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Three-dimensional
conserveation law form are solved directly
using the second-order, explicit, MacCormack
predictorcorrector and Godunov methods
dternately for the simulation of spatially
developing free and forced shear Layer. The
optical effects of coherent structures in the
mixing layer are identified. As expected, the
far-field optical quality of a laser beam is
degraded the most when laser beam passes
through the edge of the large eddies. Optical
performance can be improved significantly by
controlling of the coherent structures in the
mixing layer. The shear layer perturbed by
periodic forcing with appropriate amplitude is
characterized by a region within which the
growth rate of the shear layer is zero. It is

Navier-Stokes in
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found that the Strehl ratio ,SR is, the highest in
this “non-growth” region of forced situation.

[1. Introduction

The plane free shear layer generated by
the mixing of co-flowing fluid streams is
geometricaly simple and is illustrated in
Figurel. This simple flow configuration is
important in  mixing processes and is
encountered in many other engineering
applications. The extraction of power from
high-power gas |asers, for example,

often involves passing the beam through
interface between gases of different indices of
refraction. Shear layers can produce random
phase errors in the beam that can substantially
reduce the maximum intensity to which the
beam can be focused. Propagation of a laser
beam through the atmosphere and aero-optical
degradation are two other examples which
involve interaction between a mixing layer and
alaser beam.The main purpose of this research
is to understand the factors which influence
optical degradation and to make useful
predictions or correlation with respect to the
flow parameters. The optical properties of shear
layersis atopic of research with applicationsin
high power lasers and optical imaging system.
In recent years, it has been shown that large
scale structures are intrinsic features in a plane
turbulent mixing layer. While there has been
some research on the effects of turbulence on

laser beams, there has been no study of the
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optical effect of large-scale structures as they
exist in shear layer development, nor how these
effects may be controlled. We are studying the
optical effects of large scale structuresin forced
and unforced situations using periodic motion
of asmall flap at the trailing edge of the splitter
plate.

In order to understand the optical properties of
the shear layers, it is necessary to understand
their basic fluid mechanics. Many recent
experiments have confirmed that large-scale
coherent structures are indeed intrinsic features
of a plane mixing layer over a wide range of
Reynolds numbers [1,2]. The plane mixing
layer consists of an array of large eddies of
concentrated span  wise vorticity. These
guasi-two-dimensional large eddies are
responsible for the transport of mass and
momentum. In the past, the investigation of
shear layer optical properties were based on the
assumptions of homogeneous turbulence. There
has been no study of the optical effects of
large-scale structures which exist during the
course of shear layer development. One
purpose of this work is to identify the optical
effects of coherent structures. It is also known
from experiments that the shear layer flow
pattern can be altered easily by introducing
external perturbations near the point of initial
mixing [3,4]. Since the spreading rate and the
density profile (related to the index of
refraction distribution) can be changed
drastically by perturbing a a particular
frequency with appropriate amplitude, another
purpose of this research is to seek out the
method of improving optical performance in
the far-field by controlling of the mixing layer.

The basic vortex dynamics in a shear layer are
essentially inviscid. However, to simulate a

free or forced shear layer numericaly, 3-D
Navier-Stokes equations are solved by
alternating the MacCormack explicit, predictor-

corrector and Godunov scheme [5,6]. The 3-D
Navier-Stokes equations can be solved directly
and the density fields obtained are used for
shear layer optical property studies.

[I1. Governing Equation and Numerical
Schemes
Based on the assumptions that there are no
external heat addition and body forces, the
compressible Navier-Stokes equations in 3-D
Cartesian coordinates can be written as
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Here X is the streamwise coordinate, y is the
cross-stream coordinate and z is in the
spanwise direction (see Fig.2). The equations
written are in conservation law form represent
the conservation of mass, momentum and total
energy of fluid motions. The variables £: pu,
AV AV and e are mass, streamwise momentum,
cross-stream momentum, spanwise momentum
and total energy respectively, all per unit
volume. P is the pressure. For an ideal gas, the
pressure is related to the equation of state
p=(r-Dpe, where ¢ is the specific internal
energy and 7 istheratio of the specific heats,
I.e.,,7 =¢,/c. Throughout this paper the value of
7 istaken as 1.40.

The numerical code used in the current work is
intended for the direct simulations of the 3-D
compressible Navier-Stokes equations with no
subgrid scale turbulence model. The code uses
finite volume techniques which involves
aternating in time the second-order, explicit
MacCormack scheme has a lagging phase error
and the Godunov scheme has a leading phase
error [7], considerable reduction in the phase
error can be achieved by tempora switching of
these two schemes[8]. The state variables 7, u,
v, w, and e are calculated at the center of each
computationa cell, which is a cubic mech. A
grid system at resolution for 182x32x32 is
adopted, and Ax=Ay=Az=0.02cm, Note that to
caculate the terms, second-order
extrapolation are made of the primitive
variables (#, u, v, w, €) from the cell centers
to the cell boundaries to give extrapolated

flux

values on the two sides of all cell boundaries.
On the predictor step, values extrapolated from
the left or the bottom or the back side of the
cell boundaries are used; on the corrector step,
values extrapolated from the right or the top or
the front side of the cell boundaries are used.
To achieve numerical stability, a simple
limiting technique is applied, that is, all
extrapolated values of the primitive variables at
the cell boundaries must lie between the cell
center values at the two adjacent cell centers. If
any extrapolated value of a primitive variables
does not satisfy this condition, it is replaced by
the cell center value which is more closer to it

[9].

Two low speed air streams are modeled, each
with different enthalpy, so that the density
ration is 1.1 at a velocity ratio of 0.5. The two
free stream velocities are U, =7.04x10° cm/sec
(M=0.2) and U, =352x10°cm/sec; the densities
are p,=12019x10° g/cm3, and p,=11lp . A
hyperbolic-tangent velocity profile is adopted
for the initial streamwise velocity distribution
a the gsplitter plate such that the initia
momentum thickness of the shear layer is
0.02cm. However, in the initial density profile
there is a discontinuity at the contact surface.
The pressure everywhere is 1 atm, the y-
component, and the z component of the
velocity are zero initially.

Both mass flux and energy flux are kept
constant as the inflow boundary conditions.
Based on the hypothesis that the top, bottom,
back and front boundaries are streamlines, the
numerical boundary conditions used there are

aq aq .
v=0,w=0, —=0and—=0
oy = , Whereqis »7,oru,

or e. For the outflow boundary condition, the
pressure is assumed to be constant.



It has been shown that in order to resolve the
large-scale structures in a mixing layer,
unsteady boundary conditions must be applied
[10]. In this case, at the inlet plane, a periodic
forcing is introduced to simulate the “natural”
mixing layer. The forcing frequencies consist
of the fundamental frequency and the first three
subharmonics of the shear layer. The
fundamental frequency satisfies the Strothal
number criterion which is derived from
Rayleigh’s inviscid, linear stability theory [11].
In this case, the fundamental frequency is
4.227KHZ. Furthermore, the forcing is
modified by incorporating random phases to
the Rayleigh modes to simulate random pairing
of two neighboring vortices [12].

To advance the code in one time step At, the
numerical stability condition must be applied
[5,6]. During this time interval, At
from neighboring Riemann problems will not
interact with each other. In our caculations,

waves

AX,AY “and 4z are of the order of millimeter,
At js therefore of the order of microsecond to
satisfy the stability condition. Generdly, the
statistical stationary fluid dynamical results can
be obtained after 10,000 time steps. To
calculate the time averaged fluid dynamical
variables, a time interval of 5,000 time stepsis
needed.

. Resultsand Discussions
Figure 3 shows the instantaneous isodensity
plot of a 3D free shear layer at velocity ratio
0.5 and density ratio 1.1. Examining this figure
carefully, the adjacent structures are connected
by braids which are regions of low vorticity
and highly strained. The center of the shear
layer moves towards the low-speed side. There
are more fluid particles entrained from the
high-speed side than that from the low-speed

side in the mixing Entrainment
asymmetry is an important feature of the spatial
shear layer and this result is consistent with the
experimental evidence [13, 14] and other
numerical simulations [15]. Figure 4 shows a
sequence of instantaneous flow visualization of
the density field for the natural shear layer.
the pairing

phenomenon between two vortices. This vortex

region.

These figures clearly show

amalgamation process occurs randomly in
gpace and time and it is responsible for the
linear growth rate of shear layer. In the fully
developed region, statistics of the fluid
dynamical variables such as streamwise
velocity, rms u-fluctuations, v-fluctuations, and
w-fluctuations as well as the Reynolds stress
distribution show that the flow is self-similar
which are not shown due to limited space.
Figure 5 and Figure 6 are plots of isodensity
field for the shear layer under fundamental
frequency and first subharmonic frequency
perturation  respectively.  Forcing  with
fundamental or subharmonic  frequency
produces controlled coherent structures where
the growth rate of the forced shear layer is zero.
In the non-growing region of the shear layer,
amalgamation of neighboring vortices are
inhibited and the mixing layer consists of an
array of large eddies in the lateral direction
with no interactions.. The trends of al fluid
dymical results obtained are consistent with
experimental and numerical results of others
[16, 17] lend full confidence that the code has
been validated satisfactorily. The density field
then can be used for shear layer optical
property studies.

The phase distortation of a coherent light beam
plays a very important role in determing the
far-field properties of the beam. Coherent
structures of the shear layer generate phase



errors in the laser beam passing through it.
Basically, the far-field intensity profile is the
modulus square of the Fourier transform of the
aperture function [18]. The optical effects of
the shear layer are calculated by passing a laser
beam through it with circular aperture and
uniform phase. The far-field focal plane
intensity distributions measure the optical
quality of the shear layer. The Strehl ratio, SR,
which is defined as the ratio of the maximum
light intensity of the diffraction pattern to that
of the same optical system without aberrations,
will be used to evaluate the optical quality
guantitatively [19, 20, 21, 22]. Figure 7 gives a
typical example plot of the instantaneous Strehl
ratio for the natural shear layer. The beam size
is larger than that of the flow structure, wide
angle scattering due to these fluid fluctuations
removes optical energy from the beam and
spreads the intensity profile in the far-field. The
Strehl ratio is 0.585, more than 40% of peak
energy is removed. However if laser beam
passing through the non-growing region of the
forced shear layer where the large eddies are
equal in size, results in the amplitude of the
phase variation being small, which in turn
improves the optical performance in the
far-field. Figure 8 demonstrates this effect.
When laser beam passing rough the non-growth
region of the shear layer, the lobes in the
far-field pattern disappear which is due to
partial compensation for the phase errorsin this
region. The Strehl ratio is 0.921, a significant
recovery of SR value.

. Conclusions

1. The smplest and most natural way of
modifying the mixing layer is to perturb the
layer by external, periodic disturbances.

2. If beam performance improvement is needed
in the region near the point of mixing, the
method of fundamental frequency forcing
should be applied; otherwise the method of
subharmonic forcing may be used.

For a forced shear layer in the region of zero
growth rate, the optical performance of the
shear layer in the far-field is improved
significantly. But the thickness of the shear
layer in this region is not a important factor
controlling the optical quality of the shear

layer.
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Fig.1 Example of free shear layer.
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Fig.2 Schematic of a planar wave front propagating

through a shear layer.
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Fig.6 Isodensity plot for a forced shear layer by first
subharmonic frequency.

Fig.3 Isodensity plot of a 3D free shear layer at velocity

ratio 0.5 and density ratio 1.1. SR=0.585 4 =6328A
D=5.12cm
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Fig.4 Instantaneous isodensity plot of a shear layer at
z=0.

Fig5 Isodensity plot for a forced shear layer by Fig.8 Far field intensity contour produced by the forced
fundamental frequency. shear layer.



