)u(k) + Ci(q−1)w(k + 1)

(1)

for i = 1, 2, ..., L, where Fij is the fuzzy set, z1(k), z2(k),
· · · , zg0

(k) are the premise variables, and L is the number of
if-then rules. Polynomials Ai(q−1), Bi(q−1), and Ci(q−1) are
defined, respectively, as follows

Ai(q−1) = ai0 + ai1q
−1 + ...... + ainq−n, ai0 = 1

Bi(q−1) = bi0 + bi1q
−1 + ...... + bimq−m,

Ci(q−1) = ci0 + ci1q
−1 + ci2q

−2 + ...... + cilq
−l, ci0 = 1

(2)
for i = 1, 2, ..., L, where q−1 denotes the delay operator, i.e.,
q−1y(k) = y(k − 1). Without loss of generality, Ci(q−1) can
be taken to have roots inside the unit circle [9][10]. y(k) is
the output measurement, u(k) the control input, and the noise
process w(k) will be taken to satisfy the following assumptions
[9][10]:

E[w(k + 1)| zk] = 0, a. s. (3)

E[w2(k + 1)| zk] = σ2
w, a. s. (4)

lim sup
N→∞

1
N

N∑
k=1

w2(k) ≤ Kw < ∞, a. s. (5)

where E denotes the expectation, zk denotes the sub-σ alge-
bra generated from the data set {y(s)}s≤k. Note that zk is
increasing, i.e., zk ⊂ zk+1. We shall demand that u(k) is
zk−measurable. For the premise variables zi(k), 1 ≤ i ≤ g0,
we assume that they are zk−measurable, i.e., zi(k) depends
on the data set {y(s), u(s)}s≤k. Using the smoothing property
of the conditional mean [18], conditions (3) and (4) imply that

w(k) is also a white process with zero mean and variance σ2
w.

Note that condition (5) implies

1
N

N∑
k=1

w2(k) ≤ Kw, a.s., for N ≥ Nw (6)

where Nw is a sufficiently large integer.
Given the input/output sequences {u(k)} and {y(k)}, the

stochastic fuzzy system (1) is equivalent to

y(k + 1) =
L∑

i=1

hi(z(k)){(1 − Ai(q−1))y(k + 1)

+ Bi(q−1)u(k) + Ci(q−1)w(k + 1)} (7)

where z(k) = [z1(k) z2(k) ... zg0(k)] and, for 1 ≤ i ≤ L,

µi(z(k)) =
g0∏

j=1

Fij(zj(k)) (8)

hi(z(k)) =
µi(z(k))∑L
i=1 µi(z(k))

(9)

where the function Fij(zj(k)) is the grade of membership of
zj(k) in Fij . For (8) and (9), we assume that

hi(z(k)) ≥ 0 ,
L∑

i=1

hi(z(k)) = 1 (10)

The physical meaning of (7) is that the L local linear stochas-
tic subsystems are interpolated by the fuzzy basis functions
hi(z(k)), for i = 1, 2, . . . , L.

In the sequel, we shall first attack the identification problem
for estimating the parameters of the optimal predictor related to
the fuzzy ARMAX model (1). After obtaining the estimates of
the parameters, the design objective is to determine the adaptive
control input u(k), as a function of {y(s), u(s − 1)}s≤k, to
minimize the mean square error [10]

J1(k + 1) = E{[y(k + 1) − y∗(k + 1)]2|zk} (11)

between the the output y(k + 1) and the bounded reference
signal y∗(k + 1).

B. Stability of Stochastic T-S Fuzzy Systems

In order to deal with the adaptive control problem of the
stochastic T-S fuzzy ARMAX model, the stability issue of the
stochastic fuzzy system must be addressed first. Since the fuzzy
ARMAX model, such as in (7), can be transformed into a state-
space stochastic fuzzy model and stability is easier to discuss
from the state-space perspective, we consider a forced T-S fuzzy
system in the state-space form as follows

x(k + 1) = [A(k)x(k) + B(k)us(k)]
ys(k) = [C(k)x(k) + D(k)us(k)] (12)

where the sequences
{
‖A(k)‖2

}
,

{
‖B(k)‖2

}
,

{
‖C(k)‖2

}
,

and
{
‖D(k)‖2

}
are uniformly bounded. It is also assumed that

A(k), B(k), C(k), and D(k) are all zk−measurable.
Theorem 1: If there exists a sequence of symmetric positive

definite matrices {P (k)} with 0 < λmin
P I ≤ P (k) ≤ λmax

P I <



∞ and P (k) being zk−measurable such that the matrix in-
equality

λP (k) − AT (k)E {P (k + 1)|zk}A(k) > 0, ∀k (13)

holds for some λ with 0 < λ < 1, then the stochastic fuzzy
system

x(k + 1) = A(k)x(k) (14)

is exponentially stable in the sense that

‖x(k)‖ ≤ c1(
√

λ)k−k0 ‖x(k0)‖ , k ≥ K1, a.s. (15)

for some positive almost surely bounded random variable c1 >
0 and a sufficiently large integer K1.

Proof: For the convenience of review process, the proof is
given in Appendix A.

Corollary 1: With the same condition given in Theorem 1,
the transition matrix Φ(k + 1, k0), defined as

Φ(k + 1, k0) , A(k)A(k − 1) · · ·A(k0) (16)

with Φ(k, k) , I , has an upper bound of the induced norm of
Φ(k, k0) in the almost sure sense as

‖Φ(k, k0)‖ ≤ c2(
√

λ)k−k0 , k ≥ K1, a.s. (17)

for some positive almost surly bounded random variable c2 and
a sufficiently large integer K1.

With the help of the above theorem, we can obtain the
main stability result for further analysis of global stability and
tracking performance of the proposed adaptive fuzzy minimum
variance control system.

Theorem 2: For the stochastic system in (12), there exists
a sequence of symmetric positive definite matrices {P (k)}
with 0 < λmin

P I ≤ P (k) ≤ λmax
P I < ∞ and P (k) being

zk−measurable such that the matrix inequality (13) hold for
some λ with 0 < λ < 1, then we have, for N ≥ K1,

1
N

N∑
k=1

‖ys(k)‖2 ≤ K2

N

N∑
k=1

‖us(k)‖2 +
K3

N
, a. s. (18)

where K1 is a sufficiently large number, 0 < K2 < ∞, and
0 ≤ K3 < ∞.

Proof: The proof is given in Appendix B.

C. Optimal predictor of stochastic fuzzy systems

In this section, the prediction problem of the fuzzy ARMAX
model in (7) will be discussed. This will result in a fuzzy predic-
tor model which will be suitable for parameter estimation and
direct adaptive tracking control design for the fuzzy ARMAX
model. The optimal fuzzy predictor for the fuzzy ARMAX
model has been studied in our previous study [19]. Some related
results in that reference are briefly summarized in the following.

Assumption 1: Let ΞC,i be the companion matrix associated
with the polynomial Ci(q−1). Assume that there exist symmet-
ric positive matrices PC,i, 1 ≤ i ≤ L, such that the set of
matrix inequalities[

λCPC,i ΞT
C,iPC,j

PC,jΞC,i PC,j

]
> 0, 1 ≤ i, j ≤ L (19)

is solvable for some λC with 0 < λC < 1.

Let y0(k + 1|k) denote the conditional mean of y(k + 1)
given the data set {u(s), y(s)}s≤k, i.e., y0(k + 1| k) ,
E {y(k + 1)| zk} . Define the polynomial αi(q−1), 1 ≤ i ≤ L,
as

Ci(q−1) − Ai(q−1) = q−1αi(q−1) (20)

where

αi(q−1) = αi0 + αi1q
−1 + · · · + q−(n−1), n = max(n, l)

Under Assumption 1 on the fuzzy ARMAX model (7), the
optimal one-step ahead predictor of y(k +1) given the data set
{u(s), y(s)}s≤k is y0(k + 1| k) which satisfies the following
equation

y0(k + 1|k) =
L∑

i=1

hi(z(k)){
[
1 − Ci(q−1)

]
y0(k + 1|k)

+ αi(q−1)y(k) + Bi(q−1)u(k)} (21)

with the prediction error

y(k + 1) − y0(k + 1|k) = w(k + 1) (22)

Equation (21) defines a unique fuzzy prediction model corre-
sponding to the fuzzy ARMAX model (7).

D. Stochastic Gradient Algorithm

Following from the fuzzy prediction model represented by
(21), the stochastic gradient algorithm in [10] will be used to
identify the parameters. First, rearrange the prediction model
(21) as follows

y0(k + 1|k) =
L∑

i=1

hi(z(k))χT
0 (k)θi0 = φT

0 (k)θ0 (23)

where

χ0(k) =
[
−y0(k|k − 1) · · · − y0(k − l + 1|k − l)

y(k) · · · y(k − n + 1) u(k) · · ·u(k − m)]T

θi0 =
[
ci1 · · · cil αi0 · · ·αi(n−1) bi0 · · · bim

]T
, 1 ≤ i ≤ L

φ0(k) =
[
h1(z(k))χT

0 (k) h2(z(k))χT
0 (k)

· · · · · · hL(z(k))χT
0 (k)

]T

θ0 =
[
θT
10 θT

20 · · · · · · θT
L0

]T
(24)

Note that (23) represents a pseudo linear regression form for the
fuzzy ARMAX prediction model (21) because the component
y0(k − i + 1|k − i) in χ0(k) depends on the true parameter
vector θ0. According to the pseudo linear regression form (23),
the proposed stochastic gradient algorithm to identify the true
parameter vector θ0 is given by, for k ≥ 1,

θ̂(k) = θ̂(k − 1) +
φ(k − 1)

r(k − 2) + φT (k − 1)φ(k − 1)

×
[
y(k) − φT (k − 1)θ̂(k − 1)

]
(25)



where the regression vector φ(k) and the function r (k) are
defined as

φ(k) =
[
h1(z(k))χT (k) h2(z(k))χT (k)

· · · · · · hL(z(k))χT (k)
]T

(26)
χ(k) = [−y(k) · · · − y(k − l + 1) y(k) · · · y(k − n + 1)

u(k) · · ·u(k − m)]T (27)

y(k) = φT (k − 1)θ̂(k) (28)

r(k − 1) = r(k − 2) + φT (k − 1)φ(k − 1) (29)

For the initial conditions, θ̂(0) can be arbitrarily chosen and
r(−1) must be a positive scalar. By its definition, the variable
y(k) can be regarded as a posterior estimate of y(k).

Before proceeding to analyze the stochastic gradient algo-
rithm, some useful definitions are made as follows

ŷ(k) = φT (k − 1)θ̂(k − 1) (30)
e(k) = y(k) − ŷ(k) (31)
η(k) = y(k) − y(k) (32)
ς(k) = η(k) − w(k) (33)

θ̃(k) = θ̂(k) − θ0 (34)

β(k) = −φT (k − 1)θ̃(k) (35)

Some general properties of the stochastic gradient algorithm
can be extracted from Lemma 8.5.1 in [10] as follows.

lim
N→∞

N∑
k=1

φT (k − 1)φ(k − 1)
r(k − 1)r(k − 2)

< ∞ (36)

η(k) =
r(k − 2)
r(k − 1)

e(k) (37)

E {β(k)w(k)| zk−1} =

− φT (k − 1)φ(k − 1)
r(k − 1)

σ2
w, a. s. (38)

Lemma 1: For the stochastic gradient algorithm in (25)-(27),
we have

L∑
i=1

hi(z(k − 1))Ci(q−1)ς(k) = β(k) (39)

Proof: The proof is given in Appendix C.
In addition to the results in Lemma 1, we shall need the

following assumptions in order to obtain some properties of
the parameter estimate θ̂(k).

Assumption 2 : For each i, 1 ≤ i ≤ L, system Ci(q−1) is
input strictly passive (ISP) [10].

In (39), the signals ς(k) and β(k) are related by the fuzzy
polynomial

∑L
i=1 hi(z(k − 1))Ci(q−1). As shall be shown in

the next lemma, Assumption 2 implies a passivity condition
for that fuzzy polynomial.

Lemma 2: Consider the fuzzy system in (39). With Assump-
tion 2 that Ci(q−1) is input strictly passive (ISP), we have

k∑
j=1

β(j)ς(j) − ες2(j) ≥ 0, for k ≥ 1 (40)

for some ε > 0.

Proof: The proof is given in Appendix D.
Theorem 3: Under Assumption 2, for the stochastic gradi-

ent algorithm in (25)-(29), we have the parameter difference
convergence

lim
N→∞

N∑
k=1

∥∥∥θ̂(k) − θ̂(k − 1)
∥∥∥2

< ∞, a. s. (41)

and the normalized prediction error convergence

lim
N→∞

N∑
k=1

[e(k) − w(k)]2

r(k − 1)
< ∞, a. s. (42)

Proof: With the help of previous lemmas, the results can
be conducted along the same line made in Theorem 8.5.1 in
[10]. Therefore the proof is omitted.

E. Adaptive Minimum Variance Control

To propose a direct adaptive fuzzy minimum variance con-
troller, we shall first discuss the structure of the non-adaptive
minimum variance controller by assuming that the system
parameters are given. For the fuzzy stochastic system (7)
having the optimal one-step ahead prediction form in (21),
the minimum variance tracking control minimizing the cost
function J1(k + 1) in (11) is given by [19]

u(k) =
1

b0(k)

{
−

L∑
i=1

hi(z(k))
[
Bi(q−1) − bi0

]
u(k)

+
L∑

i=1

hi(z(k))
[
Ci(q−1)y∗(k + 1) − αi(q−1)y(k)

]}
(43)

where b0(k) =
∑L

i=1 hi(z(k))bi0. The effect of the control law
in (43) is to give

y0(k + 1|k) = y∗(k + 1) = φT (k)θ0, (44)

i.e., the predicted output is forced to be equal to the desired out-
put. Now suppose that the estimated parameters, α̂ij(k), b̂ij(k),
and ĉij(k) are obtained by using the stochastic gradient algo-
rithm at time k. Accordingly, denote α̂i(k, q−1), B̂i(k, q−1),
and Ĉi(k, q−1) be the estimates of the polynomials αi(q−1),
Bi(q−1), and Ci(q−1) at time index k, respectively. Also let
b̂0(k) =

∑L
i=1 hi(z(k))b̂i0(k). Based on the above estimated

polynomials, the adaptive minimum variance control law is
given by

u(k) =
1

b̂0(k)

L∑
i=1

hi(z(k))
{
−

[
B̂i(k, q−1) − b̂i0 (k)

]
u(k)

+
[
Ĉi(k, q−1)y∗(k + 1) − α̂i(k, q−1)y(k)

]}
(45)

in which the control law is derived from the following equation

y∗(k + 1) = φT (k)θ̂(k) (46)



F. Analysis of Stability And Tracking Performance

In this section, stability and tracking performance of the
proposed adaptive stochastic fuzzy control system will be
discussed. As the output y(k) is demanded to track arbitrary
bounded reference signal y∗(k), some minimum-phase-like
property of the stochastic fuzzy system in (7) is required in
order to ensure internal stability of the adaptive control system.
Therefore, we make the following assumption.

Assumption 3: (i) Assume that these exists a positive
number b0,min such that 0 < b0,min ≤ b0,i and thus 0 <
b0,min ≤ |b0(k)| . (ii) Let ΞB̃,i be the companion matrix
associated with the polynomial B̃i(q−1) which is defined as
B̃i(q−1) = Bi(q

−1)
b0,min

. Assume that there exist m×m symmetric
positive definite matrices PB̃,i, for 1 ≤ i ≤ L, of the form

PB̃,i =

[
P 11

B̃,i
0(m−1)×1

01×(m−1) P 22
B̃,i

]
(47)

such that the matrix inequalities[
λB̃PB̃,i ΞT

B̃,i
PB̃,j

PB̃,jΞB̃,i PB̃,j

]
> 0, 1 ≤ i, j ≤ L (48)

hold for some λB̃ with 0 < λB̃ < 1.
Based on Assumption 3, we have the following results which

will be used to prove stability of the adaptive control system.
Lemma 3: Under Assumption 3, for the stochastic fuzzy

system in (7), we have, for N ≥ N,

1
N

N−1∑
k=1

‖u(k)‖2 ≤ K6

N

N+1∑
k=1

‖y(k)‖2 + K7, a.s. (49)

where 0 < K6 < ∞, 0 < K7 < ∞, and N is a sufficient large
number.

Proof: The proof is given in Appendix E.
Lemma 4: Under Assumption 1-Assumption 3, there exist

finite positive constants K8 to K11, Ka1 , and Ka2 such that

1
N

N∑
k=1

y2(k) ≤ K8

N

N∑
k=1

[e(k) − w(k)]2 + K9, a.s. (50)

1
N

N∑
k=1

y2(k) ≤ K10

N

N∑
k=1

[e(k) − w(k)]2 + K11, a.s. (51)

r(N − 1)
N

≤ Ka2

N

N∑
k=1

[e(k) − w(k)]2 + Ka1, a.s. (52)

for N ≥ N.

Proof: The proof is given in Appendix F.
Based on the property in (42) and the last lemma, we can

attain of the following stochastic key technical lemma.
Lemma 5: With the property in (42), if there exist positive

constants Ka1, Ka2, and N such that

1
N

r(N−1) ≤ Ka1+
Ka2

N

N∑
k=1

[e(k) − w(k)]2 , a. s., for N ≥ N

(53)

then we have

(i) lim
N→∞

1
N

N∑
k=1

[e(k) − w(k)]2 = 0, a. s. (54)

(ii) lim sup
k→∞

r(N − 1)
N

< ∞, a. s. (55)

(iii) lim
N→∞

1
N

N∑
k=1

E
{

[y(k) − ŷ(k)]2 | zk−1

}
= σ2

w, a. s.

(56)

If, in addition, condition (5) is strengthened to the following
ergodic condition

E
{
w4(k)| zk−1

}
< ∞, a. s. (57)

then the property in (56) can be also strengthened to

(iv) lim
N→∞

1
N

N∑
k=1

[y(k) − ŷ(k)]2 = σ2
w, a. s. (58)

Proof: The proof can be made along the same line as the
proof of Lemma 8.5.3 in [10].

With the above lemma, we have the following tracking
performance and global stability results.

Theorem 4: For the stochastic fuzzy system in (7) with
Assumption 1-Assumption 3, the adaptive minimum variance
control algorithm is internally stable with tracking performance
as

(i) lim sup
k→∞

1
N

N∑
k=1

y2(k) < ∞, a. s. (59)

(ii) lim sup
k→∞

1
N

N∑
k=1

u2(k) < ∞, a. s. (60)

(iii) lim
N→∞

1
N

N∑
k=1

E
{

[y(k) − y∗(k)]2 | zk−1

}
= σ2

w a. s.

(61)

Furthermore, if (57) holds, then the result (61) is strengthened
to

(iv) lim
N→∞

1
N

N∑
k=1

[y(k) − y∗(k)]2 = σ2
w a. s. (62)

G. Simulation Study

In this section, a simulation example is given to verify the
proposed adaptive minimum variance control algorithm.

Example 1: Consider the following stochastic fuzzy system:

If z(k) is Fi

then Ai(q−1)y(k + 1) = Bi(q−1)u(k) + Ci(q−1)w(k + 1)
for i = 1, 2, · · · 5



where

A1(q−1) = 1 − 0.27q−1 + 0.011q−2

A2(q−1) = 1 − 0.33q−1 + 0.023q−2

A3(q−1) = 1 − 0.36q−1 + 0.0288q−2

A4(q−1) = 1 − 0.39q−1 + 0.035q−2

A5(q−1) = 1 − 0.44q−1 + 0.0468q−2

B1(q−1) = 1 − 0.2q−1, C1(q−1) = 1 − 0.135q−1

B2(q−1) = 1 − 0.3q−1, C2(q−1) = 1 − 0.165q−1

B3(q−1) = 1 − 0.4q−1, C3(q−1) = 1 − 0.18q−1

B4(q−1) = 1 − 0.5q−1, C4(q−1) = 1 − 0.195q−1

B5(q−1) = 1 − 0.6q−1, C5(q−1) = 1 − 0.22q−1

and w(k) is a zero-mean Gaussian white noise with σ2
w = 0.01.

The membership function for the fuzzy logic set Fi is given in
Fig 1 and the premise variable z(k) is chosen as z(k) = y(k).
We choose y∗ (k + 1) = sin( 2πk

100 ) + 3 sin
(

6πk
100

)
as the refer-

ence signal. In Fig. 2, the adaptive minimum variance control
u(k) is shown in the upper trace, while the output y(k) and
the reference signal y∗(k) are compared in the lower trace.
Obviously, a usual transient phase of the adaptive control can
be observed. Fig. 2 verifies that the internal stability and the
tracking performance of the closed-loop system. The standard
deviation of the tracking error during the steady state is 0.1058,
which is very close to the standard deviation σw = 0.1 of w(k)
as guaranteed in Theorem 4.

四、 結論與討論

Adaptive minimum variance control for stochastic T-S fuzzy
ARMAX model is addressed in this study. From the fuzzy
ARMAX model, a fuzzy one-step ahead prediction model
is first developed. A stochastic gradient algorithm is then
proposed to identify the parameters of the related one-step-
ahead predictor. Under the direct adaptive control scheme, the
minimum variance control is applied to make the output track
a desired reference signal. Stability and tracking performance
of the adaptive stochastic fuzzy control system are rigorously
derived and verified by simulation study.

參考文獻

[1] M. Sugeno and K. Tanaka, “Successive identification of Fuzzy model,”
Fuzzy Set and Systems, Vol. 28, pp. 156-33, 1988.

[2] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
applications to modeling and control,” IEEE Trans. Syst. , Man, Cybern.,
Vol. 15, pp. 116-132, Jan/Feb, 1985.

[3] M. Sugeno and T. Yasukawa, “A fuzzy logic-based approach to qualitative
modeling,” IEEE Trans. Fuzzy Systems, Vol. 1, No. 1, pp.7-31, Feb. 1993.

[4] L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability
Analysis, Englewood Cliffs, NJ, Prentice-Hall, 1994.

[5] L. X. Wang, “Stable adaptive fuzzy control of nonlinear systems,” IEEE
Trans. Fuzzy System, Vol. 1, No 2, pp. 146-155, May. 1993.

[6] L. X. Wang, “Modeling and Control of hierachical systems with fuzzy
systems,” Automatica, Vol.33, No 6, pp. 1041-1053, June. 1997.

[7] T. K. Yin and C. S. George Lee, “Fuzzy model-reference adaptive control,”
IEEE Trans. System, Man, Cybern., Vol.25, No. 12, pp.1606-1615, Dec.
1995.

[8] B. S. Chen, C. H. Lee, and Y. C. Chang, “H∞ tracking design of uncertain
nonlinear SISO systems: adaptive fuzzy approach,” IEEE Trans. Fuzzy
Systems, Vol.4, No. 1, pp. 32-43, Feb. 1996.

[9] D. Williamson, Digital Control and Implementation, Prentice Hall, En-
glewood Cliffs, N.J. 1991

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
1

F
2

F
3

F
4

F
5

z(k)

Membership grades

圖 1. Membership functions used in Example 1.

0 50 100 150 200 250 300
−100

−50

0

50

100

time(k)

u(k)

0 50 100 150 200 250 300
−100

−50

0

50

100
y*(k) and y(k)

time(k)

 

 

y*(k)
y(k)

圖 2. Iutput y(t) and its reference signal y∗(t) in Example 1.

[10] G. C. Goodwin and K.S. Sin, Adaptive filtering prediction and control,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1984.

[11] K. Watanabe, “Stochastic fuzzy control. I. Theoretical derivation,” Pro-
ceedings of 1995 IEEE International Conference on Fuzzy Systems, vol.2,
pp. 547-554, March. 1995.

[12] K. Watanabe, K. Izumi and Fuha Han, “Stochastic fuzzy servo control
using multiple linear dynamic models,” Proceedings of the Second Inter-
national Conference on Knowledge-Based Intelligent Electronic Systems,
Vol.3, pp. 474-482, April. 1998.

[13] E. G. Laukonen, K. M. Passino, V. Krihnaswami, G.-C. Luh, and G.
Rizzoni, “Fault detection and isolation for an experimental internal
combustion engine via fuzzy identification,” IEEE Trans. Control System
Technology, Vol. 3, No. 3, pp. 347-355, Sep. 1995.

[14] J. Hu, K. Kumamaru, and K. Inoue, “A hybrid quasi-ARMAX modeling
scheme for identification and control of nonlinear systems,” Proceedings
of the 35th IEEE Conference on Decision and Control, Vol. 2, pp. 1413
-1418, Dec. 1996.

[15] J. B. Waller, J. Hu, and K. Kirasawa, “Nonlinear model predictive control
utilizing a neuro-fuzzy predictor,” 2000 IEEE International Conference on
Systems, Man, and Cybernetics, Vol. 5, pp. 3459-3464, Oct. 2000.

[16] H.-T. Yang and C.-M. Huang, “A new short-term load forecasting ap-
proach using self-organizing fuzzy ARMAX models,” IEEE Transactions
on Power Systems, Vol. 13, No. 1, pp. 217-225, Feb. 1998.

[17] T. T. Ho, “Stochastic fuzzy direct adaptive control,” Proceedings of the
Third IEEE Conference on Fuzzy Systems, Vol.2, pp. 750-755, June 1994.

[18] A. N. Shiryayev, Probability, in Graduate Texts in Mathematics Series,
Vol. 95, Springer-Verlag, New York, 1984.

[19] Bor-Sen Chen, Bore-Kuen Lee, and Ling-Bin Guo, “Optimal tracking
design for stochastic fuzzy systems,” IEEE Transactions Fuzzy Systems,
, Vol. 11, No. 6, pp. 796-813, Dec. 2003.



APPENDIX

A. Proof of Theorem 1

Proof: First define a Lyapunov function as

V (x(k)) = xT (k)P (k)x(k) (A.1)

which is uniformly positive definite and

λmin
P ‖x(k)‖2 ≤ V (x(k)) ≤ λmax

P ‖x(k)‖2 (A.2)

With the definition of V (x(k)), it follows that

V (x(k + 1)) = xT (k)
[
AT (k)P (k + 1)A(k)

]
x(k) (A.3)

Note that the terms x(k), P (k), and A(k) are all
zk−measurable. Now applying the conditional mean operator
E {· | zk} to the both sides of (A.3) and using (13), we have,
almost surely,

E {V (x(k + 1)) | zk}
= xT (k)

[
AT (k)E {P (k + 1)|zk}A(k)

]
x(k)

≤ λxT (k)P (k)x(k)
= λV (x(k))

(A.4)

Note that as E
{
‖A(k)‖2

}
and E

{
‖P (k)‖2

}
are uniformly

bounded, E {V (x(k + 1)) | zk} and E {P (k + 1)|zk} are
well defined. Apply the conditional expectation operator
E {· | zk−1} again to the both sides of (A.4) and recall that
the sequence of the σ−algebra zk is increasing. With the
smoothing properties [10] of conditional mean and inequality
(A.4), it follows that almost surely

E {V (x(k + 1)) | zk−1} ≤ λ2V (x(k − 1))

Continuing this procedure by sequentially applying
E {· | zk−2}, E {· | zk−3}, · · · , E {· | zk0} , one can
obtain almost surely

E {V (x(k + 1)) | zk0} ≤ λk+1−k0V (x(k0)) (A.5)

Now we turn to prove the almost sure exponential stability
(15). Clearly, it is trivial if x(k0) = 0. Now assume that the
initial condition x(k0) is nonzero. By Chebyshev’s inequality
[18], for any εk > 0, we have

Prob
{

‖x(k)‖
‖x(k0)‖ > εk

}
≤ E

{
‖x(k)‖2

‖x(k0)‖2

}
/ε2k

= E
{

1
‖x(k0)‖2

×E
{
‖x(k)‖2 | zk0

}}
/ε2k
(A.6)

where Prob{A} is the probability measure of the event A. With
(A.2) and (A.5), one can get

E
{
‖x(k)‖2 | zk0

}
≤ λmax

P

λmin
P

λk−k0 ‖x(k0)‖2
, a.s.

With the last inequality, (A.6) can be reduced to

Prob
{

‖x(k)‖
‖x(k0)‖

> εk

}
≤ 1

ε2k

λmax
P

λmin
P

λk−k0 (A.7)

Now choose the sequence εk as εk = ε0λ
(k−k0)/2
1 for any ε0 > 0

and λ1 > λ. Then inequality (A.7) implies that
∞∑

k=k0

Prob
{
‖x(k)‖ > ε0λ

(k−k0)/2
1 ‖x(k0)‖

}
≤ 1

ε20

λmax
P

λmin
P

∞∑
k=k0

(
λ

λ1
)k−k0

As λ
λ1

< 1, it follows that

∞∑
k=k0

Prob
{
‖x(k)‖ > ε0λ

(k−k0)/2
1 ‖x(k0)‖

}
< ∞

and consequentially, by the Borel-Cantelli Lemma [18], we
obtain that

Prob
{
∪k≥K1

{
‖x(k)‖ > ε0λ

(k−k0)/2
1 ‖x(k0)‖

}}
= 0

for some sufficiently large K1, any ε0 > 0, and any λ1 > λ.
This means that for any sample path with bounded initial state
x(k0), we have

‖x(k)‖ ≤ c1(
√

λ)k−k0 ‖x(k0)‖ , k ≥ K1, a.s.

for any initial condition x(k0), some positive bounded random
variable c1, and a sufficiently large integer K1. This completes
the proof.

B. Proof of Theorem 2

Proof: Suppose that ‖A(k)‖ ≤ AL, ‖B(k)‖ ≤ BL,
‖C(k)‖ ≤ CL, and ‖D(k)‖ ≤ DL for all k. Using the definition
of the transition matrix defined in (16), the response of the
output ys(k) of the fuzzy system in (12) can be represented by

ys(k) = C(k)Φ(k, 0)x(0) + D(k)us(k)

+C(k)
k−1∑
j=0

Φ(k, j + 1)B(j)us(j)

Applying the results in Corollary 1, for k ≥ K1, we have

‖ys(k)‖ ≤ CLc2

√
λ

k
‖x(0)‖ + DL ‖us(k)‖

+ CLBL

k−1∑
j=0

‖Φ(k, j + 1)‖ ‖us(j)‖ , a. s.

By the Cauchy-Schwartz inequality, the last inequality leads to

‖ys(k)‖2 ≤ 3{C2
Lc2

2λ
k ‖x(0)‖2 + D2

L ‖us(k)‖2

+ C2
LB2

L

k−1∑
j=0

‖Φ(k, j + 1)‖ ‖us(j)‖

2

}, a. s.

≤ c3λ
k + 3D2

L ‖us(k)‖2

+ 3C2
LB2

L

k−1∑
j=0

‖Φ(k, j + 1)‖

×
k−1∑
j=0

‖Φ(k, j + 1)‖ ‖us(j)‖2
, a. s. (B.1)



where c3 is defined as c3 = 3C2
Lc2

2 ‖x(0)‖2
. Considering the

change of index i = k − j, the first summation term in the last
inequality can be rearranged as

k−1∑
j=0

‖Φ(k, j + 1)‖ =
k∑

i=1

‖Φ(k, k − i + 1)‖

=
K1∑
i=1

‖Φ(k, k − i + 1)‖

+
k∑

i=K1+1

‖Φ(k, k − i + 1)‖

(B.2)

With the transition matrix defined in (16), it follows that
‖Φ(k, k − i + 1)‖ ≤ Ai−1

L for i ≤ K1. On the other hand,
for i > K1, inequality (17) ensures that ‖Φ(k, k − i + 1)‖ ≤
c2

√
λ

i−1
, a.s. and thus

lim
k→∞

k−1∑
j=0

‖Φ(k, j + 1)‖ ≤
K1∑
i=1

Ai−1
L + c2

∞∑
i=K1+1

√
λ

i−1

= c4 < ∞, a. s. (B.3)

where

c4 =
1 − AK1

L

1 − AL
+ c2

√
λ

K1

1 −
√

λ

Taking the summation operation 1
N

∑N
k=1 on both sides of (B.1)

and using (B.3), one can get

1
N

N∑
k=1

‖ys(k)‖2 ≤ 1
N

c3

1 − λ
+

3D2
L

N

N∑
k=1

‖us(k)‖2

+
3C2

LB2
Lc4

N

×
N∑

k=1

k−1∑
j=0

‖Φ(k, j + 1)‖ ‖us(j)‖2
, a. s.

(B.4)

in which the double summation term can be rearranged as
follows

N∑
k=1

k−1∑
j=0

‖Φ(k, j + 1)‖ ‖us(j)‖2

=
N−1∑
j=0

N∑
k=j+1

‖Φ(k, j + 1)‖ ‖us(j)‖2

With the same argument made from (B.2) to (B.3), it is easy
to see that

N∑
k=j+1

‖Φ(k, j + 1)‖ ≤
∞∑

k=j+1

‖Φ(k, j + 1)‖ ≤ c4 < ∞, a. s.

(B.5)
Therefore, following from (B.4) and (B.5), inequality (18) can
be attained with

K3 = c3
1−λ + 3C2

LB2
Lc2

4 ‖us(0)‖2

= 3C2
L

(
c2
2

1−λ ‖x(0)‖2 + B2
Lc2

4 ‖us(0)‖2
)

K2 = max
(
3D2

L, 3C2
LB2

Lc2
4

)

C. Proof of Lemma 1

Proof: Rewrite (7) to get
L∑

i=1

hi(z(k − 1))Ai(q−1)y(k)

=
L∑

i=1

hi(z(k − 1))
[
Bi(q−1)u(k − 1) + Ci(q−1)w(k)

]
(C.1)

Substituting (20) into (C.1), we have
L∑

i=1

hi(z(k − 1))[Ci(q−1) − q−1αi(q−1)]y(k)

=
L∑

i=1

hi(z(k − 1))
[
Bi(q−1)u(k − 1)

+Ci(q−1)w(k)
]

which leads to
L∑

i=1

hi(z(k − 1))Ci(q−1)[y(k) − w(k)]

=
L∑

i=1

hi(z(k − 1))
[
q−1αi(q−1)y(k)

+Bi(q−1)u(k − 1)
]

From (32) and (33), we subtract
∑L

i=1 hi(z(k −
1))Ci(q−1)y(k) from both sides of the above equation
to get

L∑
i=1

hi(z(k − 1))Ci(q−1)[y(k) − y(k) − w(k)]

=
L∑

i=1

hi(z(k − 1))
[
q−1αi(q−1)y(k)

−Ci(q−1)y(k) + Bi(q−1)u(k − 1)
]

and thus
L∑

i=1

hi(z(k − 1))Ci(q−1)ς(k)

=
L∑

i=1

hi(z(k − 1))
[
−(Ci(q−1) − 1)y(k)

+q−1αi(q−1)y(k) + Bi(q−1)u(k − 1) − y(k)
]

Using (27), we can get the following equation
L∑

i=1

hi(z(k − 1))Ci(q−1)ς(k)

=
L∑

i=1

hi(z(k − 1))χT (k − 1)θi0 − y(k)

= φT (k − 1)θ0 − φT (k − 1)θ̂(k) = −φT (k − 1)θ̃(k)
= β(k)

This completes the proof.



D. Proof of Lemma 2

Proof: First define βi(k) = Ci(q−1)ς(k) for 1 ≤ i ≤ L.
With the fuzzy system (39), we have

β(k) =
L∑

i=1

hi(z(k − 1))βi(k) (D.1)

As Ci(q−1) is ISP [10], for any i, there is a positive number
εi such that

k∑
j=1

ς(j)βi(j) − εiς
2(j) ≥ 0 (D.2)

Taking the operation
L∑

i=1

hi(z(k − 1)) on both side of (D.2)

gives

k∑
j=1

{
L∑

i=1

hi(z(k − 1))
[
ς(j)βi(j) − εiς

2(j)
]}

≥ 0 (D.3)

Using equation (D.1) and letting ε = min
1≤i≤L

εi, we can see

that inequality (D.3) implies the desired property in inequality
(40).

E. Proof of Lemma 3

Before presenting the proof of Lemma 3, we shall need a
lemma which is quoted from [19].

Lemma 6: Let P be a m × m symmetric positive definite
matrix which is partitioned as

P =
[

P11 P12

PT
12 P22

]
where P11 and P22 are (m− 1)× (m− 1) and 1× 1 matrices,
respectively. Also let Γ be a matrix defined by

Γ =
[

Im−1 0(m−1)×1

01×(m−1) r

]
, 0 < |r| ≤ 1

Then ΓT PΓ−P is negative semi-definite if and only if P12 =
0(m−1)×1.

The proof of Lemma 3 is given in the following.
Proof: First define a function V1(k) as

V1(k+1) =
L∑

i=1

hi(z(k)){Ai(q−1)y(k+1)−Ci(q−1)w(k+1)}

(E.1)
so that from the stochastic fuzzy system in (7), we have

N∑
k=1

hi(z(k))bi0u(k) =
N∑

k=1

{
hi(z(k))

[
bi0 − Bi(q−1)

]
u(k)

+V1(k + 1)} (E.2)

which can be expressed as

u(k) =
b0,min

bo(k)

L∑
i=1

{
hi(z(k))

[
bi0 − Bi(q−1)

]
b0,min

u(k)

+
b0,min

bo(k)
1

b0,min
V1(k + 1)

}

= −b̃0(k)
L∑

i=1

{hi(z(k))

 m∑
j=1

bij

b0,min
u(k − j)


+ b̃0(k)V2(k + 1)} (E.3)

where
b̃0(k) = b0,min/bo(k)
V2(k + 1) = 1

b0,min
V1(k + 1) (E.4)

Note that |b0(k)| ≥ b0,min and thus b̃0(k) is well defined with
0 < b0,min ≤

∣∣∣̃b0(k)
∣∣∣ ≤ 1. By constructing a state vector xu(k)

as

xu(k) = [u(k − m) u(k − m + 1) · · · · u(k − 1)]T ,

equation (E.3) can be transformed into a state-space form as

xu(k + 1) = A
′

B̃
(k)xu(k) + Vu(k + 1) (E.5)

where

AB̃(k) =
L∑

i=1

hi(z(k))ΞB̃, i

A
′

B̃
(k) = Γ(k)AB̃(k)

Γ(k) =
[

Im−1 0(m−1)×1

01×(m−1) b̃0(k)

]
Vu(k + 1) =

[
01×(m−1) b̃0(k)V2(k + 1)

]T

For the system (E.5), consider a Lyapunov function V (x(k)) =

xT (k)PB̃(k)x(k) where P (k) =
L∑

i=1

hi(z(k))PB̃,i. With the

structure defined in (47), by applying Lemma 6, it follows that

ΓT (k)P (k + 1)Γ(k)

=
L∑

i=1

hi(z(k + 1))ΓT (k)PB̃,iΓ(k)

≤ P (k + 1)

On the other hand, under Assumption 3, the matrix condition
(48) implies

λB̃P (k) − AT
B̃

(k)E {P (k + 1)|zk}AB̃(k) > 0, ∀k

for some λB̃ with 0 < λB̃ < 1. Therefore, as Γ(k) is
zk−measurable, we have

A
′T
B̃

(k)E {P (k + 1)|zk}A
′

B̃
(k)

= AT
B̃

(k)E
{
ΓT (k)P (k + 1)Γ(k)|zk

}
AB̃(k)

≤ AT
B̃

(k)E {P (k + 1)|zk}AB̃(k)

< λB̃P (k) (E.6)



which implies that for the system in (E.5), it follows from
Theorem 2 that

1
N

N∑
k=1

‖xu(k)‖2

≤ K2

N

N∑
k=1

‖Vu(k + 1)‖2 +
K3

N
, a. s., for N ≥ K1

(E.7)

For the left hand side of (E.7), by the definition of the vector
xu(k), it follows

1
N

N−1∑
k=1

‖u(k)‖2 ≤ 1
N

N∑
k=1

‖xu(k)‖2 (E.8)

For the left hand side of (E.7), by the definition of Vu(k + 1),
we have

‖Vu(k + 1)‖2

=

{
b̃0(k)
b0,min

L∑
i=1

hi(z(k))
(
θT

Ai
φy(k + 1) − θT

Ci
φw(k + 1)

)}2

where

θAi =
[

1 ai1 · · · ain]

]T

θCi =
[

1 ci1 · · · cil]

]T

φy(k + 1) =
[

y(k + 1) y(k) · · · y(k + 1 − n)
]T

φw(k + 1) =
[

w(k + 1) w(k) · · · w(k + 1 − l)
]T

Let CAC = max
{

max
1≤i≤L

‖θAi‖ , max
1≤i≤L

‖θCi‖
}

. As 0 <

b0,min ≤
∣∣∣̃b0(k)

∣∣∣ ≤ 1, it follows

‖Vu(k + 1)‖2 ≤ 2C2
AC

b2
0,min

(‖φy(k + 1)‖2+‖φw(k + 1)‖2) (E.9)

Meanwhile, similar to (E.8), one can obtain

1
N

N∑
k=1

‖φy(k + 1)‖2 ≤ (n + 1)
1
N

N+1∑
k=1

y2(k) (E.10)

1
N

N∑
k=1

‖φw(k + 1)‖2 ≤ (l + 1)
1
N

N+1∑
k=1

w2(k) (E.11)

Therefore, by (E.7)-(E.11) and (5), we have, for N ≥ N,

1
N

N−1∑
k=1

‖u(k)‖2 ≤ K6 ×
1
N

N+1∑
k=1

‖y(k)‖2 + K7

where N = max{Nw,K1}

K6 =
2C2

ACK2(n + 1)
b2
0,min

, K7 =
2C2

ACK2Kw(l + 1)
b2
0,min

This completes the proof.

F. Proof of Lemma 4

Proof: (i) The proof can be referred to part (iii) of Lemma
11.3.1 in [10].

(ii) The proof can be referred to part (iv) of Lemma 11.3.1
in [10].

(iii) In (29) with k = N , we have

r(N − 1)

= r(0) +
N−1∑
k=1

φT (N − 1)φ(N − 1) (F.1)

= r(0) +
N−1∑
k=1

L∑
i=1

h2
i (z(k))χT (k)χ(k) (F.2)

≤ r(0) +
N−1∑
k=1

L∑
i=1

hi(z(k))χT (k)χ(k) (F.3)

= r(0) +
N−1∑
k=1

χT (k)χ(k) (F.4)

By the definition of χ(k) in (27), it follows from (49),(50),
and (51) that, for N ≥ N,

1
N

r(N − 1) ≤ Ka2

N

N−1∑
k=1

[e(k) − w(k)]2 + Ka1

for some positive numbers Ka2 and Ka1. This completes the
proof.
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一、 參加會議經過: 
    此次2008年機器學習與人工頭腦學國際研討會(2008 International Conference on 
Machine Learning and Cybernetics ，ICMLC 2008)，由河北大學、IEEE SMC (System, 
Man, and Cybernetics) 協會、香港機器學習與控制研究所（MLCRI）等單位聯合主辦，

於 97 年 7 月 12 日到 97 年 7 月 15 日，在中國昆明市 Grand Park Hotel 舉行。台灣科技

大學校長陳希舜教授為 Honorary Conference Chairs 之ㄧ，台灣的學者參與此研討會

非常踴躍。 
此次研討會所有論文都列入 IEEE Explorer 之資料庫，都屬於 EI Index。研討會之網

路首頁為 http://www.icmlc.com/，整個研討會包含四個 Tutorials： 
[1] Application of Neural Network and Cerebellar Model Articulation Controller in Control 
Problem, Speaker: Prof. Chih-Min Lin (元智大學電機系教授) 
[2] Principles of Stochastic Discrimination and Ensemble Learning, Speaker: Prof. Tin Kam 
Ho   
[3] Linguistic models: from data to granular architectures, Speaker: Prof. Witold Pedrycz  
[4] Intelligence Pattern Recognition and Applications to Biometrics in an Interactive 
Environment, Speaker: Prof. Patrick Wang 
另外有兩個 Plenary Talk： 

[1] Multimedia Information Security: An Overview of Research and Challenges, Speaker:
Prof. Philip Chen 
[2] - Alan Turing, spam e-mail, pattern recognition: an intriguing triangle, Speaker: Prof. 
Fabio Roli 
此次研討會之主題包含： 
1. Adaptive systems  
2. Neural net and support vector machine 
3. Business intelligence  
4. Hybrid and nonlinear system 
5. Biometrics  
6. Fuzzy set theory, fuzzy control and system 
7. Bioinformatics  
8. Knowledge management 
9. Data and web mining  
10. Information retrieval 
11. Intelligent agent,  
12. Intelligent and knowledge based system 
13. Financial engineering  
14. Rough and fuzzy rough set 
15. Inductive learning  
16. Networking and information security 
17. Geoinformatics  
18. Evolutionary computation。 
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19. Pattern Recognition  
20. Ensemble method 
21. Logistics  
22. Information fusion 
23. Intelligent control  
24. Visual information processing 
25. Media computing  
26. Computational life science 
議程第一天安排了四個 Tutorials，第二天上午有兩個 Plenary talk，有不同小

節之會議。 

 

二、與會心得 
(1) 從此次研討會所安排之主題來看，比較偏向人工智能於資訊工程之研究，

各國有關人工智慧理論都有顯著的研究成果，幾個比較新的主題如 Media 
computing、Bioinformatics、Computational life science、Business 
intelligence，非常值得國內學界注意其發展。 

(2) 除了認識許多中國之學者外，也認識了很多來自全世界各地的菁英學者，

對於將來推動國際學術交流，有相當大的幫助。 

(3) 大陸在人工智能領域之研究成果亦有長足之進步，在 IEEE SMC Society
之影響力也已超過台灣相關學界，國內應該即起直追。 

 

三、考察參觀活動(無是項活動者省略)  
主辦單位無舉辦任何考察參觀活動。 

 

四、建議 
(1) 台灣應該多爭取舉辦國際研討會，使得全世界各地的菁英學者，能夠共

聚ㄧ堂。我覺得國內也可以由幾個學會或中國工程師協會，舉辦國際聯

合研討會。 
(2) 大陸學術界的國際化，已經逐步生根，同時以此為基礎邁向國際之競爭，

台灣學術界的自由化與國際化還有待大家的努力。  
 

 

五、攜回資料名稱及內容 
(1) 完整論文光碟片。 
(2) 論文摘要紙本以及部份之論文集。 

六、其他 
無。 

 

 


