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Abstract 

    Model of the spherical robot driven by Omni wheels and its constant speed control have been derived 

and written as two conference papers published at the ICMLC2011. The modeling is derived based on the 

Euler Lagrange approach. The constant speed control is implemented under the sliding mode control of the 

variable structure control. Current works are focused on the hierarchic SMC (HSMC) and cascade SMC 

(CSMC). To overcome the constant speed problem which is caused by the fast body attitude convergent rate, 

that is, vertical attitude, the state switching scheme of both controls has been modified as a periodic switching 

scheme which releasing the body attitude convergent rate periodically. Spherical wheel position and body 

attitude controls can share a non-strictly convergence under the periodic releasing feature. Simulations show 

that the position control of the under-actuated spherical robot can be easily implemented under periodic 

switching scheme. 

    

Keywords:  Modeling; spherical robot; Omni wheels; Euler Lagrange; Variable Structure Control; 

Sliding mode control; Hierarchic SMC; Cascade SMC. 

 

摘要 

關於全向輪驅動的球型機器人的數學模型和定速控制法則已被導出，且已發表兩份研討討會論文

於 ICMLC2011。模型由尤拉-拉格朗日的方法推導出，定速控制則由可變結構控制下的滑模控制來實

現。目前正在進行分層滑模控制及串聯滑模控制，然而這兩種滑模控制容易造成主體姿態部分收斂太

快為直立，進而造成球的定速問題。修改這兩種的狀態切換法則為週期性的，主要是放鬆主體姿態的

嚴格收斂速度，避免球的定速問題。換言之，球輪的位置控制與主體姿態控制，在週期放鬆特性下可

享有非嚴格收斂的機會。最後在模擬中顯示，欠驅動的球型機器人的位置控制，可以容易地在週期切

換法則下實現。 

 

關鍵字：數學模式、球輪機器人、全向輪、尤拉-拉格朗日、可變結構控制、滑模控制、分層滑模控制、

串聯滑模控制。 

 

前言    In recent years, researches on simple and small structure mobile robots which can easily be carried 

or transferred for applying to various aspects of usage in many constrained environments become more and 

more popular. Other than the weight and structure of a mobile robot, the performance such as vehicle body 

balance, stability control, speed and positioning control is also one of main factors to determine the 

applications of that robot. 
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研究目的  This paper mainly outlines the model of the invented spherical robot using Omni wheels to drive 

a spherical wheel. The dynamical model is derived based on Euler Lagrange approach. Therefore, based on 

the derived model, the variable structure control (VSC) is presented in which the sliding mode control (SMC) 

is adopted to achieve a constant speed at a vertical balance altitude. Simulations of the proposed control 

algorithm have been conducted based on two pre-determined sliding surfaces with adjustable parameters to 

discuss the effective time to enter the sliding surface and the convergence. 

文獻探討   In 1994, a two-wheeled robot has been proposed [1], and the stability and tracking control of the 

two-wheeled robot are similar to the use of inverted pendulum control. The most common application of 

two-wheeled vehicles functioned as the inverted pendulum robot is Segway. It is a very good invention to be 

studied based on suitable sensors. A precision gyroscope and a sensitive tilt sensor are mainly used in the 

Segway vehicle to measure data which help to adjust the future road conditions in the different stability of 

walk [2]. 

Thereafter, a single wheel with inverse mouse-ball drive can achieve the static and dynamic stability has 

been developed by Carnegie Mellon University (CMU) [3-4]. The overall design of the system, such as 

actuator mechanism and control system is presented. Performance of dynamic balancing, station keeping, and 

point-to-point motion are also discussed and presented. Most of all, their papers pointed out that unlike 

balancing 2-wheel platforms which must turn before driving in any direction, and the single-wheel can move 

directly in any directions. Therefore, they are the first group to propose a balancing rolling machine whose 

body is supported by a single Omni-directional spherical wheel. However, for the CMU robot, the conflict 

demand of both a high-friction and low-friction material at the same time for the spherical ball becomes the 

serious concern to be compromised. The novel combination of Omni wheel and spherical wheel (CWWU) has 

been proposed in [5-6], and it virtually can be expressed as the mobile robot body installing on the spherical 

wheel which is driven and controlled by two perpendicular pairs of Omni wheels. Both mobile robots with 

similar structure, the control of the CWWU is also equivalent that of CMU. 

The evolution of variable structure control (VSC) is a very popular and powerful control algorithm, and 

it is a form of discontinuous nonlinear control [7-8]. The algorithm adopts a high-frequency switching control 

to alter the dynamics of a nonlinear system. Therefore, its state-feedback control law is not a continuous 

function of time; it switches from one smooth condition to another. So the position of the state trajectory 

determines the structure of the control law. VSC and associated sliding mode behavior were first investigated 

by Emelyanov and several co-researchers in early 1950s in the Soviet Union [9]. Recently, the sliding mode 

control (SMC) is the main operation of VSC [10]. Due to discontinuous control law, its features include low 

sensitivity to the associated uncertainty of plant parameter, greatly reduced-order modeling of plant dynamics, 

and finite-time convergence. But, the chattering caused by the implementation imperfections and over-focus 

on matched uncertainties are its weaknesses. 

This paper mainly concentrates on the CWWU, so its dynamical model is presented first based on Euler 

Lagrange approach [11-12]. The SMC of VSC with two selected sliding surfaces for two axes will be 

designed and implemented based on the derived dynamics model, and Matlab simulations are also presented.

http://en.wikipedia.org/wiki/Classification_of_discontinuities
http://en.wikipedia.org/wiki/Nonlinear_control
http://en.wikipedia.org/wiki/Dynamic_system
http://en.wikipedia.org/wiki/Nonlinear_system
http://en.wikipedia.org/wiki/State_space_%28controls%29
http://en.wikipedia.org/wiki/Feedback
http://en.wikipedia.org/wiki/Continuous_function
http://en.wikipedia.org/wiki/Continuous_function
http://en.wikipedia.org/wiki/Variable_structure_control#cite_note-E1967-0
http://en.wikipedia.org/wiki/Sliding_mode_control
http://en.wikipedia.org/wiki/Sliding_mode_control
http://en.wikipedia.org/wiki/Plant_%28control_theory%29
http://en.wikipedia.org/wiki/Chatter
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研究方法 

1. System description 

In order to derive the dynamical model of the proposed CWWU, we begin with the position swP  and 

velocity 
swv  of the spherical wheel formulated as equations (1) and (2). Thus, its kinetic energy 

swK  can be 

written as equation (3) 

 1 2swP R i R j                                             (1) 

1 2swv R i R j                                              (2) 

2 2 2 2 2 2

1 2 1 2

1 1
[ ( ) ] ( )( )

2 2
sw sw sw sw sw swK I m v I m R                                 (3) 

where R  is the radius; 
swm  and 

swI  are the mass and  the moment of inertia; 
1  and 

2  are the rotating 

angles along the first and second directions; 
1  as well as 

2  are the angular velocities. Here, we do not 

consider its potential energy because of its invariance. 

 Similarly, for driving wheels, r  is the radius; 
dwI  is the moment of inertia; 

1 /R r  and 
2 /R r  are 

the rotating angles. The exerting torques 
1 2,   of driving wheels will be expressed as the effective ones for 

the spherical wheel and the body as 
2

1( / )R r  , 
2

2( / )R r  . Because the total mass of driving wheels will be 

considered as part of body mass, its translating energy and potential energy will be included in the body. Here, 

only its rotating kinetic energy is considered. 

2 2 2 2 2 2

1 1 1 2 1 1 1 2

1 1
( ( ) ( ) ) ( )

2 2
dw dw dw d d

R R
K I I I I

r r
                                     (4) 

where 
2

1 1( / )d dwI I R r  and 
2

2 2( / )d dwI I R r . For the body with angles 
1  and 

2 , and mass 
bm  

centered at a distance  from the center of spherical wheel, then its vertical position of the mass center can 

be derived as 2 2

1 21R S S   , where 1 1sinS   and 2 2sinS  , as shown in Figure 1. 

As mentioned before the mass 
bm  also includes the weights of the driving wheels, so the translation 

kinetic energy and potential energy of driving wheels are taken account into the body. So its position bP  and 

velocity 
bv  are written as equations (5) and (6). Thus, its potential energy U  and kinetic energy 

bK  can be 

written as equations (7) and (8). 

2 2

1 1 2 2 1 2( ) ( ) ( 1 )bP R S i R S j R S S k                                       (5) 

1 1 1 2 2 2
1 1 1 2 2 2

2 2

1 2

( ) ( )
1

b

S C S C
v R C i R C j k

S S

 
   

 
     

 
                          (6) 

2 2

1 21bU m g S S                                       (7) 

2 2 2

1 2 1 2

1
[ 2 ]

2
b x y xy b bK I I I m v                              (8) 

where 1 1cosC   and 2 2cosC  ; 
xI , yI , and xyI  are the moment inertia of the body; 

1  and 
2  are 

the angular velocities of the body along both directions; g  is the gravity acceleration. After substituting 

equation (6) into equation (8), the 
bK  can be written as follows: 
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Figure 1. Coordinates of the spherical robot 
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                (9) 

We now define the Euler-Lagrange variable sw b dwL K U K K K U      , and it can be arranged as 

equation (10). 

2 2 2 2

1 1 2 2 12 1 2 1 1 2 2 1 1 1 2 2 2

1 1 1 1

2 2 2 2
L I I I J J N N U                                (10) 

where  

2 2 2 2
2 2 21 2 1 2 1 1 2 2

1 2 1 22 2 2 2 2 2

1 2 1 2 1 2

2 2

1 1 2 2 1 1 2 2

; ;
1 1 1

( ) ; ( ) ; ;

x b y b xy b

sw sw b d sw sw b d b b

C C C C S C S C
I I m I I m I I m

S S S S S S

J I m m R I J I m m R I N m R C N m R C

     
     

         

 

After formulating the variable of Euler-Lagrange, the dynamical model can be derived from 

  

.
d L L

dt q q


 
 
                                    

(11) 

where q  will correspond to 
1 2 1, , ,   and 

2 , and its derivative is q , that is, 
1 2 1, , ,   and 

2 . 

For the 
1  and 

1 , based on equations (10) and (11) with 
1 1   , we have 

2 21 1 12 2
1 1 12 2 1 1 2 2 1

1 2 2 1 1

1 1
( )

2 2

I I I I U R
I I

r
     

    

    
       

    
          (12) 

Similarly, for the 
2  and 

2 , with 
2 2   , we also can get 

2 22 2 12 1
2 2 12 1 2 1 2 1 2

2 1 1 2 2

1 1
( )

2 2

I I I I U R
I I

r
     

    

    
       

    
           (13) 

Finally, for the spherical wheel, we obtain 

2 21 2
1 1 1 1 1 1 2 2 2 2 2 2

1 2

;
N NR R

J N J N
r r

       
 

 
      

 
               (14) 

Equations (12-13) can be rewritten as the following simplified form, in which  1 2( / ) ( / )
T

R r R r  becomes 

the virtual control input term to control the exerting torque of driving wheels to be vertical attitude. 
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2

1 1
11

1 2

2 2
22

2

U R

r
M

U R

r

 








                                   

                        (15) 

where 

1 1 2 12

1 2 1 21 12

12 2 1 12 2 2

2 1 1 2

1 1
( )

2 2
;

1 1
( )
2 2

I I I I

I I
M

I I I I I I

   

   

    
      

    
             

 

By cancelling both of torques, that is, substituting equation (14) into equation (15), we can have the 

simplified form as equation (16). It can be found that  1 1 2 2

T
J J  

 
becomes the virtual control input term 

for controlling the body to be vertical attitude. 

2

1

11 1 1

2 2 1 2

2 2 22

2
2

U

J
M

JU


 


 




 
                            

                      (16) 

where 

1 1 1 2 12

1 1 2 1 21 1 12

2 2

12 2 2 1 12 2 2 2

2 1 1 2 2

1 1
( )

2 2
;

1 1
( )
2 2

I N I I I

I N I
M

I I N I I I I N

    

    

     
         

    
                 

 

The associated partial derivatives are summarized as below. 

2 2
2 1 1 2 2

1 1 1 2 2 2 1 2 2 2 2 2 2

1 2

; ; 2 ;
(1 )

b b b

S C C S
N m R S N m R S I I m

S S
                

 
 

2 2 2 2 2 2
2 21 1 2 2 1 2 1 2

1 2 2 2 12 1 2 22 2 2 2 2 2

1 2 1 2

2 ; ;
(1 ) (1 )

b b

S C C S C C S S
I I m I m S C

S S S S
  


         

   

 

2 2 2 2
2 1 2 1 2

12 2 1 1 2 2 2

1 2

.
(1 )

b

C C S S
I m S C

S S



   

 
 

2. SMC of VSC 

In the section, the SMC of VSC for the spherical robot is proposed. Two sliding surfaces are designed 

along both directions for reducing the dimension of the system. The convergence of the body attitude can be 

adjusted by two designing positive real parameters 
1a  and 

2a . A positive Lyapunov function or cost function 

is selected as 

2 2

1 1 1 2 2 2

1 1
( ) ( ) .

2 2
VSSL a a                                  (17) 

Then, its derivative is 

1 1 1 1 1 1 2 2 2 2 2 2( )( ) ( )( ).VSSdL
a a a a

dt
                             (18) 

By designing 
2

1 1 1 1 1 1 1 1 1

2

2 2 2 2 2 2 2 2 2

( )( ) ,

( )( ) ,

n

n

a sign a a

a sign a a

     

     

    

    
                      (19) 
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where parameter n  is a non-negative integer, we have a negative derivative of the cost function 

2 1 2 1

1 1 1 1 1 1 2 2 2 2 2 2

2 1 2 1

1 1 1 2 2 2

( )( ) ( )( )

( ) ( ) 0.

n n

n n

dV
sign a a sign a a

dt

a a

       

   

 

 

      

     

                     (20) 

Therefore, the virtual control law can be written as 

2

12
11 1 1 1 1 1 1 1 1 1

2 2 1 22
2 2 2 1 2 2 2 2 2 2 2

2
2

( )( )
.

( )( )

n

n

U

J sign a a a
M

J Usign a a a


     


     




 
                                

                  (21) 

When the virtual controls 1 1 2 2[ ]TJ J    become zero, it implies that the spherical robot can only reach the 

constant speed, that is, 0     is constant. In the section, convergence of body attitude can be 

guaranteed by observing the negative derivative of the selected positive cost function as equation (20). 

Equation (21) is the derived SMC of VSC for the spherical robot, and three parameters n , 1a  , and 
2a  can 

be designed for different considerations or applications. In the next section, simulations will be implemented 

for realizing the effect of parameters. 

3. Simulations and Discussions 

In order to test the performance of the proposed control laws, we carry out several numerical simulations 

using MATLAB
TM

. In these simulations, the spherical wheel is assumed to be made as a hollow sphere with 

radius 0.1R m  and mass 0.25swm kg ; the driving wheels are the thin solid disks, each one with the same 

radius 0.1r m  and the same mass 0.2dwm kg ; the body is a solid cylinder in which the radius 0.1bR m , 

mass 7bm kg  and height 2 0.4h m  . 

Table 1: Various setting of parameters 

Case 
Parameters 

Sub-case n  
1 2a a  

Case_

1 

I_1 0 1 

I_2 0 5 

Case_

2 

II_1 0 2 

II_2 1 2 

 

In simulations, the initial attitudes of body are 1(0) 12    and 2(0) 6  , with angular velocities 

1 2(0) (0) 0   ; the angles and angular velocities of spherical wheel are all zeros, that is, 1 1(0) (0) 0    

and 2 2(0) (0) 0.    In order to compare the effect of various setting of parameters 1 2a a  and n , as 

listed in Table 1, the normalization of the Lyapunov is needed, that is, for each simulated case, it always starts 

from one.  

The Lyapunov function is decreasing as expected for all simulations, as observed from Figure 2. For the 

same setting of parameter 0n  , the larger value of parameter 1a  (CaseI_2 > CaseII_1 >CaseI_1) will cause 

the slower convergent rate of the cost function. Moreover, Figure 3 indicates that parameter 1a  is larger, and 

the time to enter the designed sliding surface will be longer. This implies that for larger value of parameter 1a  
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can result in a shorter period of switching control inputs or longer period of smoothing control inputs. 

Moreover, Figure 7 indicates that the steady-state constant speed of the spherical wheel depends on the setting 

of parameter 1a , and the better one in the simulation is 1 2a   when 0n  . 

The larger value of parameter n  can result in slower convergence of the cost function during the latter 

portion, as referred to Figure 2, and its trajectory will take very long period to reach the sliding surface or the 

zero tilt attitude, as shown in Figure 4. It even cannot reach the constant speed of spherical wheel in time or 

reach higher constant speed after convergence, as illustrated  from Figures 5 and 6, This scenario can be 

illustrated by equation (20) in which the derivative of the cost functional will be more negative when 

1 1 1( )a   or 2 2 2( )a   greater than one. In the other hand, the derivative of the cost functional will be 

less negative when 1 1 1( )a   or 2 2 2( )a   less than one. 

 

  

Figure 2: Lyapunov functions of the proposed VSC.        Figure 3: Trajectories of the sliding surface 

 

Figure 4: Trajectories of the sliding surface           Figure 5: Spherical angular velocity for all cases. 
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Figure 6: Spherical angular velocity.                     Figure 7: Spherical angular velocity. 

4. Conclusions 

In this paper, the model of the spherical wheel is outlined which is different from the previous researches. 

Therefore, based on the new derived model, the constant speed of the spherical robot with the SMC of the 

VSC has been derived and simulated. The effect of two designable parameters, such as, the convergence on 

the sliding surface and the steady-state speed of the spherical robot, has also been studied and discussed for 

understanding their role in the proposed SMC. 
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Current Work: 

The modeling and constant speed control of the proposed spherical robot have been published at 

ICMLC2011 [1-2]. Its position control will focus on powerful hierarchic SMC (HSMC) and cascade SMC 

(CSMC) for under-actuated systems. However, these applications to the proposed spherical robot will easily 

result in undesired constant velocity due to the fast convergence of the body of robot. Therefore, we propose a 

periodic switching scheme instead of state switching scheme, that is, periodic hierarchic SMC (PHSMC) and 

periodic cascade SMC (PCSMC). 

Consider a two dimensional under-actuated system. 
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The conventional hierarchic SMC (HSMC) is to set parameters as 1 30  , 10jn j k k    , 4 8 0c c 

and its key state switching scheme is that 2 1 2( )k sign s s  and 4 3 4( ).k sign s s  The main idea of the state 

switching is to avoid the following two possibilities: (1) 1 20 or 0s s   but 1 1 2 2 0AS k s k s   , (2) 

3 40 or 0s s   but 3 3 4 4 0BS k s k s   . There is a special phenomenon that the zero vertical body attitude 

of spherical robot will cause the difficulty to move the spherical ball to the desired position. The conservative 

state scheme will result in the fast convergence of the spherical robot body to result in the constant speed of 

the spherical ball.  

Therefore, we propose the following periodic switching scheme to overcome the undesired constant 

speed drawback by releasing the fast convergence of the body periodically: 
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The parameter setting PHSMC is as the same as those of HSMC, that is, 1 30  , 10jn j k k    . The periodic 

releasing scheme sometimes may cause the instability of the body. In order to reduce the possibility of the 

instability of the body, we propose a new PHSMC as PHSMC1 by setting 1 3 3n n  . For the HSMC1, the 

body can converge fast when current angle is greater than a predetermined angle, and on the other hand, the 

body converges slower when current angle is less than the predetermined angle. The predetermined angles of 

both dimension are dependent on the constants 2c  or 6c . The larger values of these constants are, the smaller 

predetermined angles are.  

For comparison of HSMC, PHSMC, and PHSMC1, simulations have been carried out with the following 

setting: 2 1/ 50secT  , 2 6 180 / 5c c   , 1, 0k   , 1 5 2c c  , 3 7 1c c  . Figures 1-1 and 1-3 show that 

the angular position and velocity of the body of both dimensions converge to zero for all controls. It notes that 

the convergent rate is fastest for the HSMC as expected. Figures 1-2 and 1-4 indicate the undesired constant 

speed of the spherical wheel for the HSMC. Therefore, the proposed PHSMC and PHSMC1 can solve the 

constant speed problem to achieve the position control for the under-actuated spherical robot. 

 

 

 

Figure 1-1 Angular position and velocity of the body of the first dimension 

 
Figure 1-2 Angular position and velocity of the spherical wheel of the first dimension 
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Figure 1-3 Angular position and velocity of the body of the second dimension 

 
Figure 1-4 Angular position and velocity of the spherical wheel of the second dimension 

 

The formulations of CSMC, PCSMC, and PCSMC1 are omitted in this report, due to the similarity with 

those of HSMC, PHSMC, and PHSMC1. For comparison of CSMC, PCSMC, and PCSMC1, simulations 

have been carried out with the period 2 1/ 500secT  . Figures 2-1 and 2-3 show that the angular position and 

velocity of the body of both dimensions converge to zero for all controls. We also know that the convergent 

rate is fastest for the CSMC as expected. Undesired constant speed of the spherical wheel for the CSMC is 

also existed in Figures 2-2 and 2-4. However, the position control of the under-actuated spherical robot can 

also be implemented by the proposed PCSMC and PCSMC1. 

 
 

 
Figure 2-1 Angular position and velocity of the body of the first dimension 

 
Figure 2-2 Angular position and velocity of the spherical wheel of the first dimension 
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Figure 2-3 Angular position and velocity of the body of the second dimension 

 
Figure 2-4 Angular position and velocity of the spherical wheel of the second dimension 
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□因故實驗中斷 
□其他原因 

說明： 

2. 研究成果在學術期刊發表或申請專利等情形： 
論文：■已發表 □未發表之文稿 □撰寫中 □無 

專利：□已獲得 ■申請中 □無 

技轉：■已技轉 □洽談中 □無 

其他：（以 100 字為限） 
[1] ’Modeling of a spherical robot driven by Omni wheels’, International 

Conference on Machine Learning and Cybernetics (ICMLC), Volume 3, pp. 1256 – 1260, 

2011. 

[2] ’Constant speed VSC of a spherical robot driven by Omni wheels’, 

International Conference on Machine Learning and Cybernetics (ICMLC), Volume 3, pp. 

1214 – 1219, 2011. 

 
3. 請依學術成就、技術創新、社會影響等方面，評估研究成果之學術或應用價

值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）（以

500 字為限） 
目前正在進行分層滑模控制及串聯滑模控制，然而這兩種滑模控制容易造成主體姿態部分

收斂太快為直立，進而造成球的定速問題，而非所需求的定位控制。本計畫修改這兩種的

狀態切換法則為週期性的，就可以克服上述的問題。換言之，球輪的位置控制與主體姿態

控制，在週期放鬆特性下可享有非嚴格收斂的機會。尤其是放鬆主體姿態的嚴格收斂速

度，可大大避免球的定速問題，進而達成位置控制。 

 


