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摘要 
 

本研究為延續前期之工作由國立台灣大學附屬醫院最新進之 MRA 醫療影像設備進行

真人之主動脈掃瞄、並配合影像處理掃描所獲得資料進行主動脈計算流體力學分析，本期

將發展考慮血液動力與血管壁交互作用之流固耦合模式。以整合 Eulerian 和 Lagrangian

之統一座標下應用於人工壓縮不可壓縮流方程式，並發展可變形血管動態模擬並考慮血液

與血管壁之交互作用。在統一座標下，流體方程式和幾何方程式以守恆形式呈現並且於每

個時間歩階同步更新。根據統一座標方法判斷幾何守恆之準確性並且控制網格的速度，避

免移動血管之壁面或是靠近表面之邊界層上網格嚴重變形。本團隊研究證明在 MRA 下動脈

血液流體運動之模擬地可行性，本研究已完成三維統一座標中發展血液動力流體之流固耦

合反應模式，考慮血液與血管壁之交互作用，分析結果將與影像處理掃描所獲得結果互相

驗證、以期更精確模擬出血液流動之行為，作為提供安全血壓值及醫生臨床主動脈手術及

用藥之參考範圍。 

 

為期兩年之計畫： 

 

第一年，我們將推導出統一座標下，二維及三維人工壓縮法之Navier-Stokes方程式和相關

性之特徵系統。將適用的壁面移動模式和複雜血管彈性模式納入於統御方程式作為數值模

式。以MRA 影像處理掃描所獲得的實例中，驗證在統一座標下之流固耦合模式並且應用

於二維之血管流體模擬。第二年，我們將使用MRA影像技術完成人體血管之壁面移動，

之後修改現行的血管壁面模式，更準確的模擬流固耦合及相關的血液流體行為及壓力，剪

力形式。我們也將發展三維血液動力含流固耦合程式並且選擇真實的實例，驗證統一座標

下流固耦合之精確性。 

 

Abstract 

To continue our previous efforts on the simulation of a human aortic flow based on the 
techniques of CFD and MR phase-contrast velocimetry in National Taiwan University Hospital, 



 
 

 

a novel  unified artificial compressibility solver is initialized based on the unified Eulerian and 
Lagrangian coordinate transformations will be developed to simulate Hemodynamics of 
deformable aorta. In additions, the fluid-structure interactions will be considered. Based on the 
unified coordinates, the flow equations and geometry equations can be expressed in 
conservation form and updated simultaneously during each time step. Thus, the accurate 
estimation of geometry conservation and controlling the grid velocity based on the unified 
approach can avoid severe grid deformation caused by moving vessel walls or boundary layers 
(considered as slip lines) near the surfaces. Our team work has demonstrated its feasibility in 
the simulation of artery blood flow motions with MRA; and with the consideration of the future 
novel fluid-structure interaction model in the current Hemodynamics flow solvers in unified 
coordinates, our noninvasive simulation of blood flows would become possible.  

 

During this 2-year project: 

In the first year, we will derive mathematical formulation of the artificial 2D and 3D 
incompressible Navier-Stokes Equations in a unified coordinate system and the related 
eigensystems. Then implement a numerical modeling of governing equation with suitable wall 
moving model & compliant arterial model. In the validated cases, we will verify the accuracy of 
the current fluid-structure model in unified coordinates and application on 2D Aortic Flow 
Simulations. In the second year, we will use MRA imaging techniques to achieve the wall 
motion of a human aorta, then to modify the current vessel wall model to accurately simulate 
fluid-structure interaction and the related blood flow behaviors and pressure, shear stress 
formations.  Also we will develop a three-dimensional Hemodynamics code with the fluid-
structure interaction and choose validate cases to verify the accuracy of the current fluid-
structure model in unified coordinatesTo implement unsteady flow calculations, a dual time 
stepping strategy including the LU decomposition method is used in the pseudo-time iteration 
and the second-order accurate backward difference is adopted to discretize the unsteady flow 
term. The original FORTRAN code is converted to the MPI code and tested on a 64-CPU IBM 
SP2 parallel computer. The test results show that a significant reduction of computing time in 
running the model and a near-linear speed up rate is achieved up to 32 CPUs at IBM SP2 
processors. The speed up rate is as high as 31 for using IBM SP2 64 processors The test shows  
efficient of parallel processing to provide prompt simulation of  3D cavity, unsteady dropping 
airfoil and blood flows in an aortic tube with a linear elastic modelling of wall motion [2,3] is 
included here . 
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Introduction 

Moving body simulation is one of attractive topics in the Computational Fluid Dynamics 

(CFD) area. Recently, several techniques of moving body simulation are applied on the study of 

bio-fluid dynamics problems such as blood flows through vessels and organs, also flapping 

wings. The key issue to achieve accurate simulation on these topics is required to reply moving 

grid or dynamic mesh algorithm. One common way to deal with dynamic mesh is rely on the so-

called Lagrangian method. Computational cells in the Lagrangian coordinates, on the other hand, 

are literally fluid particles. Consequently, it is capable of producing sharp slip line resolution due 

to no convective flux across cell interfaces with minimized numerical diffusion. However, the 

disadvantage is that the computational cells exactly follow fluid particles always brings severe 

grid deformation, causing inaccuracy and even breakdown of the computation once the fluid 

velocity is used as the mesh moving velocity, To prevent this from happening, the most famous 

Lagrangian method in use at the present time—the arbitrary Lagrangian–Eulerian (ALE) 

technique—uses continuous rezoning. However, ALE requires continuous interpolations of flow 

variables and computational geometry that may result in unnecessary numerical inaccuracy. 

Recently, to understand the connection between the Lagrangian method and the Eulerian 

appraoch, an unified Eulerian and Lagrangian coordinate transformation was proposed by Hui et 

al [2, 3] to solve the Euler equations and achieve sharp of resolution of the contact line correctly. 

As we know, in the frame work of unified coordinates approach, the fluid equations and 

geometric evolution equations are written in a combined conservative form, which is different 

from the fluid equations alone in the pure Eulerian approach. The hybrid type coordinate system 

considers the flow variables to be functions of time and of some permanent identification of 

pseudo-particles which move with velocity hq, q being the velocity of fluid particles. It includes 

the Eulerian coordinates as special case when h = 0 and the Lagrangian when h = 1. The unified 

coordinate system decides the grid velocity set to be hq , where q is the fluid velocity and h is a 

parameter which is determined by constraint conditions, such as the mesh alignment with the slip 

surface, or keeping grid angle during the mesh movement. Therefore, the grid velocity can be 



 
 

 

changed locally according to the value of h. With a prescribed grid velocity, the inviscid flow 

equations are written in a conservative form in the computational domain (λ, ξ, η,ζ ), as well as 

the geometric conservation laws which control the mesh deformation. Therefore, numerical 

diffusion across the slip line can be reduced to a minimum with the crisp capturing of the contact 

discontinuity. T  

Based on the Hui’s idea, we would like to extend the previous work [4, 5] to derive three-

dimensional incompressible flow equations under the Euler- Lagrangian  coordinate. In the 

framework of Euler-Lagrangian coordinates, the unsteady artificial compressibility based 

incompressible flow equations are derived and the related moving geometry equations can be 

achieved in conservation form and updated simultaneously during each time step. Thus, the 

accurate estimation of geometry conservation and controlling the grid velocity based on the 

unified approach are expected to avoid severe grid deformation and computation breakdown 

caused by moving body or boundary layers (considered as slip lines in Lagrangian coordinates). 

Also, a unified artificial compressibility approach is developed to simulate the moving body 

flows with viscous effects and fluid-structure interaction. Test cases including the three-

dimensional lid-driven cavity flow, a dropping airfoil, and a pulsating aortic tube are used to 

verify the computations. Under this circumstance, the current FORTRAN code is converted to 

the MPI code tested on a 64-CPU IBM SP2 parallel computer.  

 

Governing Equation  

The governing equations of the flow considered are the time-dependent incompressible 

Navier-Stokes equations (1) in the Cartesian coordinate. After introducing the pseudo-

compressibility to connect pressure with continuity equation based on Chorin [1], the considered 

equations of motion of the fluid can be compactly written in in the following  nondimensional 

conservation form. like 
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where h is an arbitrary function of coordinates (λ, ξ, η, ζ ) and u, v, w are x-, y- and z- 

component of  the fluid velocity q ,  Re is the so-called Reynolds number, β is pseudo 

compressibility factor; respectively. Let 

                                                    hD hu hv hw
Dt t x y z

∂ ∂ ∂ ∂
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                            (3) 

denotes the material  following the pseudo-particle, whose velocity is hq . Then it is easy to 

show that 

                                                          0, 0, 0h h hD D D
Dt Dt Dt
ξ η ζ
= = =                                     (4) 

That is, the curvilinear coordinate are material functions of the pseudo-particles, and hence are 

their permanent identifications. Accordingly, computational cells move and deform with pseudo-

particles, rather than with fluid particles as in Lagrangian coordinates. Furthermore, the 

geometrical state variables satisfy the compatibility conditions as  
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From the above transformation matrix, the governing equation becomes 
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Where Q is a preserved variable vector, E , F  and G  are flux vectors and vE , 

vF vG  are viscous 
terms. Like 
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Wall model  

In this work, we consider a deformable aorta in the numerical tests. The fluid-structure 

interaction is required to consider in the simulation.  Here, the wall compliance is modelled using 

an independent ring model to compute the vessel deformations. This model assumes that the 

structural nodes move only in the radial direction. In spite of its intrinsic limitations, the extreme 

simplicity of this model makes it very popular. A linear elastic model equation to describe the 

wall motion can be written as a damped oscillator: 

                                                     
2

2 w
r rm d kr P

t t
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+ + =
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Where 
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ρ
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−
and h is the wall thickness, wρ  the wall density, E 

the Young’s modulus, v the Poisson ratio, a  the vessel radius, p the pressure, r the wall 

displacement and 
wp    the pressure force at the wall. The radial displacement of each structural 

node can be obtained by solving equation (7) by using a fourth order Runge-Kutta scheme. The 

fluid-structure equations (6) & (7) are solved in an uncoupled way. Both the solutions of fluid 

and structure equations are updated in an unsteady time marching manner. The pressure loads at 

the vessel wall predicted by the fluid solver are transferred to be the source terms in the structure 

equation at the same time step. After that, the wall displacement is updated at each grid point 



 
 

 

along the whole tube and vessel. Also, the wall mesh velocity can be estimated based on the last 

two wall displacements during the previous two time steps to achieve the second-order accurate 

estimation. Then, the new wall position and mesh velocity are substituted into the fluid solver 

and the related boundary conditions. Therefore, the updated pressure load can be re-predicted 

and a cycle of simulation fluid-structure interaction during the same time step is completed until 

the fluid-structure interaction is repeated until mass conservation criteria is satisfied in the fluid 

solver. However, the strategy of wall motion estimation may result in the moving grid distortion 

to produce excessive numerical errors. To avoid numerical instability, the geometry conservation 

included in equation (6) and a grid re-generation may be the necessary procedure.  

Numerical Results 

 

In the numerical flux approximation, one three-order accurate upwinding flux extrapolation 

for the derivatives Eξ∂  which have the form. A third-order upwind flux at the cell interface is 

defined by 

                                      1 1 1 1 1
2 2 2 2 2
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Where The flux difference is taken as 
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where A represents the Jacobian matrix.   The +A and −A matrices are computed first by forming a 

diagonal matrix of the positive eigenvalues and multiplying through by the similarity transform, 

and since the +A matrix plus the −A  matrix equals the original Jacobian matrix, we have 
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where X is the matrix of right eigenvectors of A , 1−X  is its inverese. The flux difference is 

evaluated at the midpoint by using the average of Q:  
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The eigenvectors in (11) of equation (6) as shown in [4] linearly independent, forming a 



 
 

 

completed basis in the state space. The system equations (8) are therefore regarded as hyperbolic 

for all values of h.  This includes the Eulerian coordinates as a special case when h = 0 and the 

Lagrangian one when h = 1. As we have known from Hui’s  works [2,3],  it is shown that for the 

smooth solutions of the system of two-dimensional Euler equations of gas dynamics written in 

the classical Lagrangian coordinates is equivalent to the same system written in the unified 

coordinates with h = 1. The steps of the proof can easily be repeated for the current artificial 

compressibility flow equations to show its weak hyperbolicity existed on the classical 

Lagrangian coordinates. To avoid possible numerical difficulties arising from the lack of a 

completed set of eigenvectors, we shall use 0 ≦ h < 1 to keep the hyperbolic character of the 

artificial compressibility equations. In the following test cases, we choose h =0.99 for all the 

steady-state cases to keep the weak hyperbolicity for the model equations we use. In the unsteady 

cases, h is assumed as grid velocity for the moving body simulation to keep the geometry 

conservation law. Also, β is kept to be 10 in all the cases.  

 
Parallel implementation and Discussions 
 

The current parallelized flow solver presents the results of two-dimensional and three-

dimensional numerical simulation of the flow field in the followings: 

First, the lid-driven cavity flow problem is a widely used benchmark test for the 

incompressible Navier-Stokes code validation. With the simplicity of geometry, the driven cavity 

flow contains complicated flow physics driven by multiple counter rotating vortices on the 

corners of the cavity depending on the Reynolds number. From all our computations for 

Re=3200 The computations are performed on a 64x64x64  on non-uniform grids as shown in 

Figure 1(a) which are clustered near the wall and stretched from the wall to the cavity center. 

The velocity plot on a plane and 3D streamtrace patterns in the driven cavity flow are plotted in 

Figure 1. It is shown that one primary vortex near the center and three corner eddies are captured. 

Also one small secondary zone in the lower right corner is visible.  Secondary, a two-

dimensional experiment of a falling airfoil in a water tank conducted by Andersen, Persavento, 

and Wang [5], for the falling airfoil, the freely falling trajectory was measured based on the flow 

conditions with the Reynolds numbers 1100.  The meshes of  400×100  are used for the 

calculations. Fig. 2(a) presents trajectories of the falling airfoil, where the black one is the 

experimental measurement in [5] and the purple one is the trajectory from the computation. 



 
 

 

Overall, the two trajectories are close to each other and have an identical slope.  The vorticity 

field at four instants during a full rotation of the airfoil is also presented in Fig. 2(b). Thirdly, to 

perform numerical simulation on an aortic tube under fluid-structured interaction, one cycle of 

heartbeats is 0.855 seconds according to MRI data. The equation (6) was solved for a peak 

Reynolds number of 5000 at the inlet of ascending of aorta and numerical boundaries were 

chosen based on flow conditions: (i) MRA scanned flow rate [6] at the inlet of ascending aorta (ii) 

Surface traction free and zero velocity gradients at the outlet of descending aorta. (iii) MRA 

scanned flow rates at the outlet of three branches (iv) Grid velocity as the vessel wall velocity 

condition. Then, the final results were achieved at the fifth cycle of the computation which was 

starting from the initial conditions as zero velocity. Velocity vectors and shear stress 

distributions on vessel walls on the cross sections of the aorta are shown in our computations as 

in Figure 3 and 4. The computed averaged shear stresses along aortic wall with and without 

elastic assumptions are observed. It is noted that a computed peak value of the wall shear stress 

along the aortic wall at the aortic arch and the wall shear stress drop at downstream of the aortic 

arch during t =2/4 T. These phenomena may be resulted from the variation of the vessel diameter 

and the presence of the bifurcation. The inlet flow rate approaches zero in the late diastole, so the 

wall shear stress distributions are approaching flat. It demonstrates that wall shear stresses were 

highly dynamic, but were generally high along the vicinity of the branches and low along the 

lesser curvature, particularly in the descending thoracic aorta. The maximum wall shear stress 

distribution is presented on the aortic arch in the late systole.  

 

Elastic stenotic tube 
 

Figure 9 demonstrates that a completed cycle of the velocity contours in an elastic 

stenotic tube. The computation is performed based on a 200x51 grid cells. The non-dimensional 

geometrical parameters are as follows: inlet diameter 1; pre-stenosis length 5, and stenosis 

length 1; a long post-stenosis domain 31 are chosen in order to minimize the influence of 

downstream boundary conditions. In order to avoid considering the turbulence effects, a mild 

stenosis with only 25% area reduction is considered. The flow was assumed to be laminar, 

incompressible and Newtonian, and the walls only deform in the radial direction with the grid 

velocity obtained from equation (7). Therefore the  h value is floating with grid velocity at each grid 



 
 

 

point during every physical time step. At the inlet boundary, a sinusodial incoming velocity profile 

as described in equation (12) is used. The fluid-structure interaction is included in the 

calculations. The pressures at the inlet can be obtained from the solution of the governing 

equation by assuming an prescribed incoming velocity distribution. At the outflow boundary, 

traction-free conditions  is assumed. 

( )1( ) 1 cos(2 )
2

u λ πλ= −                                (12) 

In this case, a Reynolds number defined at the inlet of 800 is selected.  As total velocity 

contour plots shown in Fig. 9, it is shown that the reverse flow distal to the stenosis and the re-

circulation region moves to downstream from the early systolic cycle to late diastolic cycle. 

Also we can find that the formation of the recirculation region is strongly effected by the 

compliant vessel. The separation mainly appears around the flow over the neck of the stenosis, 

and then it disappears around the region along the convergent wall and restarts at the beginning 

of the divergent wall. It is shown that the separation zone shows up periodically along the 

compliant vessel wall.  In Figure 10, pressure distributions are shown to distribute along the 

stenotic wall. It is shown that the pressure drop occurs around the neck of the stenotic region in 

the late diastolic cycle and at the beginning of systolic cycle. Next, the pressure distributions 

along the stenotic region for four different Reynolds number with 100, 200, 400, and 600 are 

also shown in Figure 10.  It is shown that the pressure drop occurs around the neck of the 

stenotic region no matter what the value of Reynolds number is. A negative pressure difference 

is increased with the increasing Reynolds number. Furthermore, the estimations of wall shear 

stress distributions for the whole wall and the stenotic area are depicted in Figure 10. It is very 

encouraging to find that the prediction of the location of maximum wall shear stress is 

consistent with the analytic studies which demonstrate the location of maximum wall shear 

stress is always upstream of the neck of the stenosis and independent of Reynolds number in the 

whole pusatile cycle. In addition,  a strong oscillating wall shear stress distribution is shown to 

appear around the neck of the constriction-enlargement region for the lower wall which is 

depicted in Figure 11. It is noted that the prediction of the location of maximum wall shear 

stress is always found around the beginning of enlargement and independent of the Reynolds 

number. Also a positive peak of the shear stress distribution is found to appear on the lower 



 
 

 

aortic arch during the systole and the early diastole, and then changed to be a negative peak 

during the late diastole.  

 

The computation is very time consuming for time accurate and pseudo-time evolutions in 

the above calculations. The parallel computation technology is very necessary in the three-

dimensional cases. In our parallel computation tests, the test results also display very promising 

potential of parallel processing as shown in Table. The original standard FORTRAN based 

incompressible Navier-Stokes code coupled with a linear elasticity model was converted to be a 

MPI based solver, also, it was tested on IBM SP2 690A parallel System. The parallel system is 

consisted of  415.2 GFLOPS with 96 CPUs Multiprocessor (SMP) nodes connected by High-

performance switches, each node contains four POWER3 processors, four GB of main memory 

and 192 GB of hard disk. The clock rate of the processor is 1.9 GHz. The Floating Peak 

Performance of each processor is SPECcfp2000 of 1898. Each processor comprises eight 

execution units, a 32 KB instruction cache, 64 KB data cache and an on-board bus interface unit. 

There are three fixed point units, two floating point units, two load/store units and one 

branch/dispatch unit in each processor. The MPI code is paralleled along both the longitude and 

latitude. The tested result of the model is shown in table. The model results were then carefully 

validated to ensure that the two versions of the model produce virtually the same result. We have 

made several test runs and the results are summarized in Table A.  Apparently, the concept of 

parallel processing suited the current dual-time Navier Stokes Solver very well. The model can 

take advantage of the MPI code fully, since minimal amount of data transfer among CPUs is 

required for solving the governing equation explicitly. A significant reduction of computing time 

in running the model and a almost linear speed up rate is achieved up to 32 CPUs in all the 

different data partition. The speed up rate is as high as 32 for using 64 processors at the same 

time. It provides very promising potential for prompt diagnosis using modern CFD technology. 

 

 

Concluded Remarks 

 In this paper, an unsteady artificial compressibility solver for moving body simulation 

based on unified coordinate approach is proposed and developed.  In the framework of 

unified coordinates, a unified moving body approach, include the unsteady 



 
 

 

incompressible flow equations and moving geometry equations, with grid velocity as 

hq achieves conservation form and updated simultaneously during each time step. 

Accurate estimation of geometry conservation and controlling the grid velocity based 

on the unified approach can avoid severe grid deformation and computation 

breakdown caused by moving body or boundary layers (considered as slip lines in 

Lagrangian coordinates). Also, a linear elastic modeling of wall motion is included 

here for the consideration of the fluid-structure interaction.  

 In this study, a parallel incompressible flow-structured solver instrumented with MPI 

is developed on the simulation of bio-fluid flow problems. The test results show that a 

significant reduction of computing time in running the model and a near-linear speed 

up rate is achieved up to 32 CPUs at IBM SP2 platforms. The speed up rate is as high 

as 32 for using IBM SP2 64 processors Also, the overall accuracy on the pressure on 

blade surfaces are in good agreement with validated data. The test shows very 

promising potential of the current parallel flow code to provide prompt simulation of 

the current flow test cases.  

 

Acknowledgments 
 

We acknowledge financial support from the National Science Council under the project NSC 

97-2221-E-216-009-MY2 and the computer facility supported by the National Center for High-

Performance Computing, Hsin-Chu, Taiwan, ROC  

 



 
 

 

 
 
 

Figure 1 A plot of 64 x 64 x 64 grid distribution and flow patterns for a 3D driven cavity flow (Re=3200) 

 
 

(a) Numerical validation of the trajectory of a falling airfoil  (the red solid line--- the measured data [6], 
the  dashed line--- simulation) 

 

 



 
 

 

 
(b)   Vorticity plots at different time for the dropping airfoil during a full rotation 

 
 

Figure 2 A simulation of  a falling airfoil flow (Re=3200) 
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Figure 3  Blood flow velocity vector through the aortic vessel during a full cardic cycle (Re=5000) 
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Figure 4 the shear stress distributions along the Aortic vessel during a full cardic cycle (Re=5000) 
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Figure9 Velocity contour plots in a pulsatile cycle for a deformable tube 

 

 

 

 

 
 

Figure 10 ： ； ； Variations of pressure at wall for Reynolds numbers 100 200 ； ：400 600  from 
X=4 to X=7 at time=3/4 T 

 



 
 

 

                                          

 
 

Figure 11 Variations of shear stress at stenotic wall for Reynolds numbers=800 from X=2 to 
X=9 in pulsatile cycle 

 
 
 
 
 
 
 
 
 
Table 2-D with data partition on IBM SP2 
CPUs Elapsed time(sec) Speed up Efficiency 

1 
4 
8 
16 
32 
64 

107438 
35001 
15803 
10998 
6043 
3152 

1.00 
3.19 
6.2 
10.1 
18.2 
32.2 

  100.% 
  80.% 
  75.% 
  70.% 
   64% 
   51.% 
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                     牛仰堯報告 

                                             

          
                台法幽蘭多相流計畫成員 
                          

     本 次 參 加 的 會 議 為 The International Chinese Association for 
Computational Mechanics (ICACM) 每2年一度的盛大研討會，有來自各地的計

算力學專家與學者，包括大學教授、研究人員、各國家實驗室的專職人員、工



業界相關研究人員出席或發表論文。在會場上並有學會與出版商提供各種工程

相關專業書刊與資料，以及軟體廠商提供電腦  模擬所需的軟體，使參加者皆

有受益匪淺的感覺。 
. 
  從事計算力學的研究人員，有從理論上去探討，有從實驗上去觀察，也有從

電腦上去模擬，以發掘其中的奧祕。近幾年來由於電腦的快速發展，使得研究

人員使用電腦的機會大為增加。探討理論者借助電腦來推衍方程式，實驗觀察

者仰賴電腦收集與分析大量的數據資料，電腦模擬者更是運用電腦來分析各種

問題。而計算力學在工程上更是一個日益受重視的領域，不僅因為電腦模擬技

術的精進，更由於電腦模擬快速有效的解決許多工程上的問題。 
. 

  在十餘年前，電腦的使用尚未普及，一般工程的問題多仰賴實驗與理論
分析。不僅花費的時間冗長，費用龐大，更由於體能與實驗材料的限制，
許多複雜的問題不容易獲得理想的答案。但是在沒有更理想的方法之前，
對於未知的事項只能以相關的經驗去克服。直到 80 年代以後大型與快速的
電腦漸普及，電腦容量亦可應付各種研究的需求，因此計算模擬分析便成
為工程研究中的一個主要分支，在工程研討會中接近半數的研究報告是屬
於此一範疇，可見一斑。參加國際性的相關研討會，可說是最直接也是最
有效的方式。透過與國際上學有專精的專家學者交流並交換意見，以獲得
最新最完整的流體工程研究資訊，並了解發展趨勢，提供給國內研究人員，
作最佳的服務。尤其在今日隨電腦科技的突飛猛進，各種計算方法日新月
異，許多過去無法嘗試的技巧，都逐步進入實用階段，面對如此的環境，
端賴期刊、書籍已無法應付此種變遷，因此在民國 98 年 11 月 30 日至 8月
3日由本人出席了2009年International Computational Mechanics (ICACM)
工程會議。本次會議我與國科會台法幽蘭多相流計畫成員(樹德科技大學胡
舉軍教授，台灣大學曾予恆教授，台灣大學薛克民教授，暨南國際大學戴
義欽教授，中央研究院郭志禹博士與法國尼斯大學 Boniface.NKONGA 教
授，南特大學 Christophe.Berthon 教授，合組一個論壇，就兩相流的數值
方法進行討論。 
 
  本次會議的地點在Hong Kong & Macau。會議於11月29日開始辦理報到註

冊，主辦單位同時展示一些會議相關論文集及專業書刊，並有部份工作人員舉

行會議前之準備集會。接下來的四天為正式的會議，包括專題演講、邀請演講、

專題討論及論文發表等議程。由於計算力學涵蓋範圍廣泛，參加人數眾多，大

會依專業細分為26大項，論文發表以20個場地同時進行，共計有200場，每場

約有5～6篇論文，會場外的大廳有軟體廠商、出版商廠商的展示。由於場次眾

多，個人僅能選擇性的參與部份論文發表。大會的子題包括了： 
 

• CAD, CAM and CAE  

• Adaptive Materials Systems, Structures and Smart Material  

• Biomechanics  

• Electromagnetism  

• Engineering Sciences and Physics  

• Environmental Science and Engineering  

• Fluid Mechanics and Heat Transfer  

• Geomechanics, Geographic Information Systems  



• Inverse Problems and Optimization  

• Materials Science  

• MEMS and Bio-MEMS  

• Microtribology and Micromechanics  

• Methods in the Life Sciences  

• Nanotechnology  

• Nonlinear Dynamics  

• Computer Simulation of Processes and Manufacturing  

• Data and Signal Processing  

• Meshless and Wavelet Methods  

• Multiple-Scale Physics and Computation  

• Parallel Computing  

• Scientific Visualization  

  由這些副題可以看出，民生工業相關的力學研究，例如電腦繪圖工程、流體

機械、環境或工業應用等，這也是目前國際間研究重點並積極爭取民生工業之

計畫。也就可以解釋研討會中論文發表的方向。  本次研討會主辦單位學會是

香港城市大學與澳門大學。研討會範圍深入工程的各個層面，由於許多場次是

同時進行，因此只能選擇性的參與。對於未能參加之場次則蒐集所發表之論文

作為日後參考之用。在會場上，有機會與各國的專家學者接觸、交流，瞭解到

國際上在計算工程的發展現況、研究方向、及未來展望，也讓他們了解到在台

灣的電腦計算在計算工程研究方面的現況。  此行可謂成果豐碩，確實達到開

會之任務需求。 
. 
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