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Abstract

Model of the spherical robot driven by Omni wheels and its constant speed control have been derived
and written as two conference papers published at the ICMLC2011. The modeling is derived based on the
Euler Lagrange approach. The constant speed control is implemented under the sliding mode control of the
variable structure control. Current works are focused on the hierarchic SMC (HSMC) and cascade SMC
(CSMC). To overcome the constant speed problem which is caused by the fast body attitude convergent rate,
that is, vertical attitude, the state switching scheme of both controls has been modified as a periodic switching
scheme which releasing the body attitude convergent rate periodically. Spherical wheel position and body
attitude controls can share a non-strictly convergence under the periodic releasing feature. Simulations show
that the position control of the under-actuated spherical robot can be easily implemented under periodic

switching scheme.

Keywords: Modeling; spherical robot; Omni wheels; Euler Lagrange; Variable Structure Control;

Sliding mode control; Hierarchic SMC; Cascade SMC.
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In recent years, researches on simple and small structure mobile robots which can easily be carried

w3
or transferred for applying to various aspects of usage in many constrained environments become more and
more popular. Other than the weight and structure of a mobile robot, the performance such as vehicle body
balance, stability control, speed and positioning control is also one of main factors to determine the

applications of that robot.



# 3 B e This paper mainly outlines the model of the invented spherical robot using Omni wheels to drive
a spherical wheel. The dynamical model is derived based on Euler Lagrange approach. Therefore, based on
the derived model, the variable structure control (VSC) is presented in which the sliding mode control (SMC)
is adopted to achieve a constant speed at a vertical balance altitude. Simulations of the proposed control
algorithm have been conducted based on two pre-determined sliding surfaces with adjustable parameters to
discuss the effective time to enter the sliding surface and the convergence.

2 }%‘%ﬁz‘ﬁ In 1994, a two-wheeled robot has been proposed [1], and the stability and tracking control of the
two-wheeled robot are similar to the use of inverted pendulum control. The most common application of
two-wheeled vehicles functioned as the inverted pendulum robot is Segway. It is a very good invention to be
studied based on suitable sensors. A precision gyroscope and a sensitive tilt sensor are mainly used in the
Segway vehicle to measure data which help to adjust the future road conditions in the different stability of
walk [2].

Thereafter, a single wheel with inverse mouse-ball drive can achieve the static and dynamic stability has
been developed by Carnegie Mellon University (CMU) [3-4]. The overall design of the system, such as
actuator mechanism and control system is presented. Performance of dynamic balancing, station keeping, and
point-to-point motion are also discussed and presented. Most of all, their papers pointed out that unlike
balancing 2-wheel platforms which must turn before driving in any direction, and the single-wheel can move
directly in any directions. Therefore, they are the first group to propose a balancing rolling machine whose
body is supported by a single Omni-directional spherical wheel. However, for the CMU robot, the conflict
demand of both a high-friction and low-friction material at the same time for the spherical ball becomes the
serious concern to be compromised. The novel combination of Omni wheel and spherical wheel (CWWU) has
been proposed in [5-6], and it virtually can be expressed as the mobile robot body installing on the spherical
wheel which is driven and controlled by two perpendicular pairs of Omni wheels. Both mobile robots with
similar structure, the control of the CWWU is also equivalent that of CMU.

The evolution of variable structure control (VSC) is a very popular and powerful control algorithm, and
it is a form of discontinuous nonlinear control [7-8]. The algorithm adopts a high-frequency switching control
to alter the dynamics of a nonlinear system. Therefore, its state-feedback control law is not a continuous
function of time; it switches from one smooth condition to another. So the position of the state trajectory
determines the structure of the control law. VSC and associated sliding mode behavior were first investigated
by Emelyanov and several co-researchers in early 1950s in the Soviet Union [9]. Recently, the sliding mode
control (SMC) is the main operation of VSC [10]. Due to discontinuous control law, its features include low
sensitivity to the associated uncertainty of plant parameter, greatly reduced-order modeling of plant dynamics,
and finite-time convergence. But, the chattering caused by the implementation imperfections and over-focus
on matched uncertainties are its weaknesses.

This paper mainly concentrates on the CWWU, so its dynamical model is presented first based on Euler
Lagrange approach [11-12]. The SMC of VSC with two selected sliding surfaces for two axes will be

designed and implemented based on the derived dynamics model, and Matlab simulations are also presented.
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1. System description

In order to derive the dynamical model of the proposed CWWU, we begin with the position I5SW and
velocity v, of the spherical wheel formulated as equations (1) and (2). Thus, its kinetic energy K_, can be

written as equation (3)

Pu =R +Rd,] )
V.. =RgT+Rg,j )
Ko = S ) £ M1 = (1 + MR 451 ®

where R isthe radius; mg, and |, arethe massand the moment of inertia; ¢ and ¢, are the rotating
angles along the first and second directions; ¢ as well as ¢, are the angular velocities. Here, we do not

consider its potential energy because of its invariance.
Similarly, for driving wheels, r is the radius; 1,, isthe moment of inertia; Rg /r and Rg,/r are

the rotating angles. The exerting torques z,, z, of driving wheels will be expressed as the effective ones for

the spherical wheel and the body as (R/r)’z,, (R/r)’z,. Because the total mass of driving wheels will be

considered as part of body mass, its translating energy and potential energy will be included in the body. Here,
only its rotating Kinetic energy is considered.

1 R 2 112 R 2 112 _E 12 12
Kgu = (o A+ 10u OV 8 =5 (ah” +10?) @

where 1, =1,,(R/r)’> and 1,=1,,(R/T)>. For the body with angles #, and 6,, and mass m,
centered at a distance ¢ from the center of spherical wheel, then its vertical position of the mass center can

be derived as R+ (\[1-S7—S,2, where S, 2siné, and S, =sind,, as shown in Figure 1.
As mentioned before the mass m, also includes the weights of the driving wheels, so the translation

kinetic energy and potential energy of driving wheels are taken account into the body. So its position I5b and
velocity v, are written as equations (5) and (6). Thus, its potential energy U and Kinetic energy K, can be
written as equations (7) and (8).

P, =(Rg —(S)i +(R¢, —(S,)] +(R +€«f1— S2-S,° )k (5)
¥, = (RY~ (Cp)i + (R~ (C) | + 1 A

(6)
a/1— S2-S,°
U =m,g(1-S7—S,? (7)
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where C,=cosé, and C,=cosé,; | l,,and 1, are the moment inertia of the body; » and w, are

the angular velocities of the body along both directions; g is the gravity acceleration. After substituting
equation (6) into equation (8), the K, can be written as follows:
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Figure 1. Coordinates of the spherical robot

C/C/ C/C/

1 1
K,==[l +m(? —2=2 1o +Z[I +m (> —122 _]?
© 2 P 1-82-82 27 P 1-82-g2 )
ﬁz—slclszcz | L R(4/% + @2 R(C. &' R(C, ¢!
+[m, 1—32—52_ xy]a)la)2+§mb (4" +¢,°) —m,RIC g, —m, 25,0,
1 2

We now define the Euler-Lagrange variable L=K-U =K_, +K, +K,,—U, and it can be arranged as
equation (10).

1 1 1. ., 1 , , ,
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where 2

J =1, +(m, +m)R*+1,;J, =1, +(m,+m)R*+1,,; N, =mR(C; N, =mR(C,
After formulating the variable of Euler-Lagrange, the dynamical model can be derived from
d oL oL

————-—=7. (12)
dtoq" oq
where q will correspondto 64,,6,,4,and ¢,, and its derivative is q', thatis, m,®,,4/,and ¢,.
Forthe 4 and w,, based on equations (10) and (11) with @ = ¢, , we have
10l ol o, 1al ouU R
La, — 0, +=—+a’ +—* o0, - (—2+> )0 +—=——1 12
100 — 1@, 206, | 8926‘)12 26, 2691)2 26, 1 (12)
Similarly, for the 6, and ,, with @, =«,, we also can get
|2a2—|12a1+£%a)22+%a)1a)2— %Jrli)a)lerQ:—Brz (13)
2 00, 06, 06, 200, 06,
Finally, for the spherical wheel, we obtain
" oN R . " ON R
‘]1¢1_N1a1_8_9110)12 :?71’ J 2_’\120‘2_6_‘9226022 :?72 (14)

Equations (12-13) can be rewritten as the following simplified form, in which [(R/ Nz (R/n)z, ]T becomes
the virtual control input term to control the exerting torque of driving wheels to be vertical attitude.

v



2 ou -R

a)l —T
a 00. 1
M| |+ 4 = T 15
M a7 oy 17| g o
@, 00, ro?
1al, ol _(E%Jr%)
here M:[ 1, —|12]H: 2 06, 06, 206, a6,
-l 1 _(EiJr%) al, 1a,
200, 06, 46, 2 66,

By cancelling both of torques, that is, substituting equation (14) into equation (15), we can have the
simplified form as equation (16). It can be found that [J,¢4" J, 2"]T becomes the virtual control input term
for controlling the body to be vertical attitude.
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The associated partial derivatives are summarized as below.
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2. SMC of VSC

In the section, the SMC of VSC for the spherical robot is proposed. Two sliding surfaces are designed
along both directions for reducing the dimension of the system. The convergence of the body attitude can be
adjusted by two designing positive real parameters a and a,. A positive Lyapunov function or cost function

is selected as

1 1
Lyss :E(wl+a101)2 +E(a’2 +6126’2)2. (17)
Then, its derivative is
d
% = (o, +a,0) (o, +a,m) + (o, +3,0,)(a, +a,,). (18)

By designing
o, +a,m, = —sign(w, +a,0,)(a, +a,0,)"",
a, +a,w, = —sign(w, +a,6,)(a, +a,w,)”",
Y%

(19)



where parameter n is a non-negative integer, we have a negative derivative of the cost function

dV 2n+1

o —sign(aw, +a,6,) (e, +a,6,)*"" - sign(w, + a,0,) (@, +a,0,)*""

(20)
= (o, +a0)"" ~|(@, +a,8,)"" <O0.
Therefore, the virtual control law can be written as
Y
J.a" i 2n 1 15l7)
A, ?Ign(a)l +a,0,) (e +a,6) 2n+a1a)1 11| w0, |- 1| 1)
J,0 sign(w, +a,0,)(w, +a,6,)" +a,m, 2 Q
©e 00,

When the virtual controls [J,4" J,#T become zero, it implies that the spherical robot can only reach the

constant speed, that is, ¢"=0->¢' isconstant. In the section, convergence of body attitude can be
guaranteed by observing the negative derivative of the selected positive cost function as equation (20).
Equation (21) is the derived SMC of VSC for the spherical robot, and three parameters n, a, ,and a, can

be designed for different considerations or applications. In the next section, simulations will be implemented
for realizing the effect of parameters.

3. Simulations and Discussions

In order to test the performance of the proposed control laws, we carry out several numerical simulations
using MATLAB™. In these simulations, the spherical wheel is assumed to be made as a hollow sphere with

radius R=0.1m and mass mg, =0.25kg ; the driving wheels are the thin solid disks, each one with the same
radius r=0.1m and the same mass m,, =0.2kg ; the body is a solid cylinder in which the radius R, =0.1m,
mass m, =7kg and height h=2(=0.4m.

Table 1: Various setting of parameters

Parameters
Case
Sub-case n a=2a,
Case_ 11 0 1
1 12 0 5
Case_ 11 0 2
2 12 1 2

In simulations, the initial attitudes of body are 6,(0)=-7/12 and 6,(0)=x/6, with angular velocities
@,(0) = @,(0) =0 the angles and angular velocities of spherical wheel are all zeros, that is, ¢ (0)=¢/(0)=0

and ¢,(0)=¢,(0)=0. In order to compare the effect of various setting of parameters a =a, and n, as

listed in Table 1, the normalization of the Lyapunov is needed, that is, for each simulated case, it always starts
from one.
The Lyapunov function is decreasing as expected for all simulations, as observed from Figure 2. For the

same setting of parameter n =0, the larger value of parameter a, (Casel_2 > Casell_1 >Casel_1) will cause
the slower convergent rate of the cost function. Moreover, Figure 3 indicates that parameter a, is larger, and

the time to enter the designed sliding surface will be longer. This implies that for larger value of parameter a,
Vi



can result in a shorter period of switching control inputs or longer period of smoothing control inputs.
Moreover, Figure 7 indicates that the steady-state constant speed of the spherical wheel depends on the setting
of parameter a,, and the better one in the simulation isa, =2 when n=0.

The larger value of parameter n can result in slower convergence of the cost function during the latter
portion, as referred to Figure 2, and its trajectory will take very long period to reach the sliding surface or the
zero tilt attitude, as shown in Figure 4. It even cannot reach the constant speed of spherical wheel in time or
reach higher constant speed after convergence, as illustrated from Figures 5 and 6, This scenario can be
illustrated by equation (20) in which the derivative of the cost functional will be more negative when

(e, +a,6)| or |(w,+a,6,) greater than one. In the other hand, the derivative of the cost functional will be
less negative when |(@, +2,6,)| or |(w,+a,6,)| less than one.
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Figure 2: Lyapunov functions of the proposed VSC. Figure 3: Trajectories of the sliding surface
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Figure 4: Trajectories of the sliding surface Figure 5: Spherical angular velocity for all cases.
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Figure 6: Spherical angular velocity. Figure 7: Spherical angular velocity.

4. Conclusions

In this paper, the model of the spherical wheel is outlined which is different from the previous researches.
Therefore, based on the new derived model, the constant speed of the spherical robot with the SMC of the
VSC has been derived and simulated. The effect of two designable parameters, such as, the convergence on
the sliding surface and the steady-state speed of the spherical robot, has also been studied and discussed for
understanding their role in the proposed SMC.
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Current Work:

The modeling and constant speed control of the proposed spherical robot have been published at
ICMLC2011 [1-2]. Its position control will focus on powerful hierarchic SMC (HSMC) and cascade SMC
(CSMC) for under-actuated systems. However, these applications to the proposed spherical robot will easily
result in undesired constant velocity due to the fast convergence of the body of robot. Therefore, we propose a
periodic switching scheme instead of state switching scheme, that is, periodic hierarchic SMC (PHSMC) and
periodic cascade SMC (PCSMC).

Consider a two dimensional under-actuated system.

X =X, Xs =X

Xz = fl + bllul + b12u2 Xe = f3 + b31u1 + bszuz
] and <

X3 =X, X; =Xg

X, = f, +b,u, +b,u, X = f, +b,u, +b,,u,

We design four sliding surfaces s, =C,X, +C,X"* +X,, S, =CyX; +C,X32 +X,, S3 = C5Xs +CsXs° + X, and

S, =C,X; +CgX;" + X, . The hierarchic combination of these four sliding surfacesas S, =k;s, +k,s, and
Sg = ks, +k,s, . For the cost function V =V, +V, = % S? +%S§ , its individual derivative by letting

K, (_C1X2 - fi- nlcleﬂrlxz) k, (_C3X4 —f, =n,Cx" X, ) _ nsign(S,) +kS,

+U ’
(k2b2l + klbll) (k2b2l + klbll) (k2b21 + klbll)

ul = ueql eq2 + uswl =

can be written as:
V,=S,S, = SA[kls'l+k2S2]

=S, [kl (e + fy 4+, + e X", )+ K, (G, + F, by, +1,6, %" X, )}

-1 ny-1
SA {kl (C1X2 + fl + bll (ueql + ueq2 + usw1)+ nlcle XZ ) + I(2 (C3X4 + f2 + bZl (ueql + ueqz + uswl) + n2("’4)(3 ’ X4 )}
A

[-nsign(S,) —KS,]



Similarly, we obtain V, =S, [-7sign(S;) —kS, | by designing

k3 (_CSXG - f3 - nSCGXSnrlXe) N k4 (_C7X8 - f4 - n4C8X7n471X8) B nSIgn(SB) + kSB .
(k2b21 + klbll) (k2b21 + klbll) (k2b21 + klbll)
The conventional hierarchic SMC (HSMC) is to set parameters as n; =0V j, k =k, =10, ¢, =¢,=0

U, =Ugz +Ugps T Ug =

eq3 eq4

and its key state switching scheme is that k, =sign(s;s,) and k, =sign(s,s,). The main idea of the state
switching is to avoid the following two possibilities: (1) s,#0ors,#0 but S, =ks, +k,s,=0, (2)
s;,z00rs, #0 but S; =k,s,+k,s, =0. There is a special phenomenon that the zero vertical body attitude

of spherical robot will cause the difficulty to move the spherical ball to the desired position. The conservative
state scheme will result in the fast convergence of the spherical robot body to result in the constant speed of
the spherical ball.

Therefore, we propose the following periodic switching scheme to overcome the undesired constant
speed drawback by releasing the fast convergence of the body periodically:

1 0<t<T 1 0<t<T
K,(t) =k, (t+2T) = and Kk,(t)=k,(t+2T)= :
()=l (t+2T) {—1 T<t<2T W=ki(t+27) {—1 T<t<2T

The parameter setting PHSMC is as the same as those of HSMC, that is,n; =0V j, k, =k; =10. The periodic

releasing scheme sometimes may cause the instability of the body. In order to reduce the possibility of the
instability of the body, we propose a new PHSMC as PHSMC1 by setting n, =n, =3. For the HSMC1, the
body can converge fast when current angle is greater than a predetermined angle, and on the other hand, the
body converges slower when current angle is less than the predetermined angle. The predetermined angles of
both dimension are dependent on the constants ¢, or c,. The larger values of these constants are, the smaller
predetermined angles are.

For comparison of HSMC, PHSMC, and PHSMC1, simulations have been carried out with the following
setting: 2T =1/50sec, ¢, =¢,=180/57, k=1,7=0,c,=Cc,=2,c,=cC, =1. Figures 1-1 and 1-3 show that
the angular position and velocity of the body of both dimensions converge to zero for all controls. It notes that
the convergent rate is fastest for the HSMC as expected. Figures 1-2 and 1-4 indicate the undesired constant
speed of the spherical wheel for the HSMC. Therefore, the proposed PHSMC and PHSMCL1 can solve the
constant speed problem to achieve the position control for the under-actuated spherical robot.
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Figure 1-1 Angular position and velocity of the body of the first dimension
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Figure 1-2 Angular position and velocity of the spherical wheel of the first dimension

X



Body angular 2 position Body velocity 2

0.6 1
—HSMC [—HSMC
-=-PHSMC 1 If‘\ -=-PHSMC
04 |=--PHSMC1 i \--- PHSMC1
i 0. T
i inh)
02hh o g =
AN > \/
o it \ -0.
|
)
YA
! |
-1
.
2
0. 2 L]
) 1 2 3 4 5 6 7 8 9 10 %0 1 2 3 4 5 6 7 8 9 10
t(sec) t(sec)

Figure 1-3 Angular position and velocity of the body of the second dimension
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Figure 1-4 Angular position and velocity of the spherical wheel of the second dimension

The formulations of CSMC, PCSMC, and PCSMC1 are omitted in this report, due to the similarity with
those of HSMC, PHSMC, and PHSMCL1. For comparison of CSMC, PCSMC, and PCSMC1, simulations
have been carried out with the period 2T =1/500sec. Figures 2-1 and 2-3 show that the angular position and
velocity of the body of both dimensions converge to zero for all controls. We also know that the convergent
rate is fastest for the CSMC as expected. Undesired constant speed of the spherical wheel for the CSMC is
also existed in Figures 2-2 and 2-4. However, the position control of the under-actuated spherical robot can
also be implemented by the proposed PCSMC and PCSMC1.
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Figure 2-4 Angular position and velocity of the spherical wheel of the second dimension

[1] Chia-Wen Wu, Zhong-Wei Qiu, Yen-Hsiang Wang, Po-Hsiang Hsu, and Chi-Kuang Hwang, “Modeling
of a spherical robot driven by Omni wheels”, International Conference on Machine Learning and
Cybernetics (ICMLC), Volume 3, pp. 1256 — 1260, 2011.

[2]1 Chi-Hua Wang, Yu-Hsiang Lin, Kun-Shu Huang, Bore-Kuen Lee, Kuo-Bin Lin, and Chi-Kuang Hwang,
“Constant speed VSC of a spherical robot driven by Omni wheels”, International Conference on Machine
Learning and Cybernetics (ICMLC), Volume 3, pp. 1214 — 1219, 2011.

Xl



RAL gt pmd g SR T4

p#:2011/10/29

B g A g

PR BH I 2edndid 2 SRR E L g iRt

PEAFA F ek

3 s 99-2221-E-216-008- g PR A

%A

RN R T




PeEREHFF LTS REL

N

g3

33 S5 0 99-2221-E-216-008-

PE LA I 2o a2 SRS E X v i

£ i R (F 0w
e I
5% p R LS s FERE | g SRR
W Gis (WG| Au JIEE N I I
pegi) | EVE) e o oL
)
P < 0 0 100%
e PiELBREL |0 0 100% 3
¥~ T
Fi gk 0 0 100%
P 0 0 100%
by [ RE | | 100% .
S WK 0 0 100%
Blp o 1 1 100% .
A I
1l 4 0 0 100% + A
L4 0 0 100%
T R 0 0 100% .
(2R BLuersE |0 0 100%
fizmim 0 0 100%
R 0 0 100%
o e PAARRBTED |0 0 100% =
¥~ EE
b 9 2 100%
%1 0 0 100% Y
AT Sy 0 0 100% .
S 0 0 100%
BN (,l\
" i 0 0 100% 2
A 1
11 4& 0 0 100% $
L4 0 0 100%
graig A4 g d 0 0 100%
A =
(hRB) [BLuETE |0 0 100% ’
foizeim 0 0 100%




2010 2 A FEHPE 72 980 sy
B Ay
(mizrugidgz
b AoyRL B S b s
g - LR R%FE
T Ak EE R
MR N R A ES
Vo SIS 1 A2
BE oG F At

}ljo)

’i = %38 P

freks

R E(FFHEEEN)

i/ e

Ro g g qeps ka1 2

Vlsen

Byrs FGE

T e

3
1
4e
g [P/ ey
i
p

OO O OO O o (o

PEY A2 S (RE) A




R g AR 34 3 R 474 324

FRE LR R R R AR ST R P Sk F S Y
1_§_< £ &g ‘f%\'%erzJ\%.&,&ﬁ‘l%lE"%;fgsE\‘L ﬁ";?f%"—'nbf’}) {@i
BRI FEARY FRICAEFRAL L FHEES > (T- FEER o

Dl

1 3P 32 R HApRARR 3PP ERFRIT- 5F
W= Pk
(A& 2 (G > 2100 % 5 %)
(% % 4 pe
[J7Feest & @ 47
(JH © & 7]
o
2. P S % a4 &Y g 1%
H> W #4 Orgd2~ 5 Oerd Oa
B O E® WYY Oa
# Wl FE s &
Hw (12100 F 5 2)

[1] ° Modeling of a spherical robot driven by Omni wheels’ , International
Conference on Machine Learning and Cybernetics (ICMLC), Volume 3, pp. 1256 - 1260,
2011.

[2] 7 Constant speed VSC of a spherical robot driven by Omni wheels’ ,

International Conference on Machine Learning and Cybernetics (ICMLC), Volume 3, pp.
1214 - 1219, 2011.

¥
™
)
L

e
3l-

3. REENF S AR ALEBLE G 0 FEAL S R LE A
lg (FRAESETRL2Z AR - BE BEL - HFB27THH) (1
500 F % ")
IR CETRAN B ot TR b b ot IRN G CLR b b = At IR R CRAER | EW S AP
BB i R A 7 AR R AR
H%ﬁ;*f#fén‘l,—'\;tﬂﬂr%m’ﬁh? DR SRRl LR - ¢ RN ES
Al R RFET IR G R A g o A R WA I B T A
BV A XFLFOTFERNIE  Ead a8 i e




