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This project develops two approaches of the time varying models to analyzing dynamics for an
involute planetary gear system, that are respectively using a discrete model and a continuous
geometry model by the finite element method. In the discrete approach, numbers, positions, phasing
differences of the meshing tooth pairs are described by time varying and nonlinear meshing
stiffnesses. Natural frequencies, meshing forces, fillet stresses, and dynamic factors can be
calculated by using the Jacobi transformation and the Runge-Kutta integration. In the continuum
approach, dynamics of the planetary gear system are analyzed using the software, LS-DYNA. The
approach of the continuous geometry model can incorporate the time varying properties
intrinsically. In this continuum study, high quality mesh elements of the planetary gear system are
automatically generated directly using the derived tooth profile equations. After assigning initial
and boundary conditions, dynamic responses for the planetary gear system are solved. Fillet stresses
resulting from the both approaches are verified by each other comparisons. Finally, the parametric
analysis is performed to investigate the influences of center distances, backlashes, modification,
rotation speeds, and loadings on the dynamics. The results are expected to enhance analysis and
design ability for the planetary gearings.

Keywords: Planetary gear system, Dynamic analysis, Meshing phase, Finite element, Dynamic
contact force, Dynamic fillet stress, LS-DYNA
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ABSTRACT

Two time varying approaches are executed in analyzing
dynamics for an involute planetary gear system, which
respectively use a conventional discrete model of the
equivalent mass-damping-spring elements and a continuous
geometry model by the finite element method. In the discrete
approach, the tooth number, position, and phasing difference
of the meshing tooth pairs are described by time varying and
nonlinear meshing  stiffnesses.  Natural  frequencies,
deformations, meshing forces, fillet stresses, and dynamic
factors can be calculated by using the Jacobi transformation
and the Runge-Kutta integration. In the continuum approach,
dynamics of the planetary gear system is analyzed using the
software, LS-DYNA. The approach of the continuous
geometry model can incorporate the time varying properties
intrinsically. In this continuum study, not CAD models, high
quality mesh elements of the planetary gear system are
automatically generated directly using the derived tooth
profile equations. After assigning initial and boundary
conditions, dynamic responses for the planetary gear system
are solved. Natural frequencies and fillet stresses of the both
approaches are verified by each other comparison. Potentially,
the continuum approach can extensively and sophistically
analyze dynamics problems of the planetary gear systems.

1 INTRODUCTION

Constantly, the gearing is the most important transmission
solution in the majority of machineries. Among that, due to
their excellent features of high precision, high reduction ratio,
high power-volume ratio, and low noise and vibration,
planetary gear sets have been applied in the wide varieties of
high technology machinery such as vehicles, aircrafts,
machine tools, and robots et al. With increasingly severe
demands for high precision and high speed transmission
mechanisms, dynamic performance of gearings has to be

further upgraded. Thus inclusion of planetary types, dynamic
analysis of gearings has become the important research topic.

Three decades ago, the researcher [1] has originally
performed the dynamic investigation of planetary gear systems.
Latter, August and Kasuba [2] found that dynamic responses
of planetary gear systems are critically affected by the
variation of the meshing stiffnesses and fixity design of their
sun gears and stated that a design using a stationary sun gear
has better dynamic performance than a floating one. In 1996,
Velex and Flamand [3] also obtained the similar conclusion.
Of high creativity, Kahraman [4] investigated the dynamics of
a helical planetary gear system with four equally spacing
planet gears. The author categorized planet phasing conditions
and also calculated modal shapes and meshing forces caused
by the excitation due to profile errors in the gear system. Not
long ago, Parker [5, 6] also investigated influence of the
meshing phase differences on the dynamics for the planetary
gear systems designed with three and four planet gears.
Besides, the publication of Velex and Flamand [7] presented
that the stiffnesses of the meshing gear pairs influence the
planetary gear dynamics than the stiffnesses of the shafts, sun
and ring gears, and bearings do. Recently, the effect of
nonlinearity in the planetary gearings also started to be
emphasized. Sun and Hu [8] using a harmonic balance method
analyzed the nonlinear dynamics of planetary gearings both
incorporating the nonlinearity of multiple clearances and time
varying meshing stiffnesses. Lin and Parker [9] calculated
natural frequencies of planetary gear systems. The
nonlinearity due to meshing stiffness discontinuity of gear
pairs was discussed. Moreover, the same authors [10] also
discussed the natural frequencies and their repetition number
of the planetary gearings in which the vibration modes are
classified into three types of the rotational, translational, and
planetary modes.
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Virtually, difficulties of dynamic analyses for planetary
gear systems are caused by their diversity and complexity of
system configuration, numerous design parameters, required
precise description of their complicated tooth profiles, and
many others. A conventional equivalent discrete model can
greatly simplify their physical model and benefit computing
efficiency. However, not only the complexities of structure
configuration and geometry profiles, but also the time varying
and nonlinear behaviors of meshing stiffness due to move
contact points and number of tooth pairs in contact, meshing
stiffness discontinuity, and backlash; the discrete model is
hard to describe the planetary gearings precisely. Needless to
say, the considerations of the profile modification,
manufacturing error, elastic deformation, and lubrication and
wear are never too emphasized in the gear design. Probably, it
may be stated that using the discrete model is only adequate to
limitative types of planetary gearing under very simplified
designs and operating considerations.

With improvement of computer and computing
technologies, analyzing methods employing the 2D/3D
continuum models are becoming mature and have been
successfully applied in lots of engineering applications. The
methods being applied in the gear dynamic analyses are
naturally considered, through that more complicated problems
and accurate results about gear dynamics are expected to be
arrived. Thus, Huang and Liu [11] utilized a dynamic stiffness
method of a continuous geometry model in which each gear
tooth is described using four nonuniform Timoshenko beam
elements. Through that, dynamic response of spur gear pairs
including the effect of tooth modifications and backlashes was
investigated. Tsai and Tsai [12] and Litvin et al. [13]

performed the statics analysis of a gear using the FEM method.

Recently, Chen and Tsay [14] also used the commercialized
package, ABAQUS, to analyze static contact forces in the
helical gear pairs. When analyzing gear statics or dynamics
problems by the continuous approaches, high quality element
models, which precisely describe the gear geometric profiles,
have to be prepared in advance. However, there exist
difficulties owing that (i) the tooth profile is constituted by
complex curves, (ii) large dimension aspect ratio exists
between a whole gear and its critical areas such as the points
near a local contact and tooth fillet, and (iii) once the
influences of tooth profile modification, manufacturing error,
and backlash are concerned. Even for a simplest gear pair, the
preparation of its element model is a very time-consuming and
high skilled burden. Therefore, Brauer [15] using the gear
geometry theory of Litvin [16] presented a method to generate
element models applicable to several gear types automatically.

In the aspect of planetary gear systems, Yuksel and
Kahraman [17] used an FEM package to calculate the dynamic
meshing forces and predicted their wear on gear teeth. The
influence of wear on the dynamic response for the planetary
gear systems is also discussed. The authors concluded that
severe wear causes an obvious effect on the vibration modes
and also on the dynamic meshing forces for the gearing.
Besides, using the multibody model and the contact theorem,
Bajer and Demkowicz [18] analyzed the dynamic responses of
a planetary gearing subjected to an impact. The total system
energy including both the effects of the rigid and elastic is
calculated. Recently, Litvin et al. [19] undertook a tooth
contact analysis by performing tooth profile and crowning

modifications through which the transmission error, noise and
vibration of a planetary gearing were expected to be reduced.
Basically, the above gear studies using continua are mainly
endeavored on static mechanics. Until the recent studies [17,
20], the continuum approach using the finite element method
is starting to be adopted in analyzing gear dynamics.

This study proposes two generalized time varying
approaches to dynamic analysis of an involute planetary gear
system, which are respectively using a conventional discrete
model and a continuous geometry one. In the discrete
approach, time varying meshing stiffnesses of sun-planet and
ring-plant tooth pairs will be derived. Through that, the
number, position, phasing difference of meshing tooth pairs
are included. In the continuous geometry approach, the
element models of high quality for the planetary gear system
are automatically generated directly using the derived tooth
profile equations. Then, dynamic responses of the planetary
gear system are solved both using the dynamic FEM software
of general purpose, LS-DYNA.

2 DISCRETE APPROACH

2.1 Equations of Motion

Figure 1(a) shows a 3D solid model of a planetary spur gear
system. The fixed ring gear is ground to the stationary frame.
The torque applying on the shaft of the sun gear is transferred
to the output shaft which is connecting to the carrier. The
equivalent 2D discrete model of the gear system is depicted in
Fig. 1(b). Here, the Lagrange equation will be served to derive
the equation of motion for the planetary gear system. Firstly,
the assumptions for the theoretic derivation are given as
follows: (1) the planetary gear system is described by a 2D
discrete model, (2) the meshing stiffness of a mating gear pair
is modeled by connecting tangentially their base circles using
a translational spring, (3) all bearings are modeled using
supporting translational springs, (4) no manufacturing errors
exist, and (5) neglect the effect of deformation of the carrier
on planet gears. Besides, in order to brief the description, an
external gear pair means a gear pair of the sun and a planet
gears, and an internal gear pair for a gear pair of a planet and
the ring gears. Then including the rigid body rotation, the
kinetic and strain energies in the planetary gear system are
derived in Egs. (1) to (13).

Kinetic energy:

TO =%J(‘”(n(d) +gO) (€

T :%J(s)(n@) +g® )2 +%m<s) [(x@ )2 +(y<s> )Z} 2

R SR YA
T® :ZEJ()(n()+¢())
+i%m“) [(-rb‘”n(“) siny, + >'<“))2 (3)
+(rb(°)n(°) cos¥, +y® )1
c 1 c c 1(c 2
T”:EJ”(n“+¢”) (4)

TO :%J(”(n(”+¢}(”)2+%m(” [(x“>)2+(y“) )2} )
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() — L (90 () &) ()
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where T® and v© are the kinetic and strain energies,
respectively; 3 the polar inertial moments; m® and k© the
masses and stiffnesses, respectively; n® and g the rigid and
elastic rotation speeds, respectively; and x® and y© the

translational velocities of elastic deformations, respectively.
The superscript * can be d, s, ¢, i, r, and o which respectively
represent the input shaft, sun gear, carrier, ith planet gear, ring
gear, and output shaft. More explanation, v is the strain
energy of the driving shaft, v© strain energy of the sun gear,
v ¢ strain energy between the sun gear and the ith planet gear,
v ™ strain energy between the ring gear and the ith planet
gear, vV strain energy between the carrier gear and the ith
planet gear, v® translational strain energy of the ring gear,

and v © strain energy of the driven gear. Besides, r” and
r represent the radii of the base and addendum circles of the
gears, respectively, and n, is the number of the planet gears.
Besides, d®" in Eq. (9) and d“” in Eq. (10) are the elastic

deformations along the contact lines between the ith planet
gear to the sun gear and to the ring gear, respectively.

ECYand E“ are the errors of the sun and the ring gears,
respectively. As the illustration in Fig. 2, d*” and d‘” can be
formulated as
d¢ = (96 +x© cosn, + y© sinz, )
o _ (14)
—(r(')qﬁ") +x9 cosz, +y©sing, )

ded = [rb“)qﬁ(” +xsin (am +¥,)+y" cos(oerp +¥, )J (15)

—[rb(")gﬁ“)pi +xOsin (e, + ¥, )+ y© cos(a,, + ¥, )}

where «,, and «,, are the operating pressure angle of the
external and the internal gear pairs, respectively. Then, using

the Lagrange equation to Egs. (1)-(13) and including damping
terms, the discrete governing equation for vibration of the
planetary gear system expressed in a matrix form is derived
and expressed as

MX+Cx+Kx=F (16)
where M, C, and K are the matrices of mass, damping, and
stiffness respectively. X and Fare the displacement and the
excitation vectors, respectively. The deriving process and the
elements in the matrices and vectors in Eq. (16) are
abundantly given in Ref. [21]. Subsequently, meshing
stiffnesses and phase differences, which can simulate the time
varying properties of the planet gear system, are deduced as
follows.

Planet gear Carrier

Loading

Output
shaft

Ring gear

5555
o

j_ (b)
Kry

Figure 1. A planetary spur gear system: (a) 3D solid model, (b)
2D discrete physical model.

2.2 Meshing Stiffnesses of Gear Pairs

In this study, using the method proposed by Kuang and Lin
[22], the meshing stiffnesses of the gear pairs in the planetary
gear system can be obtained by including three parts of
compliance: (i) a4, due to gear tooth subject to the meshing

forces, (ii) U;, due to the elastic support of the gear body, and
(iii) 0y due to the local deformation by the Hertz contact

stress. Therefore, the meshing stiffness k , ; for the jth tooth
pair in the mating gears, p and g, can be expressed as
Koo, 3 = (G + Gy + ) 17
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Including all tooth pairs engaging the mesh at the instant, their
resulting stiffness for the gear pair is obtained as

n
Kog :Zlkpg,i (18)
=

where n, is the number of the meshing tooth pairs.

2.3 Phase Differences between Gear Pairs
In a similar way to Ref. [6], the phase differences are derived.
Figures 2 and 3 illustrate the meshing conditions of various

external and internal gear pairs. Respectively, C, and C, are
the meshing points of the external and internal gear pairs and
P, and P, are their operating pitch points. r,”” and r," are
the radii of addendum and base circles in which superscripts *
can be s, p, and r which respectively represent the sun, planet,
and ring gears. 1. and r. are the radii at the contact points

and z®and z" the teeth numbers of the sun and ring gears.
In addition, the share angles for each gear tooth are

2712 and 27/z" which are respectively for the sun and
ring gears. % is the circumferential angle between the kth
and first planet gears around the sun gear. Abundantly, two

kinds of phase differences between the individual meshing
gear pairs are respectively derived below.

(1) Phase difference between kth and 1st external gear
pairs

Firstly, assume that the first external gear pair is meshing at

the pitch point P, as shown in Fig. 2. Then, the passing teeth

number, counting from the first planet gear to the kth one
around the sun gear, can be calculated using Eq. (19).

(x) ®) . 5()
Ve Ve - Z
27l 7% or 2 (19
There are two conditions discussed as follows:
(a) The result of Eqg. (19) is an integer, i.e.,
p® .20 W 0
< =int(== ) (20)
27 27

which means that no phase difference exists between these
two gear pairs. Here, int is defined as an operator to acquire
the integral part.

(b) The result of Eq. (19) is not an integer. The passing
number of the sharing angles for each tooth around the sun
gear from the first planet gear to the kth one is

p® .2

2r

Thus, the phase difference exists between the kth and the first
gear pairs and is derived as follows. Using the illustration in
Fig. 2, the angle between the radial line of the starting point of
involute for the sun gear in the kth gear pair and center line

0,0, isgivenas

n® =int( +1) (21)

(s)

0, =2”Z'(—S—y/§k> Tinve, (22)
where inv is the involute function [14]. Thus, the phase
difference, x{\, between the kth and the first external gear
pairs can be as follows:

2
Z(S)

() when r, >r®, x¥ =6 -==-inva,,.

(iiywhen r, <1, & =6 —inva,, .

If x5 >0, the kth external gear pair is leading to the first one

with a phase angle of «{’. Oppositely, if x{,’ <0, the kth

external gear pair is phase lagging to the first one with an
angle of -« .
In a similar derivation using Fig. 2, the phase difference

between the kth and the first internal gear pairs can also be
derived but no detail is shown here.

Figure 2. Meshing phasing relation between the kth and the
1st gear pairs of the external and the internal.

Figure 3. Meshing phase relation between the 1st external and
the internal gear pairs.

(2) Phase difference between the 1st external and internal
gear pairs

The phase relation between the first external and the first

internal gear pairs is derived from the configuration illustrated

in Fig. 3. Again, assume that the first external gear pair is
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meshing at the pitch point, P,. Designate «,, to be the phase

difference between the first internal gear pair and the first
external one. As the illustration in Fig. 3, the angle between
the radial line at the involute starting point of the planet gear

in the first internal gear pair and the center line 0,0, is

By =inva, (23)
Thus, the angle &, between the radial line of the starting point,
A, of the opposite involute curve of the planet to center line

t
6, =—=+2inva, - (24)

)
rb

where ¢, is the pressure angle of the rack cutter and t,
which is the circular tooth thickness at the pitch circle, is

written as
t,=7zm/2+2etang, (25)
Here, m is the module of the gear and e is the amount for the
nonstandard tool setting. Combining Egs. (23) to (25) leads to
7 2etana,

0, =—+

———+2inva, —inve, (26)
70 mz® 0 P

Next, by passing teeth number counting around the planet gear
along its rotation direction, find out its first tooth, which has

exceeded center line @ and is joining the meshing of the
internal gear pair. Then, the passing teeth number n, can be
found using Eq. (27).
-6,

271z
(a) If Eq. (27) is an integer, then

n =(r—-6,)I(2x12")
(b) If Eq. (27) is not an integer, then

n, =int[(z —6,) /(21 2P) +1]

(27)

Therefore, the angle x; between the radial line of the involute

starting point, C, on the first planet gear and center line O,0,
is

2z
K1=n1~ﬁ+93—7r (28)

Using relation ED = EC can lead to
0, =tan™* (e +17) (29)

Finally, the phase difference between the first internal to the
first external gear pairs is

K, =invg, —inva, (30)
If x, >0, the first internal gear pair is leading to the first
external one with a phase angle of «, . If x, <0, then the
first internal gear pair is lagging to the first external one with a
phase angle of —«,, . Using the above derivations, the meshing

phase differences for the planetary gearing between the
arbitrary two gear pairs can be obtained.

2.4 Dynamics Analysis by Discrete Approach

Subsequently using the model derived above, the dynamic
analysis to the planetary gear system using the discrete
approach can be achieved. Firstly, the instantaneous meshing
points, the number of tooth pairs in contact, and the phase
differences, the corresponding instantaneous and equivalent
meshing stiffnesses of the gear pairs are calculated. Then, the
time varying governing equations for dynamic analysis to the
planetary gear system are obtained. Next, executing the Jacobi
transformation, the natural frequencies of the planetary gear
system are found. Finally, applying the driving and the driven
torques on the shafts, updating the time varying elements, and
performing the Runge-Kutta integration, the dynamic
displacements of the gearing are obtained. Thus, its fillet
stresses, dynamic meshing forces, and dynamic factors in the
gearing can also be calculated. The dynamic factor here is
defined as the ratio maximum between the dynamic meshing
forces to the static ones in the planetary system.

3 CONTINUOUS APPROACH

3.1 FEM Model of Planetary Gear System

The planetary gear system investigated is constituted by
standardized involute spur gears. Its mesh element model is
created through the following process. Firstly, by using the
homogenous coordinate transformation on the profile
equations of a rack cutter and applying the equation of
meshing for gears, the theoretic tooth profiles of the gears are
obtained. Then, not CAD models but using a C code, high
quality meshing elements of the gears are automatically built
by using the derived tooth profile equations directly. By which,
the mesh elements of the sun gear, planet gears, and ring gear
are sequentially created. Next, including the models of the
driving and driven shafts, carrier, bearings, and bearing house,
the entire model of the planetary gear systems is built as
shown in Fig.4. Then, after assigning suitable material
properties, initial and boundary conditions, and other required
settings, dynamic responses for the planetary gear system can
be solved. Figure 4 shows the FEM model of the analyzed
gear system whose gear data are given as follows: module

m=1.25 mm, pressure angle «,=20° , tooth number

728 =zM =28 77 =84 . The bearing houses are used to
accommodate the bearings, whose effect is modeled by using
discrete supporting springs herein.

3.2 LS-DYNA Settings for Gear Dynamics

Assign the material and element properties to the created
element model of components in the planetary gear system. A
specified steel type is assigned material to all the components.
The carrier is assumed with high rigidity for its minor
deformation. Additionally, the elastic displacements of the
input and the output shafts, bearing houses, and carrier are
neglected. Thus, their rigid body property is also assumed.
Next, contact conditions between the meshing gear pairs will
be defined. Define that the driving ones are masters and the
driven ones are slaves. Thus for an external gear pair, the sun
gear is a master and the planet gear is a slave. For an internal
gear pair, the planet gear is a master and the ring gear is a
slave. The input shaft is rigidly connected to the sun gear
using constraint “Extra Node” [23], so is the output shaft
connected to the carrier. Then, boundary conditions of a
constant driving torque applied on the input shaft, and a
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prescribed constant rotation speed is given to the output shaft
those are depicted in Tab. 1. The settings corresponding to
numerical computing and output control are also given.
Finally, the dynamic responses of the planetary gearing by the
continuous approach are calculated using LS-DYNA.

h

g ~ Bearings
Bearing g, il
houses /", _ _ (Springs)

T Carrier

Figure 4. The mesh element model of the planetary gear
system.

Table 1. Settings of boundary and initial conditions for
analyzing the planetary gear system using LS-DYNA.

Shaft Setting
1. Constraint: rigidly connecting input shaft
Input and sun gear using “Extra Node”

shaft 2. Initial condition: initial rotation speed

3. Driving torque

1. Constraint: rigidly connecting output shaft
Output and carrier using “Extra Node” .

shaft 2. Initial condition: initial rotation speed

3. Prescribed motion

4 RESULTS AND DISCUSSION

4.1 Equivalent Meshing Stiffness

Although the proposed models can deal with general planetary
gear systems, only the one with four equally spacing planet
gears is an example here. Firstly, the equivalent meshing
stiffnesses of the analyzed external and internal gear pairs
during a meshing cycle are calculated. The meshing stiffness,
shown in Fig. 5, at instant of mesh beginning for the external
gear pair is 3.63x10° N/m. At this instant, the number of
tooth pairs in contact is double. When the meshing angle is
arriving at 4.7, the meshing stiffness achieves to a maximum
value of 3.87x10® N/m . When the angle to the instant of
8.2°, the tooth pair in contact is single since the leading tooth
pair ends its meshing. Then, at instant 12.9° tooth pairs in
contact return to double again. Eventually, to the angle of
21.1°, the meshing cycle of the tooth pair is completed. The
maximum stiffness of 3.87x10® N/m appears twice at the

instants of 4.7° and 17.6° , respectively. However, the

maximum for the interval of single tooth pair in contact only
is 2.19x10® N/m that occurs at 10.8° at which the mating
teeth are contacting near their pitch points. The stiffness of the
external gear pair is symmetric to the middle instant of
meshing at the pitch points. Besides, assume that the stiffness
of the internal gear pair in Fig. 5 is one and half a times of the
value of the external one. The two curves exhibit the phase
difference between the external and the internal gear pairs in
the planetary gear system.

6.00 [
5.00 |
4.00 r
3.00

200

Stiffness (E+08 N/m)

—k— Sun gear-Planet gear

1.00 —#-Ring gear-Planet gear

0.00
0 5 10 15 20 25

Mesh angle (degree)

Figure 5. Meshing stiffnesses of external and internal gear
pairs during a meshing cycle.

4.2 Dynamic Meshing Force

Figure 6 shows the dynamic meshing forces in the external
and internal gear pairs during one meshing cycle when the
rotation speed of the sun gear is 2000 rpm. Firstly, the
meshing forces between the sun gear and the first and third
planet gears in the external gear pairs shown are discussed. As
shown in Fig. 6(a), at the beginning of this meshing period,
the number of tooth pairs in contact is two. At this instant, the
meshing force is 131 N. With the progress of the rotation
angle, the meshing force is increased. Then, to the instant of

12.3°, the leading tooth pair ends its meshing cycle, the
condition of tooth pairs in contact change from double to
single. Thus, the meshing force is suddenly increased. The
condition of the engaging tooth pair is single during the

interval, 12.3° to 17.1° . Therefore, at which, the force

maintains a larger value. Until to the instant after 17.1°, the
next tooth pair starts its meshing process. The condition
reverses to the double tooth pairs in mesh again. Thus, the
force becomes evidently small during this interval. Finally,
decreasing tendency is maintained to the end of meshing for
the tooth pair.

The result shows that the dynamic meshing force is
essentially affected by the number of tooth pairs in contact.
Besides, the meshing forces of the first and the third external
gear pairs are exactly same, which also exhibit axially
symmetric to the sun gear. Also, the forces of the second and
the fourth pairs are same. Noticeably, the meshing forces
between the neighbor planet gears, e.g. the first and the
second ones, have a little of difference. Whereas, the changing
tendency of the all meshing forces shows totally same since
no phase differences exist among these four external gear
pairs. Besides, the meshing forces between the planet and the
ring gears for the internal gear pairs are shown in Fig. 6(b).
Although, the dynamic meshing forces of the external and the
internal gears are very close, however, their changing
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tendencies are quite different because that there exists the
phase difference between the external and the internal gear
pairs.

450 - ——  Sungear - 15t Planet gear
400 - —&—  Sungear - Ind Planet gear
350 —H—  Sungear - 3rd Planet gear
300 - dth Planet gear
250
200
150
100
50

Dynamic of mesh force (N)

Mesh angle (degree)

(a)

450 - —l— PRing gear - 15t Planet gear
= 400 F —h— Rl:ngg\ear-anPlamt gear
jé 350 —B—  Fing gear - 3rd Planet gear
S 300 Ath Planet gear
fg 250
< 200
i}
= 150
g 100
>
/50

Mesh angle (degree)

(b)
Figure 6. Dynamic meshing forces of the planetary gear

system during a meshing cycle of tooth pairs: (a) in the
external gear pairs, (b) in the internal gear pairs.

4.3 Results Comparison

Using LS-DYNA, this section calculates the dynamic
responses of the planetary gear system using the continuous
approach. Natural frequencies and dynamic fillet stresses
calculated from the continuous model will compare with the
results from the discrete one.

Firstly, the natural frequencies obtained by the discrete
and the continuous methods are shown in Fig. 7. The
agreement of the both results basically exhibits correctness of
the both approaches. Next, the numerical dynamic fillet
stresses of the both approaches are displayed. The input shaft
is assigned a constant speed of 2000 rpm and a driving torque
of 20 N-m. Thus, the rotation speed of the output shaft is 500
rpm. The assigned system damping ratio is 0.075. Figures 8
compare the dynamic fillet stresses in the sun gear for the
external gear pair and that in the planet gear for the internal
gear pair, respectively. The dynamic results from the both
methods are close in amplitude and in tendency. This
comparison verifies the numerical correctness of the proposed
approaches but only roughly because indispensable deviation
still exists between them. Currently, further investigations are
being undertaken by the authors. Finally, by using the discrete
approach in the time varying model, the dynamic factor of
meshing force for the external gear pair is calculated. Figure 9
shows the dynamic factor of an external gear pair. Expectedly,

both the discrete and continuous approaches presented here
can investigate dynamic responses of the planetary gear
system extensively and completely.

70 1
50

40

30

Natural frequency (kHz)

—— Continuum

—=— Discrete

0 5 10 15 20
Quantity number
Figure 7. Comparison of natural frequencies of the planetary
gear system calculated by the discrete and continuous models.
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Figure 8. Comparison of fillet stresses of the planetary gear
system using the both approaches: (a) fillet stresses on the sun
gear for an external gear pair (b) fillet stresses on a planetary
gear for an internal gear pair.
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Figure 9. Dynamic factor of an external gear pair using the
discrete approach.
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5 CONCLUSIONS

Two dynamic approaches to a planetary spur gear system have
been proposed, which are respectively using a conventional
discrete  model of the equivalent mass-damping-spring
components and using a continuous geometry model by the
finite element method. For the discrete one, the time varying
meshing stiffnesses of gear pairs are considered by concerning
the numbers, positions, and phasing angles of meshing tooth
pairs beforehand. The natural frequencies, deformations,
meshing forces, fillet stresses, and dynamic factors have been
calculated. In the continuum aspect, dynamic responses of the
planetary gear system have been analyzed using the FEM
software, LS-DYNA. In contrast to the discrete model, this
approach of continuous geometry model can incorporate the
time varying characteristics intrinsically. Not using CAD
models, the mesh elements of high quality for the planetary
gear system are automatically generated directly using the
derived tooth profile equations. Then, dynamic responses for
the planetary gear system are also solved using the continuous
model. Finally, both the results from the two approaches are
verified by each other comparison. Using this continuum
method, it is expected that the complicated and subtle dynamic
analyses of planetary gear systems may be accomplished
through the sophisticated descriptions. Not only the broad
types of structure configurations, gears, or tooth profiles are,
but also the complete coverage of influence factors is, such as
the design parameter, backlash, tooth modification, and
manufacturing error.
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