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Abstract

Research in assembly planning can be categorised into three types of approach:
graph-based, knowledge-based and artificial intelligence approaches. The main drawbacks of the
above approaches are as follows: the first is time-consuming; in the second approach it is
difficult to find the optimal solution; and the third approach requires a high computing efficiency.
To tackle these problems, this study develops a novel approach integrated with some
graph-based heuristic working rules, robust back-propagation neural network (BPNN) engines
via Taguchi method and design of experiment (DOE), and a knowledge-based engineering (KBE)
system to assist the assembly engineers in promptly predicting a near-optimal assembly
sequence. Three real-world examples are dedicated to evaluating the feasibility of the proposed
model in terms of the differences in assembly sequences. The results show that the proposed
model can efficiently generate BPNN engines, facilitate assembly sequence optimisation and
allow the designers to recognise the contact relationships, assembly difficulties and assembly
constraints of three-dimensional (3D) components in a virtual environment type.

Keywords: assembly sequence planning; assembly precedence diagrams; neural networks;
design of experiment; Taguchi method

1. Introduction

In general, assembly involves the integration of components and parts to create a product or
system through computer-aided design and manufacturing (CAD/CAM) systems. Assembly
planning is a crucial design step for generating a feasible assembly sequence. Traditional
assembly planning is manual and based on the experience and knowledge of industrial engineers;
however, manual analysis does not allow the feasibility of assembly sequences to be easily
verified. In the electronics industry, the approximate 40%- 60% of total wages was paid to
assembly labors (Kalpakjian, 1992). The implementation of design for assembly (DFA) and
design for manufacturing (DFM) resulted in enormous benefits, including the simplification of
products, reduction of assembly product costs, improvement of quality, and shrinkage of time to
market (Kuo et al., 2001). Good assembly sequence planning (ASP) has been recognised as a
practical way of reducing operational difficulties, the number of tools and the working time (Lai
and Huang, 2004).



De Fazio and Whitney (1987) adopted the concept of Bourjault (1984) to generate a complete
set of assembly sequences. They generated sequences in two stages — creating the precedence
relations between liaisons or logical combinations of liaisons in a product and verifying the
liaison sequence. Homen de Mello and Sanderson (1991a) made a representation of the directed
AND/OR graphs to create feasible assembly sequences. In addition, Kroll (1994) used
graph-based procedures with conventional representations to reduce the number of sorting
operations required. He then extended his previous approach from uniaxial assemblies to triaxial
assemblies and presented a set of rules for resolving conflicts between multiple parents and
multiple offspring. However, in practice most assembly companies use semi-automatic systems to
generate an assembly plan and employ 2D cross-sectional views to represent their heuristic
models (Lin and Chang, 1993).

Assembly planning is also regarded as “assembly by disassembling,” i.e., an assembly
sequence results from systematically disassembling the final product and reversing the
disassembling sequence (Lee, 1989). This approach usually employs the contact-based feature to
represent the precedence relationships of the product. A designer can successively assign the
assembly relations to form the assembly plan based on the precedence diagram. However, the
contact-based precedence diagram cannot effectively express the complexity of the assigned
assembly relations. An effective assembly plan must include other graphs, such as the explosion
graph, the relational model graph, the incidence matrix, the assembly precedence diagram (APD),
etc. In reality, few experts or engineers know exactly how to derive a correct explosion graph,
draw a complete relational model graph or incidence matrix among the components, or determine
a complete APD to generate an optimal assembly sequence (Chen et al., 2004b; Chen et al.,
2008).

The other approach to Knowledge-based engineering (KBE) is a technology that allows an
engineer to create a product model based on rules and the powerful CAD/CAM applications that
used to design, configure and assemble products, examples of which include the so-called expert
systems, web-based knowledge bases involving the engineering knowledge (i.e., Knowledge
Fusion) and becoming an critical part of business strategy (Homen de Mello and Sanderson,
1991b). In addition, numerous researchers have employed an artificial intelligence (Al) tree
search or graph search methodology to generate an assembly sequence (Homen de Mello and
Sanderson, 1991b; Chen et al., 2004a). Unfortunately, the search space increases explosively
when the number of components in a design grows. To relieve this combinational complexity,
heuristic rules and genetic algorithms (GAs) have been used in the searching process (Marian et
al., 2003; Chen et al., 2004a). Other studies have used the Hopfield and BPNN as the means to
generate optimum or sub-optimum assembly sequences(Chen, 1990; Hong and Cho, 1993;
Sinanoglu, 2006).

This study proposes a three-stage integrated approach with some heuristic working rules to
assist the planner to obtain an optimal assembly plan. In the first stage, the Above Graphs with
spatial constraints are used to create a correct explosion graph of the assembly model; these two
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graphs can be used to represent the correct geometric constraints among the assembly parts. In
the second stage, a three-level relational model is developed to generate a complete relational
model graph (RMG) and the incidence matrix. The relational model graph can be advanced and
transformed into an assembly precedence diagram (APD), which is used to describe the assembly
precedence relations of the parts. Based on these graphs, the designer can easily find feasible
sequences and evaluate the difficulty of assembly. In the third stage, the CAD-based Knowledge
Fusion (KF) programming language and BPNN engines via Taguchi method and design of
experiment (DOE) are employed to validate the available assembly sequences. The three kinds of
real-world toy products are utilised to evaluate the feasibility of the proposed model in terms of
the differences in underlying assembly characteristics and predict a near-optimal assembly
sequence according to the defined performance criteria.

2. The working concepts and procedures

The working concepts and procedures of the proposed approach are shown in Fig. 1. Initially,
detailed data is input from a 2D engineering drawing and related assembly information into a
CAD assembly package. Then, the correct explosion graph is developed using the transforming
rules. Finally, the relational models are generalized to represent the assembly precedence
relations, and an evaluating mechanism is then employed to find a global feasible solution. The
planning process is recursive until the defined criteria was satisfied. The main outputs of the
integrated graph and BPNN-based assembly planning are the complete RMG, APD, and BPNN
engines. In addition, Fig. 2 represents the knowledge-based engineering (KBE) system rendering
a UG-based operational interface to access the potential graph and BPNN-related details via
different types of database, and a robust BPNN engine dedicated to promptly generating a
near-optimal assembly sequence.

3. Back-propagation neural network

In much of the literature, back-propagation neural networks (BPNNs) have been adopted
because they have the advantages of a fast response and high learning accuracy (Maier and
Dandy, 1998; Liu et al., 2001; Lee et al., 2001; Yao et al., 2005; Chen and Hsu, 2007). The
superiority of a network’s functional approach depends on the network architecture and
parameters, as well as the problem complexity. If inappropriate network architecture or
parameters are selected, undesirable results may be obtained. Conversely, the results will be much
more significant if good network architecture and parameters are selected. The BPNN consists of
an input layer, hidden layer, and output layer. The parameters for the BPNN include the number
of hidden layers, number of hidden neurons, learning rate, momentum, etc. All of these
parameters can significantly impact the performance of the neural network. Fogel (1991)
proposed a final information statistical (FIS) process based on Akaike’s information criterion
(AIC) to determine the number of hidden layers and neurons. One hidden layer is sufficient to
compute arbitrary decision boundaries and quite adequate to model nonlinearity in most cases of
the BPNN (Khaw et al., 1995; Anjum et al., 1997). The limitation of Fogel’s research is that the
process can only perform simple binary classifications. Murata and Yoshizawa (1994) and Onoda
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(1995) respectively proposed methods to improve AIC. These methods, called the network
information criterion (NIC) and neural network information criterion (NNIC), use statistical
probabilities together with an error energy function to determine the number of hidden neurons.

In this research, the steepest-descent method was used to find the weight change and to
minimize the error energy function. The activation function is a hyperbolic sigmoid function.
According to past studies (Hush and Horne, 1993; Cheng and Tseng, 1995), there are a few
conditions for network learning termination: (1) when the root mean square error (RMSE)
between the expected value and network output value is reduced to a preset value; (2) when the
preset number of learning cycles has been reached; and (3) when cross-validation takes place
between the training samples and test data. The first two methods are related to the preset values.
This research adopts the first and second approaches by gradually increasing the network training
time to gradually decrease the RMSE until it is stable and acceptable. The RMSE is defined as
follows:

RMSE = ii(di —y, ) 1)
N i=1

where N, d;, and y; are the number of training samples, the actual value for training sample i,

and the predicted value of the neural network for training sample i, respectively.

In network learning, input information and output results are used to adjust the weighting
values of the network. The more detailed the input training classification and the greater the
amount of learning information which are provided, the better the output will conform to the
expected result. Since the learning and verification data for the BPNN are limited by the
functional values, the data must be normalized by the following equation:

PN = Fin_ x (Dypge = D

min
Pmax - I:)min

)+ Dmin ; (2)

where PN is the normalized data, P is the original data, Pmax is the maximum value of the
original data, Pmi, is the minimum value of the original data, Dmax is the expected maximum value
of the normalized data, and Dy, is the expected minimum value of the normalized data.

When applying the neural network to the system, the input and output values of the neural
network fall in the range of [0.1, 0.9].

4. Taguchi method

Taguchi’s parameter design method normally selects an appropriate formulation of the S/N
ratio and calculates the S/N ratio for each treatment. There are three types of S/N ratios: nominal
the best, the larger the better, and the smaller the better. Most engineers choose the highest S/N
ratio treatment as the preliminary optimal initial process parameter setting. Taguchi method has
also been used to design the parameters for neural networks in previous research (Khaw et al.,
1995; Santos and Ludermir, 1999). Khaw et al. (1995) applied Taguchi method to design the

parameters and verified that the method could rapidly and robustly design the optimal parameters.
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Santos and Ludermir (1999) applied a factorial design to assist the design and implementation of
a neural network. The formulae of the three types of S/N ratios are given as follows:

o2
nominal the best: S/N =10x Iog(!—z] : (3)
S
1G1
the larger the better: S/N =-10x Iog[ﬁ _ZJ , and 4)
i1 Yi

the smaller the better: S/N =-10x Iog(%i yfj =-10xlog[y* +S?] ; (5)
where 'y, is the response value of a specific treatme:rln under i replications, n is the number
of replications, 9 Is the average of all y, values, and S is the standard deviation of all Y,
values.

5. Optimization of the neural network parameters using RSM & Taguchi method

In this research, we applied the Taguchi method and DOE to obtaining the optimal parameter
settings of the BPNN. Since the number of hidden layers did not have a significant effect on
convergence, the number of hidden layer was set to 1. The controlling factors of Taguchi method
are transfer function (F), the number of hidden neurons (Ny), learning rate (R;), momentum (M),
and Epochs (Ep). The numbers of neurons in the hidden layer under different levels were obtained
by the method proposed by Khaw et al. (1995) and Haykin (1999). Information on the factors’
assumptive settings at different levels is listed in Table 1. Apart from transfer function (F;), the
number of hidden neurons (Ny), learning rate (R;), momentum (M) and the numbers of
calculation generations i.e. epochs (E,) are determined by first finding the range in which these
factors have better converging results, and second by determining the equal-distance value for the
three levels.

Under the condition of five factors, one for two levels and four for three level, and no
correlation among the five factors, the total degrees of freedom were 17 (i.e., 1x (2-1) +4 x (5 —
1)). An Lig (2'x3% orthogonal array is selected for arranging the factors and carrying out the
experiment. In this experiment, there are two replications, and the predicted performance (Mean
square error, MSE) of Y is the evaluation value for different combinations of factor levels. Y is
the average of two Y’s in each replication. The optimal combination of factor levels is the
experiment with the largest S/N ratio. From the experimental results of Taguchi method, the main
effects plots of BPNN’s factors through Taguchi method can be seen in Fig. 3. The optimal
combination of factor levels is represented by the following: BPNN architecture of 5-13-1, the
transfer function is Hyperbolic Tangent, the number of calculation generations of 35,000, a
learning rate of 0.9, and a momentum of 0.9.

Subsequently, the result of the DOE with response surface methodology (RSM) on the
factors” assumptive settings at two levels listed in Table 2 is revealed: the number of neurons of
15, a learning rate of 0.9, a momentum of 0.9, and the number of calculation generations of
50,000. The response optimization of BPNN’s parameters via DOE is represented in Fig. 4.
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6. lllustrative examples
In this section, the examples of a toy car, a toy motorbike and a toy boat are used to
demonstrate the generation procedures of assembly planning.

6.1 Creating the exploded view, RMG and APD

The exploded view can be directly created from the Above Graph, which possesses the
contact relationships of a spatial structure. Fig. 5 shows the parts list, assembly codes and the
exploded view. The validity of each exploded view can be confirmed by the contact relationships
of the spatial structure and Above Graphs. Applying a correct exploded view allows us to derive
the exact assembly plans. For brevity, the detailed planning steps are omitted. Fig. 6 shows the
complete relational model graph (RMG) and APD for the proposed case study.

6.2 Assembly sequence generation using the back-propagation neural network

In this study, a toy car is used as a training sample, whereas a toy motorbike and a boat are
employed as verifying samples. Fig. 7-10 show the parts list, assembly codes, the exploded view,
and the complete relational model graph (RMG) and APD of the above latter samples. The
characteristics of each assembly part include the number of the assembly incidence (Al), total
penalty value (TPV), feature number (FN), weight and volume. These characteristics are
commonly regarded as the larger the better for the assembly sequence priority. The optimal
sequence results with information on five characteristics of a toy car, a toy boat and a motorbike
are shown in Tables 3, 4 and 5, respectively.

6.3 Experimental results and discussion

The toy car, the toy motorbike and the toy boat can be decomposed into 28, 17 and 15 parts,
respectively. Each part of the afore-mentioned experimental articles has five characteristics
parameters: the value of assembly incidence (Al), total penalty value (TPV), feature number (FN),
weight and volume, which are used as network input parameters, and one expected network
output adopts the ranking number of the optimal assembly sequence.

Table 6 shows the performance of BPNN engine 2 via DOE is superior to that of BPNN
engine 1 via Taguchi method as implements testing BPNN data. Fig. 11 and Fig. 12 demostrates
an assembly sequence prediction for testing toy motorbike (17 data) using BPNN engine 1 and 2,
respectively. In addition, the trend is normally the larger the potential samples of KBE database
get, the more precise is the assembly sequence predition via a robust BPNN engine.

7. Conclusions

Theoretically, an assembly plan can be optimised based on the factors of shortest assembly
time and assembly sequence optimisation. However, these are uncertain factors prior to the
determination of the optimised assembly scheme and the completion of the jig and fixture. The
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proposed model adopts a three-stage integrated assembly planning approach to express the
complexity of the assembly relations and to evaluate the feasibility of the respective assembly
sequences in the design phase. The experimental results for the case study verify the feasibility of
the proposed approach, which facilitates the DFA in potential applications of 3D component
models to assist manual or automatic assembly in a virtual environment, and allows the designer
to recognise the relative position, geometric constraints and relationships of the 3D components
using the following graph-oriented methods: the Above Graph, APD and relational model graph.
The planner can further generate a correct explosion graph and construct an incidence matrix for
validating the assembly relations through applying the Above Graph and relation models. In
addition, this three-stage integrated approach can effectively promote the quality of the generated
assembly plan and facilitate assembly sequence optimization via knowledge-based engineering
(KBE) system and a robust BPNN engine.
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Parts’ name

MB({MamBody)

CP(ChassisPan)

DG{DriveGear)

GS51_1(GearSetl_1)

GSI_2{(GearSetl 2)

GS1_3(GearSetl_3)

GS2_1(GearSet2_1)

G52_2(GearSet?_2)

GS2_3(GearSet2_3)

GS3_1(GearSed_1)

GS53_2(GearSet3_2)

ks |k | ek | eh | ot | ek | jd | feh | i | ot z
= s Y S T R = e Bl e e B el L el 5

PO(Power)
LBW{LeftiBackWheel)
LFW(LefiFrontWheel)
BS1(BaseScrewl)
BS2(BaseScrew?)
PP1{PowerPackl)
PP2(PowerPack?)
PPS1(PowerPackScrewl)

20 | PPS2(PowerPackScrew?)

21 RA(RearAxis)

22 | RD{RearDiff)

23 | RBW{RightBackWheel)

24 | REW(RightFrontWheel)

25 | SL(Spoiler)

26 | SP1{Spningl)

27 | SP2(Spring2)

28 | SR(SteeringRack)

Fig. 5. The parts list and exploded view of a toy car.
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Fig. 6. The complete RMG and APD of a toy car.
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Part name
MA(MotorbikeAxle)
MBI1(MotorbikeBearing1)
MB2_1(MotorbikeBearing? 1)
MB2_2(MotorbikeBearing? _2)

)
)

MB3_1(MotorbikeBearng3 1
MB3_2(MotorbikeBearingd 2
MH!1(MotorbikeHandlE1)
MH2(MotorbikeHandlE2)
MMB1(MotorbikeMainBody1)
10 | MMB2(MotorbikeMainBody2)
11 | MN(MotorbikeNut)

12 | MPN(MotorbikePin)

13 | MPE(MotarbikePlate)

14 | MS({MotorbikeScrew)

15 | MW1(MotorbikeWheell)

16 | MW2(MotorbikeWheel2)

17 | MW3(MotorbikeWheel3)

- =L N R = N LV I S W e

Fig. 7. The parts list and exploded view of a motorbike.
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Fig. 8. The complete RMG and APD of a motorbike.
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Part name

g

BM (Baseboathambody)

BB1 (BoatBoltl)

BB2 (BoatBolt2)

BC (BoatChaur)

BF (BoatFan)

BHI1 (BoatHandlel)

BH? (BoatHandle2)

BL (BoatLight)

L= - = R e T R

BN1 (BoatNutl)

10 | BN2 (BoatNut2)

11 | BN3 (BoatNut3)

12 | BPR (BoatPillar)

13 | BP (BoatPlate)

14 | BS (BoatScrew)

15 | TM (TopBoatMamBody)

/ L@
\ ,BB1 }_@_‘ LBN1 \ \ oBN2 }_@_‘ ,BB2 ‘ § / (,:I)
e l

C6 c3

Fig. 10. The complete RMG and APD of a boat.
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Fig. 11. An assembly sequence prediction via BPNN engine 1.
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Fig. 12. An assembly sequence prediction via BPNN engine 2.
Table 1 Information on the factors” assumed settings at different levels via Taguchi

Method.
Item Control factor Level 1 Level 2 Level 3
i Hyperbolic i )
Ft Transfer function Sigmoid
Tangent

N Number of neurons in the hidden layer 8 13 18
R Learning rate 0.7 0.8 0.9
M Momentum 0.7 0.8 0.9
Ep Epochs 20,000 35,000 50,000
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Table 2 Information on the factors’ assumed settings at different levels.

Item Control factor Level 1 Level 2
A Number of neurons in the hidden layer 4 18
B Learning rate 0.3 0.9
C Momentum 0.5 0.9
D Number of epochs 10,000 50,000

Table 3 The optimal assembly sequence of a toy car.

Optimal Assembly Sequence Parts Al _TPV_FN  Weight Volume
1 ,CP 19 47 9 981.88 125415.99
2 »RD 4 8 10 31.42 11246.39
3 ;DG 5 g8 27 4.83 3452.57
4 17PP 10 29 11 83.64 29935.98
5 9GS2 3 3 5 22 1.96 1397.92
6 sGS2 2 3 5 22 1.12 802.85
7 -GS2_1 6 16 1 3.07 3927
8 1,PO 2 3 2 56.34 20165.61
9 1nGS3_2 3 5 26 2.28 1628.77
10 WGS3 1 6 16 1 3.07 3927
11 «GS1_3 3 5 22 1.08 771.23
12 sGS1 2 3 5 22 0.87 623.61
13 4GS1_1 6 16 1 3.07 392.7
14 1sPP2 8 22 11 17.66 6321.76
15 19PPS1 4 6 3 0.13 14.99
16 20PPS2 4 5 3 0.11 14.86
17 2SR 7 4 4 27.58 3522.26
18 51RA 7 13 3 29.79 3804.98
19 1;:LBW 2 5 7 308.9 219936.4
20 »RBW 2 3 7 307.67 219928.32
21 1uLFW 2 3 9 176.9 119227.68
22 4 RFW 2 3 9 164.33 119214.45
23 265P1 2 6 3 9.99 1288.59
24 »7SP2 2 6 3 9.85 1276.48
25 »sSL 2 3 2 23401 83756.14
26 {MB 7 17 28 932.5 333750.12
27 1sBS1 4 10 3 2.38 303.99
28 1sBS2 4 10 3 2.36 302.45
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Table 4 The optimal assembly sequence of a toy motorbike.

Optimal Assembly Sequence Parts Al TPV FN Weight Volume

1 sMMB1 5 13 20 7.35 7697.04

2 1:MPE 9 19 4 519 5176.46

3 1wMMB2 5 17 20 6.78 7696.73

4 1aMS 3 8 2 1.53 220726

5 1nMN 3 10 3 0.78 856.50

6 1MW3 1 9 4 8.13 720614

7 sMB2 1 4 23 3 1.2 1931.26

8 MB3 2 3 16 5 1.4 186218

9 1MA 8 52 2 3.32 2907.56

10 16MW2 2 9 4 8 729523

11 MB2 2 4 18 3 1.18 1930.96

12 sMB3_1 3 5 5 1.4 1891.72

13 ME1 4 11 4 2.49 3841.38

14 1sMW1 2 4 4 7.99 7294.86

15 12MPN 3 12 5 1.28 1619.55

lo sMHI1 2 4 3 0.17 231.01

17 g MH2 2 3 3 0.15 230.56

Table 5 The optimal assembly sequence of a toy boat.

Optimal Assembly Sequence Parts Al TPV _FN __ Weight Volume
1 13:BP 12 28 4 40.53 5176.46
2 oBN1 3 7 3 6.81 857.5
3 -BB1 4 10 4 10.95 1393.43
4 10BN2 3 83 6.71 857.1
3 ;BB2 4 Ll-oa 10.9 1392.87
6 1BM 7 3412 86.96 11105.48
7 1sTM 7 30--—-12 75.11 9591.47
8 «BH1 2 3 3 1.82 231.61
9 ;BH2 2 3 3 1.81 230.92
10 4BC 5 20 8 19.98 2551.01
11 11BN3 3 7 3 6.61 856.2
12 14BS 8 26 2 17.99 2297.29
13 12BPR 4 6 2 24 306.77
14 sBF 2 3 11 26.63 3401.12
15 sBL 4 8 3 5.69 726.57
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Table 6 Comparisons of BPNN performance between Taguchi method and DOE

approach.
Item Training RMSE  Testing RMSE Approach
i Taguchi method
BPNN engine 1 0.055357604  0.015026421
(13-0.9-0.9-35000)
. DOE
BPNN engine 2 0.048829895  0.010480437

(15-0.9-0.9-50000)
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In recent years, the efficient integration among CAX
(CAD/CAM/CAE) systems through knowledge-based engineering
(KBE) and Computer aided design (CAD) systems is employed to
achieve intellectual design, assembly, manufacturing, and maintenance
in most industries. Assembly sequence planning (ASP) is normally
based on engineers’ personal experience and intuition, and lack of
theoretical support in determining spatial relative positions and
assembly relationship constraints of product components. Thus, the
aim of this project is to develop the KBE assembly sequence planning
system and further generate an optimal assembly sequence applying
weight, volume, geometric features, contact relationships and total
penalty values as input parameters of neural networks (NN), and an
output variable (optimal assembly sequence) derived by Above graphs,
Relational model graphs, assembly precedence graphs (APD) and
analysis of spatial constraint relationships to construct a robust
NN-based ASP engine and Knowledge database. Finally, the CAD
second development tool, Unigraphics/Knowledge Fusion (UG/KF), is
herein implemented to complete the KBE assembly sequence planning
system through the integration of NN engine and UG/CAD system.

Keywords: knowledge-based engineering, assembly sequence
planning, assembly sequence optimization, neural networks,
Knowledge Fusion.
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