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To ensure excellent operation of MW-scale wind
turbines, high reliable gear boxes adopted for speed
increase to one hundred times are the most crucial
point which are mostly attained by using the multi-
stage planetary systems or compounded with
stationary-shaft systems. Among which, well dealing
with gear dynamic properties are is rather important
topic. Dynamic models of the planetary helical
gearings in wind turbines are rather complex and
multi degrees of freedom dynamic systems. This study
investigates the modal characteristics of single
stage planetary gear systems and their dynamic
behaviors incorporating fluctuation loading
excitations. Two approaches are applied which are an
equivalent discrete model and FE model to calculate
dynamic responses and modal characteristics,



respectively. In the discrete one, the equivalent
time varying mesh stiffness and meshing phases among
the external and internal gear pairs have been
included. The geometry and assembly constraints of
the planetary gear sets are also established. Thus,
dynamic equations for single stage planetary helical
gearings are derived by incorporating the gross
motion effect, also ball bearing and shafts.
Fluctuation excitation on input and output shafts is
due to wind condition and turbine operation record.
Therefore, the dynamic responses of the planetary
gear systems are obtained. Their natural frequencies
and modal shapes are also resulted. The harmonic
effect can be discussed basing on the non linear
meshing stiffness. Besides, analyses using an FEM
software are used to dynamic analyses of the
planetary gear systems. The FE results will be
compared with the results of the discrete model.
Also, verification using experimental results will be
expected via the future collaboration with relating
industry enterprises. The effective analysis method
and simulating results of single-stage helical
planetary gear systems in large scale wind turbines
have been obtained by incorporating the fluctuating
excitation due to start up and emergency stops, for
examples. To found design and analysis techniques of
the speed increase in large scale wind turbines not
only the higher lever gear transmission of vehicles
for example can also be expected by undertaking its
future continuous studies.

Planetary gear system, Dynamic analysis, Wind
turbine, Finite element, LS-DYNA
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ABSTRACT

A finite element (FE) method is used to analyze modal and
dynamic behavior of planetary gear systems (PGSs) focusing
on the effect of bearing and carrier stiffness. Using derived
tooth profile equations, elements for gear can be parametrically
created. Then, the 2D/3D FE models of a planetary gear system
(PGS) are constructed. Accordingly, structural natural
frequencies and modal shapes are calculated after adequately
assigning the material, boundary conditions, and tooth contact
of gear pairs. An index, namely dimensionless slope, is defined
to reflect the modal property due to the bearing stiffness
change. Influence of carrier material and gear bearing
stiffnesses on modal behavior is investigated. Several results of
the PGS modal characteristics affected by the material and
bearing stiffness are also obtained. Besides, the dynamic
responses of the PGSs are analyzed under the carrier rotation.
Finally, dynamic fillet stress and loading inequality among gear
pairs due to planet bearing stiffness variation are analyzed. The
FE approach presented can conveniently demonstrate modal
and dynamic behaviors of PGSs.

INTRODUCTION

Because of the excellent feature of high power density,
high reliability, and low noise and vibration, planetary gear
transmission has been well applied in the wide field of
industries including vehicles, aircrafts, wind turbines, and
robots etc. To date, endeavors for its performance improvement
especially in the dynamic aspect are still continued. Of some
simplicity and efficiency the equivalent discrete mass-spring
method is normally used in the gear dynamics. Therefore, two
works to obtain the equivalent stiffness of spur gear pair are
exemplified [1, 2]. Hedlund [3] calculated the tooth deflection
of a helical gear pair by combining the Hertzian contact

Shou Ren Zhang
Department of Mechanical Engineering
Chung Hua University,

No. 707, Sec. 2, Wu Fu Rd, Hsin Chu, Taiwan

analysis and tooth foundation flexibility. Kahraman [4]
presented a three dimensional (3D) discrete model to
investigate the helical PGS dynamics in which modal shapes
and dynamic forces resulting from static transmission errors
were investigated. Furthermore, the author also categorized
planet phasing conditions and emphasized that the
categorization was primarily for compatibility but might cause
misleading in the 3D model for gears. In addition, Sadda and
Velex [5] considered torsional, flexural, and axial generalized
displacements of components including finite element
procedure. In their study, a complex planetary gearing was
simplified to a discrete twelve degrees-of-freedom system.
Furthering their previous works, Velex and Flamand [6]
indicated the stiffness of meshing gear pairs has more
significant effect on planetary dynamic behavior than other
components. In recent years, plentiful studies in planetary gear
dynamics were presented [7-9]. The authors analyzed the
modal behaviors of PGSs including three- and four-planets of
equally spacing and diametrical symmetry with planet meshing
phase difference (MPD) or not using linear or nonlinear
models. For example, Lin and Parker [7] calculated natural
frequencies of PGSs in which the nonlinearity due to meshing
stiffness discontinuity of gear pairs was discussed. In the study
[10], using the modal analyses and mesh phasing properties,
design rules are analytically derived to suppress specific
harmonics of plant modal response of a PGS. Recently, using a
nonlinear discrete vibration model, Al-shyyab and Kahraman
[11] investigated influences of time-varying meshing stiffness,
contact ratio, and backlash on the dynamic responses of single-
stage PGSs. Extending this to multistage gears, Inalpolat and
Kahraman [12] presented a generalized dynamic model applied
to several types of complex PGSs. The influence of coupling
stiffnesses and kinematic configurations on the natural modes
and dynamic responses of a three-stage automotive

1 Copyright © 2011 by ASME



transmission application was demonstrated. In addition,
Farshidianfar et al. [13] investigated the nonlinear vibration of
single-stage gearing using several analyzing methods. The
authors indicated that all the methods are effective in
calculating the dynamic spectrum but only two of them are
adequate to identifying the gearing modal property.

The equivalent discrete models in gear dynamics may
significantly simplify modeling complexity and numerical
computation. However, using a discrete model in gear
dynamics is cumbersome since abundant knowledge and
technique must be prepared such as meshing stiffness,
backlash, and error models etc. Alternatively, the continuum
approaches using the FE or the stiffness methods were
attempted [14-16]. Nevertheless, on account of strict element
requirement of quantity and quality in dealing with the tooth
contact problem, complex PGS dynamics entirely using the FE
is still limited. Therefore, the FE approach combining a semi-
analytically integral process was presented to help the
reduction of elements in dealing with tooth contact problem
[17]. Basing on that, Parker et al. [18] performed a PGS
dynamic investigation focusing on the modal and harmonic
behavior. Besides, a few of special-purpose packages for
gearing dynamics were developed but limitation including
modeling constraints, gearing types, or cost remains. To the
authors’ best understanding, it is still a hard task to fulfill detail
modal and dynamic properties in kinds of PGSs using an FE
method. Therefore, in this study, an FE approach using a
general purpose package to the modal and dynamic analyses of
PGSs is undertaken. Moreover, Influences of bearing and
material stiffnesses on their modal characteristics will be
discussed accounting for floating or rigid design, the bearing
stiffness is assigned from a very soft value to a rather rigid one
basing on a reference stiffness of 10° N/m. Finally, the
dynamic responses of the PGSs are analyzed. Non-uniformity
of dynamic fillet stresses among gear pairs due to bearing
stiffness variation is investigated.

CONSTRAINTS AND FE MODELS
Assembly Constraints and Phase Difference

The following constraints are required on the PGS
construction. A planetary gearing can be assembled if the
angular position of planet gears satisfies

(z2+2" !
27

€ Int (1)

where “Int” denotes integer, . is the distributing angle of
kth planet gear positioning around the sun gear as illustrated in

Fig. 1, and z° and z" are the numbers of teeth for the sun
and ring gears, respectively. To an equally spacing PGS, the
sum of tooth numbers of planet and ring gears can be integrally
divided by quantity number of planet gears, i.e.,

212 e Int (2)

where n is the number of planet gears. More specifically, to
fulfill an equally spacing gearing of non MPD it requires

22/nelnt and z'/nelnt 3)

Beside, the MPD angle AH'p‘ between the kth and Ist sun-

planet (s-p) or ring-planet (r-p) pairs can be calculated using
Eq. (4) [19].

NGy =[2° ~nt( 2/ (2t ) x(2/y ) (2w )< (22 2°) - (4)

1st planet gear
P 24 ¢

S

! f?fwll planet gear T>—

Y

Fig. 1 The distributed angle interval w between the kth and
1st planet gears for calculation of MPD

FE Model

The process of tooth profile derivation and element
creation for gears are entailed in a previous work [20]. Only
briefing description is given. The profile equations including
tooth blank and fillet are deduced basing on a rack cutter
through coordinate transformation together accompanying with
the equation of meshing for gears [21]. When analyzing gear
dynamic responses, fine description of tooth profiles using
elements is utmost essential, especially analyses to obtain the
local contact stress or bending fillet stress in gears. For this
reason, FE model of gears in this study are carefully constituted
with mapped elements which are directly and parametrically
built from the tooth profile equations. Through which, element
distribution and density of teeth and blank of gears can be
conveniently regulated so as the precise geometry of tooth
profile is attainable.

A detailed illustration of the elements around the contact
region of a meshing tooth pair is given in Fig. 2(a). The penalty
method accompanying a slave search algorithm is used in
dealing with the contact problem by placing normal interface
springs between all penetrating nodes and the contact surfaces
of tooth pairs [22]. Besides, in order to ensure the mating gears,
being of single tooth pair in contact with a single mating
surface pair, to facilitate this continuum modal analysis of
PGSs, a skilled step is taken as shown in Fig. 2(b) at which the
teeth participating in the contact are separated from their parent
gears and to be individual parts [22]. In this study, only single

2 Copyright © 2011 by ASME



tooth pair in contact is considered. In case of double tooth pairs
in contact concerned, stiffness of a gear pair can be assigned
being roughly doubled but no further discussion here.
However, it is emphasized again this separating step is required
only in dealing with modal analyses. Afterwards, the shafts,
carrier, and other components are also attached, each bearing,
not two perpendicular springs, is simulated using three equally
spacing springs to reduce directional stiffness unevenness.
Finally, the completed 2D/3D FE models are shown in Fig. 2
but only the 2D element model will be continued in the
following modal and dynamic analyses.

I P
T 1

Placing normal
. interface springs
“_ I~ For tooth contact

Single tooth pair in contact
for external gear pair

\ Equivalent springs
A For bearings

Single tooth pair in contact
for internal gear pair

(b) (©)

Fig. 2 FE models: (a) detail showing around contact
region; (b) 2D model; (c) 3D model

Categorization of Modal Shapes

According to the previous works basing on the discrete
models [4, 7], modal shapes of PGSs are categorized into the
three kinds of modes of translation, rotation, and planet,
respectively as illustrated in Fig. 3. For identification, Ti, Ri,
and Pi denote the ith modes of translation, rotation, and planet
modes, respectively. The repetition of translation modes is two.
The planet modes appear only when the number of planets is
larger than three. A PGS having n planet gears (n>3) always
exhibits three planet vibration modes of repetition n-3.
Therefore, in the case of four-planet system as shown in Fig 3,
its planet natural mode has repetition one.

(a) Ti (b) Ri (ci

Fig. 3 Three categories of modal shapes for a PGS with four
planets: (a) Translation mode Ti; (b) Rotation mode Ri; (c)
Planet mode Pi

A MODAL ANALYSIS OF PGS

A three-planet PGS (19-34-89) with MPD is analyzed
whose gear data are given as: module m;=16mm, pressure
angle «, =20°, teeth numbers of gears z°=19, z° =34, and

2" =89. The FE models have been shown in Fig. 2. Young’s
modulus of all components E =0.206x10° MPa and the
bearing stiffnesses kg =10° N/m. Then, using the 2D FE

model in Fig. 2(b), 13 structural translation modes (Ti) and 3
structural rotation modes (Ri) are calculated out and depicted in
Table 1. Noticeably, frequencies to the translation modes
cannot doubly appear even their value shows close such as two
frequencies pairs (47.4, 48.5) and (82.9, 97.4) for examples.
There are no double translation modes for the kind of equally
spacing PGS with MPD. Perfect repetition in translation modes
cannot occur is arisen from the slight deviation of meshing
stiffness among gear pairs. The result is a little different from
the gear dynamic studies of discrete model since in which the
average of meshing stiffness are generally assumed. Thus, the
slight stiffness deviation is not concerned. No planet modes
exist for the three-planet PGS. To visualize the resulted modal
shapes, two vibration modes of TS and R4 are shown in Fig. 4.

Additionally, there are three additional modal frequencies
of CR1=899.7 Hz and CT1= CT2=2329.0 Hz resulted. Those
modes are respectively corresponding to rotational and
translational deformations of the carrier. Besides, it exhibits
that the translational one has a repetition number of two.
Actually, these modes are not structural vibration modes.
Nearly, they only associate with the componential formation of
carrier. Consequently, they will not be furthered on discussing
the influence of bearing stiffness on structural modal
frequencies but on the material stiffness effect of carrier
afterwards.

STIFFNESSES AND PGS MODAL BEHAVIOR
Change of Systematical Bearing Stiffness

The gearing (19-34-89) data has been given above. Also,
bearing stiffness Kk, =10° N/m is assigned as a reference
value. Basing on that, the influence of difference systematical
bearing stiffnesses on gearing modal behavior is discussed.
Systematical means all bearing stiffnesses supporting the
components in a PGS are wholly changed. Because the support
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method in PGSs may be from completely floating to very rigid,
the value of bearing stiffnesses is assigned from a softer one of
10" N/m, ie. 0.1 to 100 times of the reference stiffness of
10® N/m. Then, the calculated structural natural frequencies of
the gearing corresponding to various stiffness assignments are
shown in Fig. 5(a). The result shows all structural frequencies
are increased when increase systematical bearing stiffnesses.
Moreover, by selecting the curve of R2 as a dividing border,
the 16 natural frequencies can be categorized into two groups:
one is the lower frequency group (shown by dashed curves)
including 10 lower frequency modes of R1 and T1 to T9, and
the other one is the higher frequency group (shown by
continuous curves) including 6 higher frequency modes of R2,
R3, and T10 to T13. The result in Fig. 5(a) also exhibits that
the frequencies of the lower group are more significantly
increased especially as the systematical stiffnesses are 10 times
increased or more.

Fig. 4 Two examples of resulted modal shapes: (a) TS (138.0
Hz); (b) R3 (2349.4 Hz)

Subsequently, an index Q called dimensionless slope is
used to further expose the change tendency and sensitivity of
natural frequencies for structural vibration modes due to the
bearing stiffness change which is defined. Thus,

_ (a)i -0, )/wi—l
Qi - (kB,i 'kB,i-l )/kB,i-l (5)

where @, and €; denote the calculated natural frequency

and dimensionless slope under the assigning bearing stiffnesses
Kg i - Accordingly, the obtained dimensionless slopes from the

result in Fig. 5(a) are shown in Fig. 5(b). The figure exhibits
that the dimensionless slopes belonging to the lower group
(continuous curve) are always relatively large during the
assigned systematical stiffnesses which is especially obvious at
a smaller assignment such as 0.5 times or lower. The bigger
values of Q’s are mode T1 to T4 which implies these four
frequencies are increased more evidently than the others with
the increase of systematic stiffnesses. In other words, the

frequencies belonging to the lower group are tending to
adjustable by regulating bearing stiffnesses. Besides, the Q’s of
R1 and T5 to T9 are increased more significantly of the interval
between 0.1 to 2.0 times. When bearings become stiffer, their
effect on vibration frequencies of these modes is also more
significant. As the bearing stiffnesses are assigned about 10
times to 10’ N/m, the most of Q’s achieve maxima that implies
around which the gear modal property is very sensitive to
bearing stiffness change. After that, most Q’s turn to smaller
except those belong to the higher frequency group. During that,
the six frequencies to the higher group are less increased
comparing to the higher frequency group. However, as the
bearing stiffnesses are assigned larger than 4x10° N/m, the
increase of Q’s of the higher frequency group (dashed line) also
becomes significant since near which the shapes of their
vibration modes essentially transform. Since the dimensionless
slope can more meaningful demonstrate modal property of
PGSs, only the graphical showing of Q’s is given afterwards.
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Fig. 5 Relation of structural natural frequencies o and
dimensionless slopes Q and systematical bearing stiffness
Change of Planet Bearing Stiffness
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After the above discussion by changing stiffness
systematically, influence of the planet bearing stiffness is
discussed. Firstly, as shown in Fig. 6, more or less, the planet
bearing stiffness has an effect on all the structural modal
frequencies but what modes are more affected is not same for
different stiffness values. When the stiffness is increased 4
times to 4x10° N/m and the larger, Q’s of R1 and T5 toT9
are evidently larger than the others. Those frequencies are more
affected by the change of planet bearings stiffness because they
are closely relating to the rotation and translation movements of
plant gears. Their maxima of Q’s are appearing around the
stiffness of 10 times increase. Noticeably, the other modes
which are the four lowest frequency modes of T1 toT4 and the
six modes in the high frequency group are less affected by the
planet bearing stiffnesses since displacements of these modes
are less relating to planet bearings.
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Bearing stiffness of planet gears Kp (1.0 10° N/m)

Fig. 6 Relation of dimensionless slopes Q of structural natural
frequencies and bearing stiffness of planet gears

Effect of Carrier Stiffness

Stiffness and machining accuracy of planet -carrier
essentially affect the gearing dynamic behavior. In this study,
only the effect of carrier stiffness is analyzed by assigning
various Young’s modulus E . The value of 0.206x10°MPa is
used as a reference basis value and the values between
0.206x10°MPa and 0.206x10*MPa are assigned. Figure 7
shows the calculated ®’s and Q’s under various carrier moduli.
The effect of Young’s modulus of the carrier is almost on the
modes of CR1, CT1, and CT2 only. The increasing rates of ®’s
and Q’s belonging to the above three vibration modes are
significantly larger than the others when increase E since
these three modes are closely relating to the deformation of
carrier and its bearings. As the above stated, CR1, CT1, and
CT2 are not structural modes but componential ones. The
carrier stiffness does not evidently affect any other modal
frequencies  except the three  modes  especially
for E > 0.206x10° MPa. Even the carrier stiffness does not
manifestly change the structural modal displacement

characteristics of the PGS, it can be designed with adequate
compliance to absorb the excitation from the design or
manufacture causes.
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using various Young’s modulus E

DYNAMIC RESPONSE OF PGS
Dynamic Fillet Stress

This section analyzes dynamic responses of the PGS. The
created 2D FE model is shown in Fig. 2. At first, the rotation
speed of sun gear n® =95.5 rpm. The detailed operating and
gear data are depicted in Table 2. The damping effect is not
incorporated. Firstly, dynamic fillet stresses of two adjacent
tooth pairs for the three s-p pairs are shown in Fig. 8 at which
SPi.j (PSi.j) denotes the dynamic sun (planet) gear fillet stress
of the jth meshing tooth pair for the ith s-p gear pair. In this
PGS analysis, i=1 to 3, j=1 and 2. For example, SP2.1 is the
sun gear fillet stress of the first tooth pair for the second s-p
pair. Besides the abscissas are absolute rotation angles of sun
and planet gear for SPi.j and PSi.j, respectively. Similarly, RPi.j
denotes the ring gear fillet stress in r-p gear pair but does not
show for briefing. The dynamic fillet stresses of the two
adjacent teeth in s-p pairs are shown in Fig. 8. Not only the
dynamic stresses on sun gear but also those on planet gears for
various s-p gear pairs are very close. To certain extent, their
similarity verifies the correctness of the numerical calculation.

Subsequently, fillet stresses of SP 1.1 and SP1.2 in Fig

8(a) are more described. Three snapshots to illustrate the
meshing process of tooth pairs are given in Fig. 9. At the onset
of meshing process, including another leading tooth pair, the
number of tooth pairs in mesh of the first s-p pair is double.
When the sun gear rotation angle is between 0° and 13.8°, the
dynamic fillet stress is fluctuating with the advance of tooth
meshing after a rapid increasing. The dynamic fillet stress
distribution at a sun rotation angle of 8° is given in Fig. 9(a).
Afterwards, a leading tooth pair ends its mesh and thus the s-p
pair goes into the interval of single tooth pair in contact which
is the sun rotation angle between 13.8° and 22.9°. The stress
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distribution at sun rotation angle 15.5° is shown in Fig. 9(b).
During the interval, the observed tooth pair burdens the whole
loading splitting to the first s-p gear pair. Therefore, a
maximum filet stress of 198 MPa appears at the rotation angle
of 15.5° since at the instant the tooth contact is around the
highest point of singe tooth contact (HPSTC). Subsequently,
the meshing process continues to the third step at which the
second tooth pair participates. The next tooth pair starts its
meshing process and thus the number of meshing tooth pairs
resumes double again. The stress distribution at rotation angle
31.3° is give in Fig. 9(c). Finally, the observed tooth pair
terminates its meshing cycle at the sun rotation angle of 36.5°.

Finally, the dynamic fillet stresses of SP 1.1 in the PGS at
three operation speeds of 50 rpm, 95.5 rpm, and 150 rpm are
calculated and shown in Fig. 10. It exhibits that a larger
operation speed causes a larger dynamic response. The
particular fluctuation is occurring at the speed of 150 rpm since
at the speed the PGS has a meshing frequency of 39.1 Hz
which very close to the sixth superharmonic frequency (38.4
Hz) belonging to mode T3 (230.5Hz).

5.2 Planet Stiffness and Loading Share Inequality

The most noticeable feature of PGS may be its load split
ability, but the practical performance is closely affected by
numerous designing and manufacturing factors. Next, non-
uniformity of dynamic fillet stresses in the s-p and r-p gear
pairs is further analyzed due to planet bearing stiffness
variation. All the bearing stiffnesses in this PGS analysis are
assigned to a reference value of 10° N/m except the bearing
stiffness for the first planet gear which will be wide range
adjusted between 107 and 10" N/m. The calculated results for
all the three s-p and r-p gear pairs are shown in Fig. 11 in
which SPi and PSi respectively represent the dynamic stress
maxima occurring in the sun and planet gears of the ith s-p pair.
Similarly, RPi and PRi denote the maximum ring and planet
fillet stresses for the ith r-p pair. In case that all bearing
stiffnesses of planets have an identical basis value of 10° N/m,
the maxima of planet fillet stresses for both the s-p and r-p
pairs, i.e. PSi and PRi are about 198 MPa.

Finally, non-uniformity of dynamic fillet stresses due to
load splitting inequality among the s-p and r-p pairs is
discussed by changing the bearing stiffness of a planet. As
shown in Fig. 11, when the bearing stiffness in the first planet
is assigned to a lower value, the maximum fillet stresses in the
first s-p and r-p pairs become less. Thus, the stresses in the
other planet pairs become larger. For an example, as a softer
stiffness of 10’7 N/m, the maximum planet fillet stresses are
decreased to 142 MPa for the first s-p pair and to 110 MPa for
the first r-p pair. However, the planet stresses for the other two
are increased to 292 MPa for the second and third s-p pairs and
to 228 MPa for r-p pairs. The increase of planet fillet stresses in
pair 2 and 3 is caused by larger fraction of loading sharing by
them. A similar changing tendency is observed in the r-p pairs.
On the other hand, when the bearing stiffness of the first planet
is increased to a stiff one such as 10" N/m for example, the

maximum stresses in the first planet is increased to 395 MPa
for s-p pairs and 308 MPa for r-p pairs, owing that a larger
fraction of loading is splitting to it. Naturally, stresses for the
other two (pair 2 and 3) become the less values of 76 MPa for
s-p pairs and 50 MPa for r-p pairs, respectively. Besides, it is
worthy to point out that the stress of the first planet is (198-
142)/198= 28.3% decreased only for the first s-p pair on
conditioning that its bearing stiffness is two-order decreased.
Also, the first planet fillet stress is (292-198)/198= 47.5%
increased only if its bearing stiffness is two-order increased.
The more of stiffness variation it is the more stress difference
exhibits. Nevertheless, the change rate of the fillet stresses is
not as significant as the planet bearing stiffness since loading
sharing fractions of planets are determined by their resultant
stiffnesses of all components not the bearing stiffness only.

The above result demonstrates the loading non-uniformity
due to the bearing stiffness variation among planet gears.
Actually, several other factors may cause loading split
inequality such as unequally planet spacing, planet meshing
phase, and manufacturing errors. Their investigations and the
measures to improve them like floating sun gear or flexible
carrier design can be furthered using the proposed method.
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Fig. 9 The dynamic fillet stress distribution at three meshing
instants for first s-p pair at sun gear rotation angle: (a) 8°; (b)
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CONCLUSIONS

This study analyzed modal and dynamic property of PGSs
by an FE approach using a commercial package. The influence
of systematical or componential bearing stiffness on the modal
behavior and dynamic response was investigated. Also, the
effect of carrier material stiffness was emphasized. Several
results relating the PGS modal characteristics and stiffness
were obtained. For example, the perfect repetition of translation
modes is not always exactly appearing in PGSs of equal space
with MPD. The structural natural frequencies of the lower
group are more affected than the higher group when the bearing
stiffness changes. Only the componential modes belonging to
the carrier are really affected by its Young’s modulus. Finally,
dynamic responses of PGSs were also analyzed. Fillet stresses
and their non-uniformity among s-p and r-p gear pairs were
also analyzed by differing one of the planet bearing stiffnesses.
The result also shows the stress change rate is not as obvious as
the bearing stiffness. This FE approach in this study shows its
convenience in the PGS modal and dynamic studies. Its
extension to the dynamic problems of wide PGS types is also
expected.
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