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The main purpose of this study is to use an R-test
measurement device to estimate the geometric location
error of the axis of rotation of five-axis machine
tools. The error model of CNC machine tool describes
the relationship between the individual error source
and its effects on the overall position errors. Now,
the R-test measuring device can be used to measure
the overall position errors of five-axis machine
tools directly. To improve the accuracy of CNC
machine tools, error sources and its effects on the
overall position and orientation errors must be
known.

This study thus based its definition on the geometric
errors of [S0230 to construct a geometric error model
used to measure errors in the five-axis machine tools
for the R-test measurement device. This model was
then used to reduce the five-axis geometric error
model based solely on the location error of the axis
of rotation. Moreover, based on the simplified model
and the overall position errors measured by the R-
test with path K4, the location errors of rotary axes
and ball position errors can be estimated very
accurately with the least square estimation method.
Finally, paths K1 and K2 were used as » testing
paths. The results of the test showed that the model
built in this study is accurate and is effective in



estimating errors.

#~ M4 0 Geometric error ;5 Least square estimation; Five-axis
machine tools:; R-test:; Position errors.
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Modeling and identification for rotary geometric errors of five-axis machine tools
with R-test measurement

Yung-Yuan Hsu
Abstract

The main purpose of this study is to use an R-test measurement device to estimate the geometric
location error of the axis of rotation of five-axis machine tools. The error model of CNC machine tool
describes the relationship between the individual error source and its effects on the overall position errors.
Now, the R-test measuring device can be used to measure the overall position errors of five-axis machine
tools directly. To improve the accuracy of CNC machine tools, error sources and its effects on the overall
position and orientation errors must be known.

This study thus based its definition on the geometric errors of 1ISO230 to construct a geometric error
model used to measure errors in the five-axis machine tools for the R-test measurement device. This
model was then used to reduce the five-axis geometric error model based solely on the location error of
the axis of rotation. Moreover, based on the simplified model and the overall position errors measured by
the R-test with path K4, the location errors of rotary axes and ball position errors can be estimated very
accurately with the least square estimation method. Finally, paths K1 and K2 were used as testing paths.
The results of the test showed that the model built in this study is accurate and is effective in estimating
errors.

Keywords: Geometric error; Least square estimation; Five-axis machine tools; R-test; Position errors.

1. Introduction

In addition to three servo-controlled linear axes, five-axis CNC machine tool has normally two extra
servo-controlled rotary axes. These rotary axes can be used to adjust the cutting tool in an optimal
orientation relative to the cutting surface of workpiece. The advantages of five-axis machining of
sculptured surface include much higher metal removal rate, improved surface finish and significantly
lower cutting time.

Enhancing the accuracy of CNC machine tools is vital task in the area of machine tools. According
to relevant research reports, quasi-static errors account for 70% of volume errors in CNC machine tools.
This kind of error includes both geometric and thermal errors.

This study researched geometric errors in quasi-static errors for five-axis machine tools. Regarding
improvements in machine tool accuracy over the past decade, Slocum (1992) and Kiridena and Ferreira
(1994) have explained that the geometric errors and thermal deformation in three-axis machine tools
influenced accuracy [1, 2]. Using the error model establish by these authors, Ferreira and Liu (1986; 1993)
have developed an error compensation technique to improve the accuracy of CNC machine tools [3,4]. In
recent years, more research has been conducted involving five-axis machine tools. Srivastava et al. (1995)

constructed a mathematical analysis model for geometric and thermal errors in five-axis machine tools
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using HTM and proposed an NC machine online compensation method [5]. The volume error for machine
tool work space is the function of all error terms. To ensure the geometric accuracy of five-axis machine
tools, machine assembly must go through a substantial, time-consuming calibration process.

Currently, certain types of measurement devices are able to measure geometric errors in machine
tools; the most common and most efficient of which is the APl 6D laser interferometer [6]. This
measurement device can simultaneously measure six degrees of freedom on a linear motion axis. The
DBB, another common measurement device, is used to examine dynamic errors in linear motion axes [7].
Lei et al. (2007) applied the DBB to test for errors in the rotary axis of five-axis machine tools [8]. Lei
and Hsu (2002) developed a probe-ball measuring device that could directly measure the overall errors of
a five-axis machine tool and, thus, evaluate its accuracy [9]. Weikert (2004) showed that the R-test, which
can measure static and dynamic errors in five-axis simultaneous machines, still had limited applications
in analyzing five-axis geometric and dynamic errors [10]. The LaserTRACER offers an efficient,
high-precision measurement system for volumetric calibration, but this measurement system is very
expensive [11].

Although the theoretical error model of five-axis machine tool is known, it is still impossible to
improve the accuracy of five-axis machine tool with the error compensation technique based on it. The
reason is there are some not directly measurable location and component errors in the error model, such
as the inaccurate location and component errors of rotary axes block. These errors are exist as deviations
between coordinate systems and are difficult to access after the mounting process. It is clear that the key
step toward effective accuracy enhancement of five-axis machine tools is the identification of these
unknown location and component errors of rotary axes.

The least square estimation (LSE) methods provide with mathematical procedures by which a linear
model can achieve a best fit to experimental data in the sense of least-squared error. The methods are
powerful and well-developed mathematical tools that have been proposed and used in a variety of areas
for decades, including adaptive control, signal processing, and statistics[12]. In the field of errors
estimation of five-axis machine tools, Lei and Hsu (2002) showed the probe-ball error model was
constructed and based on the data accumulated by a probe-ball. For errors which the least square
estimation method can be used to gain a precise estimate[13]. some other researches also used this
method to estimate error components [14-16].

In this paper, the error model of the R-test measurement in five-axis machine tools be derived. the
estimation of the unknown and not directly measurable location errors and ball position errors in the error
model is addressed. Based on this relationship and the measured overall position errors with measuring
path K4, the location errors of rotary axes and ball position errors can be estimated very accurately with
the least square estimation methods.

2. Error model of R-test measurement
2.1 Geometric error definition of linear and rotary axes

Definitions in 1S0230 related to error test standards for CNC machine tools include the definition of
geometric errors and the testing method. A linear motion axis is defined as possessing six component

errors (three translational and three rotational errors), and a location (perpendicularity) error exists
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between two linear motion axes. A rotary motion axis also possesses six component errors (three
translational and three rotational errors), four location errors (two translational and two rotational errors).
According to the above definitions, a five-axis machine tool with three linear and two rotary axes has a
total of 41 geometric errors.

To describe three-axis machine tool geometric overall errors, establishing a geometric error model
for the target machine is necessary. Assuming that the structure of the machine tool is a rigid body, a 4x4
HTM could be used to show the relationship between each kinematic and servo control axis, and the
machine error model could undergo an individual kinematic and driver component HTM to obtain the
order of products, depending on the machine kinematic chain [1].

Figure 1 displays a case study for the X-axis linear motion slide. The geometric error model for
kinematic parameters, location errors, and component errors in the X-axis linear slide, showing the

relationship of the x coordinate system with respect to the reference coordinate system IrTX, is shown in

the formula below.

1 0 0 Xy 1 -COX 0 0 1 —-ECX EBX X + EXX
01 0Y COX 1 00 ECX 1 —EAX EYX
rTX _ X (1)
0 01 Z, 0 0 10 —EBX EAX 1 EZX
0 00 1 0 0 01 0 0 0 1

Where Xy,Yy,Zyare either the constant offset of the x home position with respect to the reference

coordinate system in the x,y,z directions, respectively, or the kinematic parameter for the X-axis linear
slide. COX is the location error between the linear X-axis and an ideal linear axis (in this example, the
Y-axis of the reference coordinate system), which causes a small angular rotation between the two
coordinate systems in the Z-axial direction. EXX, EYX, EZX, EAX, EBX, and ECX are the six component

errors for the linear X axis, and Xy is the servo-controlled position of the X-axis slide.

The order of products for the kinematic parameter matrix, the location (perpendicularity) error
matrix and the 6D component error matrix in the above formula depends on the pattern arrangement in
the kinematic chain of the linear X-axis. First, regarding the 6D component error matrix of the X-axis
linear slide, assuming that when the X-axis slide moves to the home position and the Z-axis of the x
coordinate system is identical to the Z-axis of the reference coordinate system, the perpendicular error
COX exists between the X-axis of the x coordinate system and the Y-axis of the reference coordinate
system, as does the perpendicularity error matrix. When the X-axis slide moves to the X home position,
the X-axis slide has the kinematic parameter matrix for the origin coordinate offsets.

The rotary axis geometric error model is described in Figure 2. Using the rotary motion of the C-axis
as an example, the geometric error model (HTM) for the kinematic parameters, location errors, and
component errors, the relationship of the ¢ coordinate system with respect to the reference coordinate

system, T, , IS shown in the formula below.



100 X 1 0 BOC XOC
p [0 0 Y 0 1 -AOC YOC
1o 01 z.,||-BOC AOC 1 0
000 1 0 0 0 1 2)
Cee ~Sce EBC EXC
Sce Cee —EAC EYC
EAC*S, —EBC*C,, EAC*Cg +EBC*S,, 1  EZC
0 0 0 1

Where X;,Yc,Zcare either the constant offset of the ¢ home position with respect to the reference
coordinate system in the x,y,z direction, respectively, or the kinematic parameter for the C-axis rotary
turntable. XOC and YOC are the C-axis installation center and the ideal center, respectively, in the X, Y
directional translational offset. AOC and BOC are, respectively, the location errors for the C-axis
installation axis line and ideal coordinate system axis direction (in this example, the Y- and X-axis of the
reference coordinate system), causing a small angular rotation in the directions of the X- and Y-axes
between two coordinate systems. EXC, EYC, EZC, EAC, EBC, and ECC are six component errors for the
C-axis. Finally,S.. =sin(C,, + ECC), C. =co0s(C, + ECC), and C,is the servo-controlled position
of the C servo-axis.

In Equation (2), the first matrix is the kinematic parameter matrix for the offset in origin between
two coordinate systems; the second matrix is the location error matrix for the C rotary-axis; and the third
matrix is the component error matrix for the C rotary-axis. Thus, the C rotary-axis has ten geometric
errors.

C-axis

z
EAX ECC J)Cm oY

X "Q Tz — ’ /(B}cusac

T
j Ezf_,_.ﬂ-"" Zlc Yc
) Zx EZC s
» \ Xx YOC+EYC __ Ny

- Xc,Yc,Zc) P> ~Xc —
YX’/)(Home position (Xe,Ye,Ze) | XOC+EXC AOC+EAC X
-~ . |
Y K Xr

ZrI/ vr
»"r

Yr Xr
Figure 1. X-axis linear axis error definition Figure 2. C-axis rotary axis error definition

2.2 Error model for R-test measuring in five-axis machine tools

Fig. 3 illustrates the investigated five-axis milling machine and its coordinate systems. The whole
machine is modeled as a kinematic chain with several links connected in series by prismatic and
rotational joints. At one end of the chain is the 3D measuring probe mounted on the spindle. The spindle
block is mounted on the Z-slide. The Z-slide moves vertically on the Y-table with a prismatic joint. The
Y-table moves on the machine column with a prismatic joint too.

At the other end, the kinematic chain begins with the master ball which is fixed on the C-turntable.
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The C-turntable is integrated in the A-tilting head. The A-tilting head is mounted on the X-table. The
X-table moves horizontally on the machine bed with a prismatic joint. Finally, based on the 1SO230
definition and this machine’s kinematic chain sequence, the location errors between three linear axes are
COX, BOZ, and AOZ.

Zr Z Home (XZ,YZ, 7)
Y W
Y Home Yo Xy z Zg Pep Zp
(XW’YW’ZW) J
X
(Xh,O Zy)
Xw
/ (0,0 zp)
(XW7YW7ZW)
'\Y TZC
¢ Xe
C Home ] Cm(o 0,Z¢)
zX Zy
Yx Am "'Xa
| o= A Home
X Home Xm (XaYa,Za)
(XX9YX9ZX)
Figure 3. Coordinate systems with R-test Figure 4. R-test measuring errors

As described above, there are total 44 errors in the error model. By using the HTMs described above,
the spatial relationship between the workpiece coordinate system and the reference coordinate system can
be expressed as

rTw:rTx XTa aTc CTw (3)

Similarly, the spatial relationship between the probe coordinate system and the reference coordinate
system can be expressed as

"To="T, 'T, T, "1, 4)

As shown in Figure 4, the center of the master ball P, =[X,, Yy Z\] deviates from the origin of
the probe coordinate system P, =[X, Y, Z,] due to geometric errors. The P, and P, are
computed from following equations:

[Py 4" ="Ty[0 0 0 1 (5)
[P, 4" ="T,[0 0 0 1’ (6)
The position error vector P, in the reference coordinate system can be expressed as

Per =Pw —Pp (7)

Since displacement sensors are designed in the 3D probe and measurements occur in the probe
coordinate system, it is necessary to transform the position error vector P, from the reference
coordinate system into the probe coordinate system:



[Pep O = ("Tp) '[P, O1=[AX, AX, AX, O] (8)

where the AX |, AY, and AZ, are the deviations in the probe coordinate system. Explicit expressions

of the measured errors can be obtained after carrying out the matrix multiplications and neglecting the
second and higher order errors as Table 1.

Table 1 show that the overall error in the direction of the X-axis, AX, is the product of each error
multiplied by the error gain of each error. For example, the error contribution in the X-axis direction in
EBX is EBX*(+Z, —C3*Z; —S3*Sc * Xy —Sa *Cc *Yyw —C4 *Z,,) . This table, which is considered a
geometric error sensitivity analysis table, indicates that translational errors (such as EXX, EYX... ) are
machine kinematic parameter-independent, while rotational errors (such as EAX, EBX,... ) are machine

kinematic parameter-dependent.

Table 1 Error model and sensitivity analysis

Axp AYp AZp A|p AJp AKp
Error Error Gain Error Gain Error Gain E.G || EG || E.G
EXX | -1 0 0 0 0 0
EYX 0 -1 0 0 0 0
X EZX | 0 0 -1 0 0 0
EAX | 0 +Za+Ca* 25 S Kw -Ya+Sa* Zw+Sa*Ze 0 Ca Sa
S CHYwtCa™Zy - Ca*Ce*Yw- Ca*SXw
EBX | -Za-Ca*Zc-Sa*Sc*Xw 0 Xa-ScYw+CoXw Ca O 0
-Sa*Cc*Yw-Ca*Zu
ECX | +Ya-Sa*Zc-Ca*Sc™*w - Xa- CoXw+Sc*Yw 0 -Sa 0 0
-Ca*CeYw-Sa*Zy
EXY 1 0 0 0 0 0
EYY 0 1 0 0 0 0
Y EZY | 0 0 1 0 0 0
EAY |0 “Zn-Zy-Zn-Z, +Y, 0 -1 0
EBY A2+t Ity 0 -Xn- %z 1 0 0
ECY | -y, XX 0 0 0 0
EXZ |1 0 0 0 0 0
EYzZ |0 1 0 0 0 0
YA EZZ 0 0 1 0 0 0
EAZ |0 -Zn-Zp 0 0 -1 0
EBZ | +Zy+Z, 0 ~Xn 1 0 0
ECZ | 0 +Xp 0 0 0 0
COX | +Ya-Sa*Zc - Ca*S*Xw -Xm-Xa 0 -Sa 0 0
Per. -Ca*CeYw - Sa*Zw - G Xt Sc*Yw
AOZ | 0 -Zn-Zp-Zim 0 0 -1 0
BOZ | +Zy+Z;tZy 0 - X 1 0 0
Ball | XOW | -C¢ -C3*Sc -Sa*Se 0 0 0
pos. | YOW | S -Ca*Ce -Sa*Ce 0 0 0
ZOW | 0 Sa -Cqy 0 0 0
EXA -1 0 0 0 0 0
EYA | 0 -1 0 0 0 0
EZA 0 0 -1 0 0 0
EAA | O + S S K + S CYyy | - Ca*C*Yy + Sa*(Zw+Z0) 0 Ca Sa
+Ca*(ZwtZy) - Ca*ScXw
EBA | -Ca*(ZwtZo)-Sa*Sc*Xw 0 -Sc*Yw + CK -Ca [ O 0
A SCHYiy
ECA | -S*(@w+Zo) + Ca*Se*Xw -Cc X+ S¢*Yw 0 -Sa | O 0
+Ca*Cc*Yw
YOA | O -1 0 0 0 0
ZOA | 0 0 -1 0 0 0
BOA | -Ca*(Zw+Zo)- Sa*Sc™Xw 0 - Sy + CeXy -Ca |0 0
=S Ce*Yw
COA | -S*(Zw+Zo) + Ca*SeXw -CXw + Sc*Yw 0 -Sa 0 0
+Ca*Cc*Yw
EXC | -1 0 0 0 0 0
EYC | O -Ca -Sa 0 0 0
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EZC | 0 +5, —, 0 0 0
EAC | O 55 X+ CoSa Yy | - CoCa Yoy +55Zuy 0 C. | s
+Ca*Zy - S Ca*Xw
C EBC | -Zy - Cc*Sa™Xw + Sc*8a™*Yw - 5" Ca*Yw + C*CaXuy 1 0 0
ECC | +Scow+Co™Yw T C ¥t CSM | + 575y - S Ce oy 0 0 0
XO0C | -1 0 0 0 0 0
Yoc | 0 . S 0 0 0
AOC | 0 55K+ CoSa V| - CoCa Yo+ 552w 0 G s
+Ca*Zy - S¢*Ca* Xw
BOC | -Zy - Ce*Sa*Xw + S¢*Sa*Yw -Sc*Ca*Yw + CCq*Xw 1 0 0
Note:  Cz=c0S(Am), Cc =0S(Cry), Sa =Sin(Any), Sc =sin(Cry).

3.Error estimation

To reduce the scope of estimation, a reasonable approach is to set the errors to zero except location
errors of rotary axes and ball position errors. The estimation focuses then only on the unknown, constant
and not measurable location errors of rotary axes and ball position errors. The advantage of this approach
is that the estimation can be done even if available measurement devices are limited, for example only
linear or 6D laser interferometer is available. Obviously, the accuracy of estimation will be better if more
powerful devices are used.

The least square estimation method can only estimate position-independent constant errors. When
the contribution of the 21 geometric errors on the three machine tools and the 12 component errors on the
2 axes of rotation are smaller than the errors that need to be estimated, the 33 geometric errors mentioned
previously would not cause a significant impact on the R-test measurement figures. The error models of
the five-axis machine tool with R-test measurement device presented in Table 1 can thus be reduced, as
can be seen in Table 2. The total number of geometric errors that need to be estimated is 11 (3 ball
position errors and 8 location errors on the 2 axes of rotation). These error parameters form the parameter
vector a.

The reduced error model builds the mathematical base for the least square estimation and can be
re-arranged into vector form to obtain the error gain functions f; ,(pj), fiy(pj) and fj,(p;) in
the error gain matrix H for each setting position p;. For example, the location error BOA is defined as
error parameter as. Its error gain function fg ,(pj) is —Ca*(Zy +Z¢)—Sa *S¢ * Xy —Sa *C¢ * Yy -

Table 2 Reduced error model

AXp AYp AZp
Error Error Gain Error Gain Error Gain
Ball XOW(@) | -Cc -CGa*Se -Sa*Se
Pos. YOW(a) | +S -GG -Sa*Ce
ZOW@s) | 0 +S, -Cq
YOA@) |0 1 0
A ZOA(as) -1
BOA(as) - Ca*(@w+Ze) - Sa*Sc*Xw -Sa*Cc*Yw -Sc*Yw + CXw
COA(ar) - Sa*(ZwtHZo)+ Ca* S X + Ca*Cc*Yw | - Cc*Xw + Sc*Yw
XOC@g) | -1 0
C | YoC@) |O -Ca -Sa
AOC(a) | O + S¢S Kw + C*Sa*YwHCa*Zw | - Co*Ca*Yw + Sa*Zw- Sc*CaXw
BOC(an) | -Zw - Cc*Sa™Xw + Sc*Sa* Yw Sc¢*Ca*Yw + C*Ca* X

4. R-test measuring and estimation results




The block diagram of parameter estimation is shown in Figure 5. The parameters of the five-axis
milling machine tool are calibrated and are shown in Table 3. The five-axis milling machine tool is tested
with three different test paths: the K1, K2 and K4. As can be seen in Table 2, the K4 test path, which all
five axes driven simultaneously, is ideal in estimating error measurement to effectively calculate all errors.
Therefore, the K4 test path is used for estimation and the K1,K2 paths are used for justification. The
overall position errors and the setting positions p; of each error sampling are registered for the purpose
of error estimation. The total number of samples for K4 is 241. K1 is 361, and K2 is 121.

Table 3. Parameters of the target five-axis machine

Parameter Value (mm) Parameter Value (mm)
Xw -217.504 Z; 29.794
Yw -0.279 Zp 184.670
Zu 211.537

After the measurements, the values of error gain functions fj x(p;), fiy(pj) and fi,(pj) in
the error gain matrix H are computed for each setting position pj. The elements of the measurement
vector ¢ are obtained through R-test measuring for each setting position pj. With the error gain matrix
H and the measurement vector q known, the unknown error parameter vector a is obtained through
solving Eq. (26) directly with the help of the mathematical tool software MATLAB. The solution of error
parameter vector a involves great amount of computation with matrices and arrays. No iteration is
necessary.

Figure 6 is shown the R-test measurement in the target five-axis machine tool with Heidenhain iTNC
530 controller, and the results of estimation based on the test K4 is shown in Table 4. For the sake of
justification, the estimated location errors of rotary axes and ball position errors are set into the error
model to compute the overall position errors along the K4 test path. The results are shown in Figure 7.
The predicted and the really measured overall position errors are very close. The deviations in X-, Y- and
Z-axis are in the range of +12um. To justify the effectiveness of the estimation further, the predicted and
measured position errors along two different tests path K1 and K2 are also compared. The results are
shown in Figure 8 and Figure 9. With these test paths, the global tendency matches also very good. The
deviations are greater and rise to the range of +15um.

5. Conclusion

The error modeling technique is very useful in predicting the volumetric errors of CNC machine
tools. Until now the implementation of this technique in five-axis machine tools faces great problems.
Although the majority of component errors in the error model are measurable with modern measurement
devices, there are still some component and location errors of the rotary axes that are not measurable.

In recent years, 1SO/10791-6 has defined the error test methods for five-axis machine tools, and

10



R-test measurement devices are already in use as five-axis machine tools. In addition to measuring the
accuracy of five-axis machine tools, the measurement device can also be used to analyze errors using the
test results. In this study, a reduced error model is used for the least square estimation to increase the
accuracy of estimation and to accelerate the estimation process. Tests with different paths prove that the
proposed estimation method delivers very good results. The R-test device and the errors estimation
method have great impact on the accuracy enhancement of five-axis machine tools. And the error model

can be used for advanced purposes such as error compensation.

—
~

————
Test path
%
R-test
measuring

h J

v
1
Setting positions
Pj(X,Y,Z,AC)n

Overall position errors

AXp,AYp,AZp
q Error gain functions
in error model
H

A

A J

Least Square Estimation a = (H TH) ™ H g

Table4. Results of the error estimation

Parameter Value
XOW(ar) -3.2 (um)
YOW(a:) -21.6 (um)
ZOW(asz) -33.9 (um)
YOA(as) 20.5 (um)
ZOA(as) 32.5 (um)
BOA(as) 12.3 (arcsec)
COA(ar) -7.2 (arcsec)
XOC(as) 1.4 (um)
YOC(as) -15.9 (um)
AOC(ag) -6.5 (arcsec)
BOC(ar) -4.6 (arcsec)

Figure 6. R-test measuring in machine tools
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Figure 7. Comparison errors of K4 path  Figure 8. Comparison errors of K1 path

30 | | | 10
0 —— — b ——— k- = — b — o

X-axis error( 1 m)
Y-axis error( 1 m)

60 | | 1
0 100 200 300 400

C-axis(degree)

Z-axis error( . m)

C-axis(degree)

Figure 9. Comparison errors of K2
Reference
[1] A.H. Slocum, Precision Machine Design, Prentice-Hall, Englewood Cliffs, 1992,
[2] V.S.B. Kiridena, P.M. Ferreira, IJIMTM 34 (1) (1994) 85-100.
[3] P.M. Ferreira and C.R. Liu, Annals of the CIRP 35 (1986) 259-262.
[4] P.M. Ferreira, C.R. Liu, Journal of Engineering for Industry 115 (1993) 149-157.
[5] A.K. Srivastava, S.C. Veldhuis, M.A. Elbestawit, IIMTM 35 (9) (1995) 1321-1337.
[6] K. Lau, Q. Ma, X. Chu, Y. Liu and S. Olson, Automated Precision, Inc., MD 20879 U.S.A.
[7] J.B. Bryan, Precision Engineering 4 (2) (1982) 61-69.
[8] W.T. Lei, M.P. Sung, W.L. Liu, Y.C. Chuang, IIMTM 47 (2007) 273-285.
[9] W.T. Lei and Y.Y. Hsu, IIMTM 42 (10) (2002) 1153-1162.
[10] S. Weikert, W. Knapp, Annals of the CIRP 53 (1) (2004) 429-432.
[11] LaserTRACER™ , white paper, Optical Gauging Products Inc (OGP), 2009.
[12] A. Gelb, Applied Optimal Estimation, MIT Press, 1974.
[13] W.T. Lei and Y.Y. Hsu, IJMTM 42 (10) (2002) 1163-1170.
[14] V.S.B. Kiridena, IIMTM 34 (1) (1994) 101-125.
[15] H.J. Pahk, Y.S. Kim and J.H. Moon, IIMTM 37 (11) (1997) 1583-1596.

[16] R.G. Wilhelm, N. Srinivasan, F. Farabaugh, Annals of the CIRP 46 (1) (1997) 471-474.
12



i
ofs

ERELBATVEAT AR REE G R FEFL

# +100# 9" 200p

2+ 4 e | NSC 99-2221-E-216-037

PREH v Rtest B2 277 ph1 485 oL iRl E s o 3

SRR - PRA-H 4 - e e

/ﬁ‘ A ; 5 ‘:J J‘_J‘ ,;‘E <7

s A e, E R BlRk
100#7%27Tp 2%
= SHE) B f"' @ é: e

gviafﬁfﬁ& 100‘/&75299 gvia L2 / @Z] o

i A WASET 2011 INTERNATIONAL CONFERENCE PROGRAM

T Kinematic parameter-independent modeling and measuring of
AP three-axis machine tools

d 2y

¥f

TI26 B FARE R T K 0 £ T7/28 5 F 11:20:8 47 5 pF 20 A 4B 2 SR 2

fi’.%f%f%ﬁ’ré%?‘*’k’gﬁ T )aiz’t”"ﬁ:%\\ ¢ ’3‘& PPN T'Z%_y(bh’g ﬂmii:jﬁ;"?‘f
oo S 2 ARG = R ER R M &Y —:Lm}g«*’ra BB AT B 2 B 4 B

EENY RNy

d =i g

¥f

LR R PN G 3 LFIRLATE PR R S P B S e, i

FAMARFEL G ARG £ & g o

= A RRRER (R TEREY) 8
e~ E TR
I HrEREFERT

World Academy of Science, Engineering and Technology 79 2011
= N H {8

7~




Paper ID Code: FR79000 (Please accept our apologies for any inconveniences caused & double entries received)
Letter of Acceptance

Paris, France

July 27-29, 2011

Dear Author,

Herewith, This is kindly to inform you that the peer- reviewed draft paper (see below abstract) has been accepted for

oral

presentation at Conference to be held in Paris, France during July 27-29, 2011. The high-impact conference papers are

also

considered for possible special journal publication [p-ISSN 2010-376X, e-ISSN 2010-3778] at

http://www.waset.org/journals/waset/

Conference Registration and Writing Formatted Paper:

1. Registration Form File should be Downloaded at http://www.waset.org/downloads/parisreg.doc

2. Copyright Transfer Form File should be Downloaded at http://www.waset.org/downloads/copyright.doc

3. Word Template File should be Downloaded at http://www.waset.org/downloads/template.doc

4. Latex Style File should be Downloaded at http://www.waset.org/downloads/latex.zip

Letter of Invitation and Visa Requirements:

If you need an invitation letter to get an entrance Visa, Please fill in the online form to get a letter of invitation at

http://www.waset.org/invitation.php

Online Conference Registration Form:
The Conference Program and Certificate of Presentation will be composed using the data entered through the online
author

registration form. All the conference registration files should be zipped (.zip) or rarred (.rar) and submitted via online

form at: http://www.waset.org/author.php

Best regards,

WASET Secretariat
Tel:++971559099620

http://www.waset.org/




email:info@waset.org

PS: Whilest registered to the conference, if you can not attend the conference, the conference paper will be published

in the

conference proceedings and posted to your maling address.

Conference Venue and Accommodation:

Ms.Christine ALLERY

Hétel Holiday Inn Paris Montparnasse — Avenue du Maine
79 — 81 Avenue du Maine

75 014 PARIS

Tel : 01.43.20.13.93

Fax : 01.43.20.95.60

Email : reservations@hipargm.com

www.holidayinn.com/parisgare

From: Hyy.hsu@msa.hinet.net

To: info@waset.org

Sent: Wednesday, March 23, 2011 1:30 PM
Subject: Paris July 2011 ICMET 2011

Paris July 2011 WASET CONFERENCE PAPER

Date : 2011-03-23 04:03:47 IP Adress :210.240.242.107

Name
Assoc. Prof. Dr. Yung-Yuan Hsu
Surname

Institution  |Chung Hua University
Country Taiwan

Alternative .
Hyy.hsu@msa.hinet.net

Email

P Titl Kinematic parameter-independent modeling of three-axis machine tools
aper Title . .
for geometric errors measurement and compensation

Abstract he primary objective of this paper was to construct a  “kinematic
parameter-independent modeling of three-axis machine tools for
geometric error measurement and compensation”  technique.
Improving the accuracy of the geometric error for three-axis machine
tools is one of the machine tools’  core techniques. This paper first
applied the traditional method of HTM to deduce the geometric error
model for three-axis machine tools. This geometric error model was



Keywords

related to the three-axis kinematic parameters where the overall errors
was relative to the machine reference coordinate system. Given that the
measurement of the linear axis in this model should be on the ideal
motion axis, there were practical difficulties. Through a measurement
method consolidating translational errors and rotational errors in the
geometric error model, we simplified the three-axis geometric error
model to a kinematic parameter-independent model. Finally, based on
the new measurement method and compensation corresponding to this
error model, we established a truly practical and more accurate error
compensation technique for three-axis machine tools.

three-axis machine tool, geometric error, HTM, error compensation



World Academy of Science, Engineering and Technology 79 2011

Kinematic Parameter-Independent Modeling and
Measuring of Three-Axis Machine Tools

Yung-Yuan Hsu

Abstract—The primary objective of this paper was to construct a
“kinematic parameter-independent modeling of three-axis machine
tools for geometric error measurement” technique. Improving the
accuracy of the geometric error for three-axis machine tools is one of
the machine tools’ core techniques. This paper first applied the
traditional method of HTM to deduce the geometric error model for
three-axis machine tools. This geometric error model was related to the
three-axis kinematic parameters where the overall errors was relative
to the machine reference coordinate system. Given that the
measurement of the linear axis in this model should be on the ideal
motion axis, there were practical difficulties. Through a measurement
method consolidating translational errors and rotational errors in the
geometric error model, we simplified the three-axis geometric error
model to a kinematic parameter-independent model. Finally, based on
the new measurement method corresponding to this error model, we
established a truly practical and more accurate error measuring
technique for three-axis machine tools.

Keywords—Three-axis machine tool, Geometric error, HTM,
Error measuring

1. INTRODUCTION

NHANCING the accuracy of CNC machine tools is an

important task in the area of machine tools. Errors which
influence a machine tool’s accuracy primarily originate from
three categories: structurally-induced errors, driver-induced
errors, and quasi-static errors. According to relevant research
reports, quasi-static errors account for 70% of volume errors in
CNC machine tools. This kind of error includes both geometric
and thermal errors.

This paper researched geometric errors in quasi-static errors.
The technique of building machine tool’s geometric error model
is well developed in the past few years [1]-[5]. The error model
describes the position and orientation errors of tool relative to
workpiece at specific machine position, whereby inaccurate
influential factors come from kinematic link parameters and
individual error sources. It is well known that the inaccurate
motion of a linearly driven axis is associated with six motional
errors, including one linear error, two straightness errors, and
three rotational errors. With modern measurement devices such
as the 6D laser interferometer [6], all six motional errors of the
linearly driven axis can be measured rapidly. Based on the error
model, the accuracy of three-axis machine tools can be
dramatically improved through the error compensation [7]-[8].

Since 2008 a total volumetric compensation by Siemens for
the controller 840 D and Heidenhain iTNC 530 in 2009. These

Y. Y. Hsu Author is with the Chung Hua University, Hsinchu, Taiwan
(phone: +886-935392241; fax: +886-35186498; e-mail: yyhsu@chu.edu.tw).
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functions allow for increasing the accuracy of machining
centers if the volumetric errors were initially determined using
suitable measuring technology. With the LaserTRACER [9]
offers an efficient and high-precision measurement system for
volumetric calibration.

Currently, geometric error modeling depends on the
three-axis machine kinematic chain to create a geometric error
model of three-axis machine tools, and the home position for
which each motion axis is regarded as the motion axis’s
reference coordinate system. For this reason kinematic
parameters between the coordinate systems for the linear axes
and the rotary axes are needed to effective describe their
relationship of motion. However, the ideal motion axis line and
the center of revolution of the linear motion slide is difficult to
define precisely, and therefore the kinematic parameter value
cannot be defined. Furthermore, the fact that geometric errors
defined on the ideal axis line of the linear motion slide must be
measured by placing the measurement device on this axis line to
avoid Abbe’s error creates practical measuring difficulties when
the linear motion slide is at a high position or when there is
interference. The overall errors on the tool end in the geometric
error model with kinematic parameters constructed based on the
machine reference coordinate system. In actual machining,
however, a certain point on the workpiece will be set as the
origin of the workpiece coordinate system, which will be the
error-free position. The errors will then correspond to this point
rather than corresponding to the machine reference coordinate
system.

For this reason, current errors modeling methods face the
following three practical issues:

(1) The kinematic parameters in the model are unable to be
accurately obtained.

Avoiding causing the Abbe error during geometric error
measurement creates practical operational difficulties with
the applied measuring device.

The largest problem with using traditional modeling and
measurement methods is that the error model includes
kinematic parameters which have a bearing on the
contribution of rotational errors to overall errors: rotational
errors measuring inaccuracy will magnify uncertainty of
machine tools accuracy with overall errors, thus increasing
the uncertainty in the error model.

Therefore it is necessary to establish a new modeling,
measurement method for geometric errors of three-axis machine
tools, which is more practical, convenient and accurate.

2

3)
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II. DEFINING GEOMETRIC ERRORS FOR LINEAR AXES

Definitions in ISO230 related to error inspection standards
for CNC machine tools include the definition for geometric
errors and the method for test. A single linear motion axis is
defined to possess six component errors(three translational
errors and three rotational errors), and a location
(perpendicularity) error exists between two linear motion axes.
According to the above definitions, a three-axis machine tool
with three linear axes would have a total of 21 geometric errors.

To describe three-axis machine tool geometric overall errors, it
is necessary to establish a geometric error model for the target
machine. Assuming the structure of the machine tool is a rigid
body, then a 4x4 HTM could be used to show the relationship
between each kinematic and servo control axis, and the machine
error model could go through an individual kinematic and driver
components HTM to obtain the order of products, depending on
the machine kinematic chain [1].

Fig. 1 displays a case study for the X-axis linear motion slide.
The geometric error model for kinematic parameters, location
errors, and component errors in X-axis linear slide, showing the
relationship of the x coordinate system with respect to the

reference coordinate system T, , is shown in the formula below.

100 X, 1 -Ccox 0 0
e |01 0 Yol jCOX 1000
1o o1 z, 0 0 10
000 1 0 0 01 (1)
1 -ECX EBX X, +EXX
ECX 1 ~EAX EYX
—EBX  EAX 1 EZX
0 0 0 1

where X ,,Y,,Z are the constant offset which the x home

position with respect to the reference coordinate system in the
X,y,z direction respectively, or the kinematic parameter for
X-axes linear slide. COX is the location error between linear X
axis and an ideal linear axis (in this example, Y-axis of the
reference coordinate system) which will cause a small angular
rotation at between two coordinate systems at the Z axial
direction. EXX, EYX, EZX, EAX, EBX and ECX are the six
component errors for linear X axis, and X, is the

servo-controlled position of the X-axis slide.

The order of products for the kinematic parameter matrix, the
location (perpendicularity) error matrix, and the 6D component
error matrix in the above formula is dependent upon the pattern
arrangement in linear X axis’s kinematic chain. First the 6D
component errors matrix for the X axis linear slide. And
assuming that when the X-axis slide goes home position the
Z-axis of the X coordinate system is identical with the Z-axis of
the reference coordinate system, then perpendicular error COX
exists between the ideal motion axis (the X-axis of the X
coordinate system) and the Y-axis of the reference coordinate
system, and so does the perpendicularity error matrix. When X
axis slide moves to the X home position, the X axis slide having
the kinematic parameter matrix for the origin coordinate offsets.
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ECX

Fig. 1 X linear axis geometric error definition

III. MODELING AND MEASUREMENT WITH KINEMATIC
PARAMETER-INDEPENDENCE

A. Geometric Error Modeling

For an ideal three-axis machine tool, each tool position
(XY, Z,) and orientation (1,,,J,, K, ) on the workpiece
coordinate system for the three machine motion axes has a
corresponding drive position to cut the needed work pieces and
the tool orientation can only be defined on the (0,0,1) direction.
Fig. 2 is the three-axis machine tool (Coordinate Measuring
Machine, CMM) and its coordinating system definition. The
machine’s kinematic chain is linked by several link components
and three linear motion axes. One end of the chain is a tool
holder and the holder should hold the tool. The spindle block is
mounted on the Z-slide. The Z-slide moves vertically with a
prismatic joint. The Z-slide is bolted on the X-slide and the
X-slide is then stacked on the Y-slide, making the three linear
axes (X,y,z) perpendicular to each other. Y-slide is then moves
on the beds with a prismatic joint. Finally, based on the ISO230
definition and this machine’s kinematic chain sequence, the
location errors are COX, BOZ, and AOZ.

Based on Fig. 3, the relationship of the tool (T) coordinate

system with respect to the holder (H) coordinate system, h , 18

shown in the below.

100 0

e 1010 0

I = 2
001 2
000 1

where Z, is the length of the tool (probe).

The holder coordinate system with respect to the Z coordinate

system, ZTh , is expressed in the formula below.

100 0
1

e [0 100 .
001 2,

000 1
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where Zj is the Z directional offset of the holder origin in

relation to the origin of the Z axis coordinate system.
The Z axis coordinate system with respect to X axis

coordinate system, rT 2 » 18 express in the formula below.

100 X, 1 0 BOZ 0
. 010 Y, 0 1 —-A0OZ 0
o001 z ||-BOZ AOZ 1 0
000 1 0 0 0 1 4)
1 -ECZ EBZ EXZ
ECZ 1 —EAZ EYZ
—EBZ EAZ 1 Z,+EZZ
0 0 0 1
where X ,,Y,,Z are the offsets for Z home position in relation

to X home position. AOZ and BOZ are location (perpendicular)
errors for Z linear motion axis in relation to Y and X axis,
respectively. EXZ, EYZ, EZZ, FAZ, EBZ and ECZ are the six

component errors for Z linear axis, and Z, is the

servo-controlled position of the Z servo-axis.
The X axis coordinate system with respect to the Y

coordinate system, Y T, , is expressed in the formula below.

1 00 X, 1 -Cox 0 0
. 010 v ||Ccox 1 00
Yloo1 z, 0 0 10
000 1 0 0 01 (5)
1 -ECX EBX X, +EXX
ECX 1 —EAX EYX
—EBX  EAX 1 EZX
0 0 0 1

where X ,Y,,Z, are offsets for X home position in relation to

Y home position. COX is the location (perpendicular) error for
X linear motion axis in relation to Y axis. EXX, EYX, EZX, EAX,
EBX and ECX are the six component errors for X linear axis,

and X, is the servo-controlled position of the X servo-axis.

The Y axis coordinate system with respect to the reference

coordinate system, " T,, is expressed in the formula below.
1 —-ECY EBY EXY
e | ECY 1 —EAY Y, +EYY 6)
Y —EBY  EAY 1 EZY
0 0 0 1

where EXY, EYY, EZY, EAY, EBY and ECY are the six
component errors for Y linear axis, and Y, is the

servo-controlled position of the Y servo-axis. In the above
equation, the Y linear motion axis 6D error matrix follows the
errors created by the ideal axis movement. In the process of
deducing the entire error model, assuming that when Y motion
axis goes to the Y home position the Y coordinate system is
identical to the reference coordinate system, then the ideal axis
line should also be identical to the Y-axis in the reference
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coordinate system and no perpendicular error exists between the
Y coordinate system and the reference coordinate system.
Deducing another kinematic chain, Fig. 3 indicates that the
end of the three-axis machine tool aligns with the end of the
workpiece. For this reason, the workpiece coordinate system is
defined on the end of the machine tool and the workpiece
coordinate system (w) with respect to the workpiece origin

coordinate system, "°7,, is expressed in the formula below.

1 00 X,
wor _ 0 0 v, 7
001 Z,
0 00 1
where X ,,Y,,,Z,, is the translational offset for the workpiece

coordinate system (w) in respect to the workpiece origin
coordinate system (wo), which can be accurately defined
through measurement tools.

The workpiece origin coordinate system (wo) with respect to
the reference coordinate system (1), " T, ,» without geometric

errors is expressed in the formula below.

100 X,
01 0 VY
rTWO — wo (8)
001 2z,
000 1
where X, , Y, and Z,,, are the translational offset for the

workpiece origin coordinate system (w) in respect to reference
coordinate system (r).

For this reason, the spatial relationship between the tool
coordinate system and the reference coordinate system can be
obtained through the formula below.

thery yTx xTZ ZTh hTt 9)

The spatial relationship between the workpiece coordinate
system and the reference coordinate system can be obtained
through the formula below.
rTw:rTwo W()TW (10)

Fig. 3 illustrates that, when it is an ideal machine, the tool
coordinate system should be an identical point with the
workpiece coordinate system. However, actual machines have
geometric errors, so the position of the origin of the tool
coordinate system with respect to the reference coordinate
system P, = [X : Y Z ] , can be obtained through the formula

below.
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The position of the origin of the workpiece coordinate system
with respect to the reference coordinate system
P, =[X w Y ZW] , can be obtained through the formula
below.
(p, 1'="1,[0 0 0 1] (12)
Now, the position error for the tool coordinate system with
respect to the workpiece coordinate system in the reference
coordinate system P, ,.(AX,,AY,,AZ,) can be obtained

through the formula below.

P, =P -P, (13)
The orientation error in the reference coordinate system

0,,(Al,,AJ,,AK,) can be obtained through the three

formulas listed below.

[Ow O]T =(rTw_r w,ideal) [0 01 O]T (14)
[0, O =("T,~"T, jgeat) [0 0 1 O] (15)
0,,=0,-0, (16)

where "T,, ;yeqr and T, ;40 are the HTM for the workpiece

coordinate system and tool coordinate system with respect,
individually, to the reference coordinate system for

'T,, and 'T, , respectively, when geometric errors are not

considered (the ideal machine).

Using small-angle approximations assumption and the
second-order errors are negligible, and consolidating the
geometric errors, the geometric error model for this three-axis
machine tool is displayed in Table 1. The overall error for the
direction of X, AX, , is the product of each error multiplied by

each error’s error gain. For example, the error contribution for
the direction of X in ECX is —~ECX*Y, . This table, which is

considered a geometric error sensitivity analysis table, indicates
that linear errors (EXX, EYX, EZX, EXY, EYY, EZY, EXZ, EYZ,
and EZZ) are machine kinematic parameter-independent, while
rotary errors (EAX, EBX, ECX, EAY, EBY, ECY, EAZ, EBZ,
ECZ, COX, AOZ and BOZ) are machine kinematic
parameter-dependent.

TABLE I
ERROR MODEL AND SENSITIVITY AND ANALYSIS
Error a2 X, 4y, 4z, a]. 4], 4Kk,
EXX 1 0 0 0 0 0
EYX 0 1 0 0 0 0
EZX 0 0 1 0 0 0
EAX 0 -Zn-Zi-Zy-Z, +Y, 0 -1 0
EBX +Zn+Z; 0 -X, 1 0 0
+Zn+Z,
ECX -y, +X; 0 0 0 0
EXY 1 0 0 0 0 0
EYY 0 1 0 0 0 0
EZY 0 0 1 0 0 0
EAY 0 -Zn-Zy +Y +Yy 0 -1 0
-Zn-Z-Zyx
EBY +Zy+Zi+Zn 0 -X-Xom 1 0 0
+Z+7Z, -Xy
ECY -Y; +X A+ X 0 0 0 0
+XK

EXZ 1 0 0 0 0 0
EYZ 0 1 0 0 0 0
EZ7Z 0 0 1 0 0 0
EAZ 0 -Zn-Z; 0 0 -1 0
EBZ +Zn+Z; 0 0 1 0 0
ECZ 0 0 0 0 0 0
COoX -y, + X+ X 0 0 0 0
AOZ 0 Zn-Z-Zy, 0 0 -1 0
BOZ +Zn+Zi+ 2y, 0 0 1 0 0
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B. Measurement for Kinematic Parameter-independent

In defining geometric errors and deducing formulas above,
the three-axis machine tool linear axis was structured by
kinematic stacking and each motion axis had a home position.
For this reason, kinematic parameters were necessary between
linear axis coordinate systems to effectively describe their
movement relative to each other. However, in practice, the
position of the ideal motion axis line for the linear motion slide
was difficult to clearly define. Moreover, to avoid Abbe’s error,
the measurement device must be placed on this axis line when
measuring. This requirement creates practical measurement
difficulties if the linear motion slide is at a high position or there
is interference. For this reason, it is necessary to establish a new
measurement method for a geometric error model without
kinematic parameter.

Ideally, the geometric error model coordinate system should
be set up on the ideal motion axis line for the linear slide to
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effectively describe the spatial errors caused by Abbe’s error.
For example, measurement of the Y linear slide, displayed in
Fig. 5, had three translational errors (EXY, EYY and EZY) and
three rotational errors (EAY, EBY and ECY). If, when measuring
geometric errors, directions Xx,y,z between measurement axis
line (M) and ideal motion axis line (I) each have offset L,, L, L,,
then the 6D component error model for the measurement
construction method and the results of the measurement are:

EXY'=EXY+L,*(1-cos(EBY))+L,*(1-cos(ECY))+L,*sin(ECY)
+L *sin(EBY) (17)

EYY'=EYY+L*sin(ECY)+L,*(1-cos(EAY))+L,*(1-cos(ECY))

+L.*sin(EAY) (18)
EZY'=EZY+L*sin(EBY)+L,*sin(EAY)+L_*(1-cos(EAY))

+L,*(1-cos(EBY)) (19)
EAY'=EAY (20)
EBY'=EBY (21)
ECY'=ECY (22)

When the rotational error slightly angled, then cos(EAY) =
1, cos(EBY) = 1, cos(ECY) = 1, and sin(EAY) = EAY,

sin(EBY) = EBY, sin(ECY) = ECY. These three formulas can
be simplified to:

EXY'= EXY+L*ECY+L*EBY (23)
EYY'= EYY+L*ECY+L*EAY (24)
EZY'= EZY+L*EBY+L,*EAY (25)

Messuring line (M)

Fig. 4 Linear axis geometric error measuring method

As the above explanation indicates, when measuring
rotational errors (EAY, EBY and ECY), the measuring line is
independent of the position of the motion line so it is not
necessary for the measuring device to be stacked on the ideal
motion line (I). When measuring translational errors (EXY, EYY
and EZY) however, the measurement position matters and
therefore, the measurement device must be placed on the ideal
motion line (I). If it is placed on line M from Fig. 5, then the
spatial errors created by the rotational errors will be included

921

with translational errors. Besides its own translational errors,
the translational errors discovered by this method of
measurement construction will also include errors which were
created due to rotational errors. For this reason, the translational
error measurement results obtained by this measurement
method described above include the influence of rotational
errors on the measurements. This result is explained in
(23)-(25).

Additionally, when constructing this geometric error
measuring, the kinematic parameter for L,, L, and L, has a
constant value. When the linear motion axis moves to a position,
the spatial errors created by the rotational errors at that position
(EAY, EBY, and ECY) will each be entered into the translational
errors (EXY, EYY, and EZY) and the measuring line for this
measurement device can be considered the ideal motion line for
the linear motion axis, meaning rotational errors have no spatial
errors for any position on this measuring line. Since the error
gain of rotational errors is 0, the measuring position is the initial
error position for rotational errors. Furthermore, in actual
cutting and measuring, a certain position on the workpiece will
be established as the origin of the workpiece coordinate system.
Set up as an error-free position, all work position errors are no
longer errors with respect to the geometric error model
constructed by the machine ideal motion line but errors with
respect to this point. For this reason, this measuring method has
practical application value.

C.Error Model with Measurement Method

Using API 6D laser interferometer instrument as an example
of applying the methods and principles of the measuring method
described above to three-axis machine tools, we installed a
reflect mirror to the tool holder on the spindle of the machine in
Fig. 2 to individually measure the six component errors in a
linear motion axis and the location (perpendicular) error for the
three linear axes. When, for example, the 6D component errors
were measured for Y linear motion axis, we first returned X, Y,
and Z axes to their individual home positions, which were set as
the zero error position, and then installed a reflect mirror to the
tool holder on the machine’s spindle to carry out measurements.
At this point, because the measuring device’s measurement
position would react with Abbe’s error, the Y axis 6D
measurement results included all the errors created by the
machine’s kinematic parameter. Next, we measured the
component and location (perpendicular) errors for the other two
linear motion axes according to the principles described in the
last section.

Applying the new measuring method to the three-axis CNC
machine tool, we could simplify the original geometric error
model containing kinematic parameters shown in Table I to the
kinematic parameter-independent Table II. Considering, for
instance, measuring the six component errors in X linear motion
axis, there were three error contributions (EZX, EAX and EBX)
to the tool end’s overall errors, the contributing factors of which

were 1, Y, ,—X . . Under the premise that the machine possesses
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positioning repeatability, we can assume that when X axis slide
is located at a specified position, the Y,,—X, kinematic

parameter will be a constant. Due to the fact that the reflection
mirror was installed at the tool end of the spindle, the error

contribution of EAX*Y, and EBX* (=X ,) will be reflected in

EZX. For this reason, these two kinematic parameters can be set
to zero, and their other errors can be simplified in this way.

As Table II illustrates, all nine translational errors (EXX,
EYX, EZX, EXY, EYY, EZY, EXZ, EYZ and EZZ) contribute to
the tool end overall errors, but only five of the rotational errors
(EAX, EBX, EAY, EBY and ECY) contribute while four (ECX,
FEAZ, EBZ and ECZ) do not. Therefore, only 17 (21-4)
geometric errors need to be measured in this model. Also in
Table II, considering the home positions for X, Y and Z motion
axes in this model, the error gains for EAY, EBY, and ECY
require revision to properly express the total physical
significance of kinematic parameter. X;, Y, and Z, represent the
stroke for X, Y, and Z linear motion axes, respectively.

TABLE I
ERROR MODEL WITH PARAMETRIC-INDEPENDENT
Error ax, 4y, 4z, al, aJ, 4K,
EXX 1 0 0 0 0 0
EYX 0 1 0 0 0 0
EZX 0 0 1 0 0 0
EAX 0 Znm 0 0 -1 0
EBX Zn 0 0 1 0 0
ECX 0 0 0 0 0 0
EXY 1 0 0 0 0 0
EYY 0 1 0 0 0 0
EZY 0 0 1 0 0 0
EAY 0 (Zs+Z) 0 0 -1 0
EBY Z+Zn 0 Xo-Xm 1 0 0
ECY 0 -(Xs-Xm) 0 0 0 0
EXZ 1 0 0 0 0 0
EYZ 0 1 0 0 0 0
EZZ 0 0 1 0 0 0
EAZ 0 0 0 0 -1 0
EBZ 0 0 0 1 0 0
ECZ 0 0 0 0 0 0
cox 0 X 0 0 0 0
AOZ 0 Znm 0 0 -1 0
BOZ Zin 0 0 1 0 0

Constructing a kinematic parameter-independent three-axis
geometric error model and measurement method based on the
above measuring method is both practical and accurate.
Furthermore, compensating for persistent geometric errors can
also be facilitated by using this geometric error model to
establish a geometric error compensation model to effectively
compensate for three-axis geometric errors. The three-axis
machine tool geometric error compensation scheme is displayed
in Fig. 5. First, a laser interferometer device based on the above
measurement construction method was used to measure the 21
geometric errors in the three axes. The measurement data was
used to carry out coordinate translational, aligning it with the
error model coordinate system. The measurement results were
then plugged into the three-axis kinematic
parameter-independent error model. The results indicated that
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when the three-axis machine tool moved to u(x,y,z) and the tool
end spatial errors are du, then the compensation applied by the
kinematic parameter-independent error compensation model is
—du. Finally, the x,y,z motion axis direction errors,
compensated through a controller, were returned to their ideal

position at U, .

Measuring device
(ex. API 6D)

.

Geometric error data

Machine axis position
(X.Y,Z)

u=(x,y,2)

Error model of
three-axis machine tools

‘ du=(dx,dy,dz)

Compensation error model
of three-axis machine tools

-du
+

+

u.=u-du

Machine position after error
compensation with controller

Fig. 5 Three-axis machine tools error compensation scheme

IV. CONCLUSION

The three-axis geometric error models derived by traditional
methods all set the machine reference coordinate system at a
fixed point on the machine’s base and depend on the machine
kinematic chain to derive a machine Kkinematic
parameter-dependent model. For practical applications, this
dependence makes kinematic parameters impossible to
accurately obtain, measurement device operations inconvenient,
and overall errors overvalued. For this reason, this paper created
a measurement method-integrated “modeling for geometric
error model of three-axis machine tools with kinematic
parameter independent” technique. This technique, which
integrated simple geometric error measuring methods, which
constructed the corresponding three-axis geometric error
model, and whose geometric error model is machine kinematic
parameter-independent, is a practical, convenient, and accurate

integrated  three-axis geometric error modeling and
measurement method.
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