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Treatment of dimethyl-sulfoxide (DMSO)-containing optoelectronics wastewater
using airlift bioreactor with PV A-immobilized cell beads
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Abstract

DMSO (dimethyl sulfoxide) is a useful
and inexpensive environment benign solvent
easy to recycle. Its tremendous adoption in the
industry has revealed a odorous problem
caused by its decomposition product, DMS
(dimethyl sulfide). Our research goal is to
develop a feasible biological treatment
technology to effectively treat the DMSO into
oxidative pathway instead of going to the
DMS pathway. We has adopted a right source
of activated sludge (from a wastewater
treatment plant of DMSO production chemical
company) as bacterial inoculums to
decompose the DMSO into DMSO?2 pathway.
In this year, we focus on the research results
from the immobilization technology, the
repeated process and the sucrose effect.
Finally, we found that the best pH range in
biodegradation of DMSO wusing a PVA
immobilized cell beads is 5.0-8.5. The best
dosage of sucrose is 0-50 mg/L that help
bacteria to tolerate the toxicity of DMSO.
From the repeated process, we found the
sucrose help improve the treatment efficiency
for the raw activated sludge rather than the
acclimated sludge. In airlift test, the
PVA-immobilized cell beads can degrade the
1200-mg/L DMSO within 45 h, in comparison
to the 10 h for the free cell system in
decomposition of 850-mg/L DMSO.
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| B % 2% f2 DMSO > "f pH 3.0~pH 10.0
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Abstract

Acetone is the most commonly used solvent in the Hsinchu Science Park, Taiwan. The innovative
air-lift bioreactor embedded with the polyacrylic-amide (PAA) entrapped Thiosphaera pantotropha
cell beads (2 1) was employed to treat this acetone-contaminated air stream (10 1 min™; 100-1000
ppmv). The 41-1 medium solution circulated for more than 9 months was originally used to absorb
acetone, which was then degraded by the PAA-entrapped cell beads, and became slurry after 85 days
operation. During the first phase operation, the average removal rate is about 79 % for 300 ppmv of
acetone in average in the influent air stream. The capacity of the airlift to treat acetone is 109.6 g m™
h' under the loading of 137.5 g m™ h”'. The maximum COD:N ratio of 100:2.9 is achieved and a
balanced nutrient state was indicated by the ORP measurement. The pH of the system was maintained
at neutral because of the strong buffer intensity added in the medium (final p=1.18 x 10 mole 17).
The dissolved oxygen was gradually down to the 2 mg 1"'. The conductivity and ionic strength were
4.5-5.6mS cm™ and 0.1 M, respectively. The PAA-entrapped cell beads provided the best inoculum

source to keep the system steadily operated.

Introduction

The Taiwan combined IC production value of the semi-conductor industry, which is one of the most
important industries in Taiwan, rated top 3 high all over the world, fully supporting Taiwan
economics and social prosperity. However, the high-tech industries use a lot solvent such as acetone,
isopropyl alcohol, ethyl diol, butadiene, toluene, xylene as cleaner in the film development, itch, and
vapor deposition processes. Many volatile organic compounds (VOCs) were emitted [Khan and
Ghoshal, 2000]. Chang and Chang [1999] and Chang and Lu [2003] have reported that the acetone
was the most frequently found compounds contributing 50-80% of total VOCs to the Hsinchu
Science Park (HSP) of Taiwan. Since the acetone embedded airstream often contains high
boiling-point compounds, many treatment facilities couldn’t maintain its high treatment efficiency as
the new one can promise. For the long period of time, many VOC:s, e.g. acetone and isopropyl alcohol
which would further be degraded to acetone, go into the residential area adjacent to HSP. People’s

health and safety were seriously concerned.

VOC:s are often treated by adsorption, condensation, absorption, incineration, and biofiltration [Khan
and Ghoshal, 2000; Chang and Lu, 2003]. Biofiltration is the most cost-effective method but it



encounters many operational problems such as compaction, drying of filter media, aging and
acidification. The alternative process, biotrickling filter, is able to solve most of the problems, but it
still clogs in a period of time. Bioscrubber has a less efficiency than the other two processes
mentioned above. Also, it needs an additional large treatment facility to treat the circulation liquid,
which contains a high concentration of BOD requiring a long operation time for bacteria to degrade it

before recirculation.

Airlift that possesses a very good mass transfer efficiency in between gas and liquid phases is a well
known bioprocess often used in biochemical engineering. Now the gaseous acetone can be expected
to be well dissolved into the liquid phase of the airlift. However, acetone is very toxic to
microorganisms; therefore, the protection of microorganisms using an immobilization technique is
necessary for the biodegradation. Many articles also demonstrated that the PAA-immobilization
system where microorganism is entrapped into the cell beads is a very stable process and its bare
leakage of microorganisms continuously provides a source of pure culture. Thus, this study is
probably the first report dealing with the three-phase (acetone gas, liquid medium and PAA) airlift

bioprocess treating the waste gases containing acetone.

According to our previous reports, acetone can be degraded by Thiosphaera pantotropha in a
shake-flask culture [Ru, 2003; Lu, 2004] and in a 2.5-m high airlift bioreactor, in which the airlift
design and hydrodynamics properties were thoroughly investigated [Chen, 2006]. In this study, the
optimal treatment capacity in treatment of the acetone-containing gas stream was evaluated, and

kinetics data were modeled under certain assumptions.

experimental methods

Chemicals

Acrylamide Monomer and N,N,N’,N’-tetra- methylethylenediamine (TEMED) were purchased from
Acros organics (as a part of Fisher Scientific) (Belgium). N,N’-methylenebisacrylamide (BIS) was
obtained from Tokyo Kasei. BCA analysis kit was purchased from Pierce company (Thermo Fisher
Scientific Inc). Acetone was purchased from Union Chemical Company (Taiwan). All the other

chemicals were of reagent grade.

Microorganisms

T. pantotropha (also named as Paracoccus pantotrophus) ATCC 35512 was purchased from
Bioresource Collection and Research Center (BCRC), Taiwan. The storage of microorganism was
annually manipulated at -78 °C, but subculture was done every month. The composition of medium

used for airlift is shown as Table 2-1.

Table 2-1. The composition of acetone biodegradation working medium

Components Quantity Company




Na,HPO, 42 ¢g Shimakyu, Japan

KH,PO, I5¢g Union Chemicals, Taiwan
MgSO, - 7 H,0 0.1g Union Chemicals, Taiwan
NaNQO; 0.1g Union Chemicals, Taiwan
Tap water Fill to 1.0 L Union Chemicals, Taiwan

Free cell was measured by an optical density, ODgoonm, and dry cell weight (105 °C for 12 h).
Immobilized cell concentration was determined by the protein content of the cell beads using the

BCA Protein Assay kit [Pierce chemical company, 1997].

Polyacrylicamide (PAA) Cell Beads

Acrylicamide monomer, crosslinker BIS and accelerator TEMED were added into aseptic distillated
water under a constant proportion at 4 °C and mixed thoroughly. On the other side, the settled
centrifuged culture (20%, v/v) mixed with sodium alginate (0.5%, w/v) at 4 °C. Next, the polymer
solution and the culture solution were instantaneously mixed into a small syringe by a peristaltic
pump before ejected into the calcium chloride solution (0.3% > w/v). The calcium and alginate will
immediately form a very stable complex, helping the fast formation of cell beads in a 0.5-1.0 h. When
the cell beads were solidified, they were screened and moved to the potassium phosphate solution (pH
7.8) to remove the calcium alginate. At the meantime, the polyacrylic amide (PAA) cell beads were

formed. The size of cell beads can be controlled by the needle size of the syringe used.

Acetone Analysis

Acetone gaseous and liquid concentrations were analyzed by a Gas Chromatograph (GC) (China
Chromatography 8900, Taipei County, Taiwan) equipped with a flame ionized detector (FID). A
15-m long 0.53-mm ID Supelco, SPB-5 capillary column with a fused thickness of 3.0 um was used.
Nitrogen carrier gas of GC is used. The oven, injector and detector temperature were 150, 180 and

200 °C, respectively.

Gaseous acetone calibration was prepared by placing 1, 2, 3, 4 and 5 pl of acetone solvent into five
10-liter SKC Tedlar air sample bags, respectively, and measuring them after the bags were placed

into an oven at 70 °C for 1 minute and then cooled down to room temperature.

Standard liquid acetone solution was prepared using a 250-ml brown bottle with a gas-tight
rubber/Teflon stopper. The bottles containing different amount of acetone were placed in a water bath
at 150 rpm and 30 °C for 30 minutes. The samples were mixed with 0.5% propyl alcohol as an inner
standard in a proportion of 1:1 (v/v). of The 2-ml sample was centrifuged at 6,000 rpm for 10 minutes

and then 0.5 pl supernatant was withdrawn into GC/FID for analysis.



Airlift Bioreactor

The airlift bioreactor is depicted in Table 2-1. The column of the airlift was made of acrylic, 2.5 m
high and 19 cm ID with a total working volume of 41 1. It was divided by a flat plate of 127 cm long
x 19 cm wide into two sections, i.e. the drag tube and downcomer. This configuration with a
diameter-to-height ratio of 1:9 is very suitable for gas transfer into the liquid. The gaseous acetone at
10 1 min™ came into the reactor through the bottom gas distributor. The Dissolved oxygen, pH and

ORP sensors were installed for monitoring the performance of system.
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Figure 2-1. The airlift bioreactor. (1) Diaphragm air pump, (2) rotameter, (3) needle valve, (4) VOC
bottles, (5) equalization basin, (6) sampling port, (7) gas distributor, (8) D.O. meter, (9) pH meter,
(10) temperature sensor, (11) temperature control relay, (12) heating ribbon, (13) U-shape
manometer, (14) auto-sampler, (15) GC, (16) computer, (17) check valve.

One ml of gaseous acetone was automatically sampled by using a Valco 16-port stream selector and a
Valco 10-port 2-position injector. All the relay control signal and the GC analysis signal were
transmitted from or to the personal computer, respectively, through a NI-DAQ card (NI-6024,
National Instrument, Austin). All the liquid samples were withdrawn from the top surface of

bioreactor using a siphon tube.

Results and Discussion

Our new innovative artificial-cell-bead-embedded airlift bioreactor requires external nutrition
sources; for example, nitrogen. Once using this bioreactor to treat waste VOC gases was feasible, the
stability (pH, conductivity, dissolved oxygen and redox potential, duration and maximum treatment

capacity were the most interested issues to be investigated.

Microbial Characteristics

The characteristics of T. pantotropha has thoroughly been studied in a shake flask culture [Lyuu,
2003]. T. pantotropha is a nitrogen requiring bacterium. In the previous study, various organic
nitrogen sources: i.e. yeast extract, monosodium L-glutamate and Urea, and inorganic sources:
sodium nitrate and ammonium chloride were chosen for evaluating the efficiency of acetone
biodegradation. We found that using the nitrate as a nitrogen nutrient is the best results in
biodegradation of acetone. Only 12 h was needed for 90% acetone removal; 20 h for completely
biodegradation of acetone (data not shown). In addition, it has the advantages of less biomass
produced and lower cost for nitrate purchase. The optimal loading of 1 g 1" was chosen for the rest of

experiment.

The acetone biodegradation activity was seriously inhibited when the liquid acetone concentration
was more than 700 mg I"". The acetone removal efficiency was then decreased from 100% to 57%.
However, this microbial toxicity could be prevented by using an immobilization technique, to have
the microorganisms entrapped into the PAA cell beads. The acetone removal efficiency could

maintain 91% (data not shown).

Treatment of Gaseous Acetone in Airlift

The acetone-containing gas stream was treated by the airlift with the PAA-immobilized T.
pantotropha entrapped -cell beads. The 85-day performance data are shown in the Figure 4-1. The
average input and output concentration of gaseous acetone were about 300 ppmv and 63 ppmv,
respectively. The removal efficiency was around 79%. The accumulated liquid acetone concentration

was 25 mg I"! in average.



During day 24-35, the gas auto-sampler for GC/FID was clogged. Because less quantity of acetone
shown in the computer screen, the opening of VOCs valve was turned to the maximum, leading to the
real acetone input concentration more than 631 ppmv. The gaseous and liquid acetone concentrations
were 97 ppmv and 23 mg 1", respectively. Since the removal efficiency was more than 85%, it
demonstrated that the liquid water can provide a large load-buffering intensity in equalization of the

capacity; i.e. absorption of the peak acetone gas stream immediately.
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Figure 4-1. The time course profile of acetone biodegradation by the airlift with 2-1
PAA-immobilized cell beads in treatment of the gas stream containing 300 ppmv of acetone at 10 1

min’!.

The Nutrition Demand

In the reality, we need the absorption solvent to capture acetone, but we couldn’t use the enrichment
medium to carry the PAA cell-entrapped gel beads due to the high cost of chemicals. Therefore, only
a constant amount of tap water (41 1) with HCMM medium (Hwang et al., 2003) containing 1-g 1"
sodium nitrate was used as a cell bead carrier. The result of acetone biodegradation is shown in Figure
4-2. However, the system couldn’t start up unless our adding 100 mg 1" of sodium nitrate to the tap
water. An additional amount of sodium nitrate was further required 5 times to maintain a stable
treatment efficiency when the removal efficiency of 300-ppmv gaseous acetone decreased down to

below 60% or the liquid acetone concentration increased to above 30 -50 mg 1™



For example, at day 19, the acetone removal efficiency of 90% decreased down to 69% which was
corresponding to the rising of liquid acetone concentration to 27 mg 1"'. Day 20 after the addition of
25 mg I"' sodium nitrate, the removal efficiency increased from 69% to 80% with the further duration
of 11 days. Except the period of day 24-35 when GC gas auto sampler was clogged; otherwise, the
trend of coming down and then going up in the gaseous acetone concentration was kept for a couple
of weeks until at day 74, the liquid acetone concentration was over 50 mg 1. Therefore, 5-times
dosage of 125-mg 1" sodium nitrate was added to the system. The apparent improvement in the liquid
acetone concentration was observed. In fact, the system was not added any nitrogen source for a year

(data not shown).

In calculation of nitrogen dosage, the results are shown in Table 4-1. For the first 19 days, the COD:
N ratio was maintained at 100:10.5, if both the initial 1 g 1" of sodium nitrate and its external addition
of 100 mg I"" were taken into account. As seen in Table 4-1, the COD:N ratio becomes less and less.
Eventually, no more nitrogen source was added to the system after day-74 addition. The system was
run for almost one year until it became too slurry. This trend of COD:N also provides a good
information regarding how to feed the nutrition for this type of artificial cell-entrapped gel beads. In

other words, it is economically feasible.

Table 4-1. The COD:N ratio during the acetone biodegradation

COD:
Day Addition of  Accumulation of g-N g-C g-CoD N
nitrate, mg I’  nitrate, mg1®  day® day' day' 100:
N
0 100 1,100 237 635 2257 105
19 25 1,125 149 6.35 2257 6.6
31 25 1,150 1.12 6.35 22.57 5.0
42 25 1,175 0.88 6.35 2257 3.9
55 25 1,200 066 6.35 2257 29
74 125 1,325

*. The conversion factor of g-acetone to g-COD and to g-C are 2.2 (=128/58) g-COD/g acetone
and 0.62 (=36/58), respectively; the 10 lpm of 300-ppmv acetone gas stream gives the mass flow
rate of 10.2 g-acetone/day.

Generally, the ratio of COD:N:P in a biological treatment plant was suggested to be 100:5:1 in
textbook. Brauer [1986], and Johnson and Scow [1999] suggested the C:N:P ratio should be 100:5:1
in order to prevent the limit of Nitrogen nutrient and to maintain the microbial activity in
biodegradation. Acuna et al. [2002] reported the type of nutrient sources and its concentration were
also very important in treatment of toluene. Brar and Gupta [2000] used the same T. pantotropha to
metabolize the TCE at the optimal C:N ratio of 100:20 that was in the range of our C:N ratios
(37.4-10.5) calculated from Table 4-1.
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Figure 4-2.  The time course profile of nitrogen nutrient in acetone biodegradation by the airlift
with 2-1 PAA-immobilized cell beads in treatment of the gas stream containing 300 ppmv of

acetone at 10 1 min™'.

The Stability of the Airlift System
1. pH

Most bacteria cannot survive in the environments where the pH is below 5 or above 9. In our previous
study, free T. pantotropha could only metabolize the acetone at pH 7 and 8.5, not at pH below 5.5 or
above 10. In this study, the pH was maintained in between 7.10-7.25, indicating the system had a
strong buffering intensity to neutralize the carbonaceous acid. Thus, the culture medium was used for
one-year operation without any blow-down operation. The phosphate buffering intensity, B, was
finally determined to be 1.18x107 initially and 1.50x10~ mole L™ at day 85. Although the buffering
intensity is still available, the PAA cell beads normally will provide a good environment for pH
change by altering the distribution of hydrogen ions through the formation of hydrogen-bond in its

matrix.



Optical density for free cell growth in the liquid

The growth of suspended cell in the liquid phase can be evaluated by optical density (OD). In this
study, the OD value increased from 0.3 (absorbance) in the beginning of the operation to 1.5 finally. It
took first 10 days to achieve the OD value of 1.2, and then increased slowly to 1.5 at day 85. Bailey et
al. [1986] reported that the biomass in the fed-batch bioreactor usually attained to a steady state where
the microorganisms were under stationary phase due to the limit of other nutrient supply. According
to the results of acetone concentration modeling, the removal of acetone was gradually dependent
upon the biomass existing in the liquid phase instead of those in the PAA cell beads. This result
demonstrates that the PAA entrapped-cell beads could provide an initial source for the dominant

microorganism.

Conductivity

Conductivity was used to analyze the electrolyte content of the liquid water in the airlift. At day 85,
the conductivity value and ionic strength were 4.5-5.6 mS cm™ and 0.072-0.089 M, respectively.
According to the water body classification standard in Taiwan, Class 1 used for water supply and
swimming should contain the conductivity and ionic strength of below 750 uS cm™ @25°C and 0.012
M, respectively. An IC foundry uses a pure water met with the standard of the conductivity and ionic
strength of below 0.0556 uS cm™ @25°C and 8.9x10-7 M, respectively. The reverse osmosis for
drinking purpose gives a water with the conductivity and ionic strength of 0.0625 pS cm™ @25°C and
1.0x10° M, respectively. A fresh activated sludge and anaerobic digested sludge obtained from the
Chang Chun PetroChemical Co., LTD. had the conductivity of 2.53 and 3.40 mS c¢m™ and ionic
strength of 0.041E50.054 M, respectively. Obviously, our liquid water had the similar property with
the sludge.

Normally, the microorganisms couldn’t survive under the ionic strength more than 0.1 M which was
corresponding to the conductivity of 6.3 mS c¢m™'. Our liquid water had the ionic strength close to 0.1
M but the system could continuously metabolize acetone without any inhibition, indicating the

immobilized cell beads could provide a barrier for high salinity gradient.

Dissolved oxygen

Dissolved oxygen can reflect the aerobic microbial activity in degradation of acetone. Figure 4-3
shows the time course of dissolved oxygen in biodegradation of acetone in an airlift bioreactor.
During the period of 85-day operation, the dissolved oxygen decreased from 8.5 to 4.6 mg O, I, with
the average value of 6.3 mg O, I'". The decreasing trend indicates the more biological activity

produced in the liquid water. The maximum dissolved oxygen in pure water is 9.07 mg but its value



decreased down to 2-3 mg O, "' in the aerated basin in a full-scale activated sludge system. Therefore,

our designed system could provide enough oxygen for microbial degradation.
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Figure 4-3. The time course profile of dissolved oxygen and redox potential in acetone
biodegradation by the airlift with 2-1 PAA-immobilized cell beads in treatment of the gas stream
containing 300 ppmv of acetone at 10 1 min™",

Implication of Nutrient Demand and the Redox Potential

Both the dissolved oxygen and the redox potential can provide the information whether the system is
in the aerobic or anaerobic condition. The redox potential change also provides the information of the
oxygenic compound composition variation in the water and the biological activity increase. From the
Figure 4-3, the shock loading of sodium nitrate caused the pulse change of redox potential. The peak
ORP value became less and less significant in the course of the operation time. Since no nitrogen
nutrient was needed after day 85, this redox potential could further be used as an indicator for

determining whether the system was in a steady-state condition.

The gradually decrease of peak change in redox potential could be redrawn in Figure 4-4. The ORP
values were between 170-332 mV, with the average of 299 mV. We can see the response of the ORP
values after adding the sodium nitrate from Figure 4-4. In the beginning of operation, the microbial
activity had not achieved a stable condition, so the redox potential decreased immediately when the
nitrate was reduced to nitrogen, and recovered right away after some oxygenate compounds were
formed by the culture. The peak change became less and less when the microorganisms were more
and more active in the last two addition of nitrate. Eventually, the addition of oxygenate nitrate and

depreciation of oxygen balanced in the course of time. Hsu [2002] reported that the fast increase of



redox potential corresponded to a better aerobic activity; but the decrease corresponded to a better
anaerobic activity. Wang [2002] reported that the removal efficiency in tetra-chloro-ethylene became
the best while the ORP value anaerobically changed from -250 mV to -350 mV.
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Figure 4-4. The redox potential during the 5 days after addition of nitrate into the system in acetone
biodegradation by the airlift with 2-1 PAA-immobilized cell beads in treatment of the gas stream

containing 300 ppmv of acetone at 10 1 min™

Elimination Capacity of Acetone

The elimination capacity (EC) versus acetone loading is drawn in Figure 4-5. The acetone-carbon
elimination capacity of 109.6 g-C m>h™" when the carbon loading was 137.5 g-C m™ h™'. Chang and
Lu [2003] reported that the treatment capacity of isopropyl alcohol and acetone in their biofilters were
80 and 53 g-Cm™ h™', respectively, when the influent concentration was between 75-300 ppmv with
90% removal efficiency. Obviously, our system using liquid water as a media can provide a better

treatment capacity but less removal efficiency.
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Figure 4-5. The elimination capacity versus acetone loading in acetone biodegradation by the airlift
with 2-1 PAA-immobilized cell beads in treatment of the gas stream containing 300 ppmv of

acetone at 10 1 min™.

Summary

The innovation of the PAA entrapped-cell beads embedded in the airlift for acetone waste gas
treatment made the system become a three-phase bioreactor. The elimination capacity of 300-ppm
acetone was 109.6 g-C m~h™ with 79% removal efficiency. It is higher than the data reported for
biofiltration. In the nutrition issue, the gradually increasing COD:N ratio demonstrated the nitrogen
cycle in the bioreactor was eventually formed. The maximum COD:N ratio was 100:3. The sudden
decrease of the redox potential could be used to detect if the system requires more nitrogen nutrient or
to show the denitrification phenomenon.
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Abstract

Acetone is the most commonly used solvent in the Hsinchu Science Park, Taiwan. The innovative
air-lift bioreactor embedded with the polyacrylic-amide (PAA) entrapped Thiosphaera pantotropha
cell beads (2 1) was employed to treat this acetone-contaminated air stream (10 1 min™; 100-1000
ppmv). The 41-1 medium solution circulated for more than 9 months was originally used to absorb
acetone, which was then degraded by the PAA-entrapped cell beads, and became slurry after 85
days operation. During the first phase operation, the average removal rate is about 79 % for 300
ppmv of acetone in average in the influent air stream. The capacity of the airlift to treat acetone is
109.6 ¢ m> h™' under the loading of 137.5 g m™ h”'. The maximum COD:N ratio of 100:2.9 is
achieved and a balanced nutrient state was indicated by the ORP measurement. The pH of the
system was maintained at neutral because of the strong buffer intensity added in the medium (final
B=1.18 x 10 mole I'"). The dissolved oxygen was gradually down to the 2 mg I"". The conductivity
and ionic strength were 4.5-5.6 mS cm™ and 0.1 M, respectively. The PAA-entrapped cell beads

provided the best inoculum source to keep the system steadily operated.

INTRODUCTION

The Taiwan combined IC production value of the semi-conductor industry, which is one of the most
important industries in Taiwan, rated top 3 high all over the world, fully supporting Taiwan
economics and social prosperity. However, the high-tech industries use a lot solvent such as acetone,
isopropyl alcohol, ethyl diol, butadiene, toluene, xylene as cleaner in the film development, itch,
and vapor deposition processes. Many volatile organic compounds (VOCs) were emitted [Khan and
Ghoshal, 2000]. Chang and Chang [1999] and Chang and Lu [2003] have reported that the acetone
was the most frequently found compounds contributing 50-80% of total VOCs to the Hsinchu
Science Park (HSP) of Taiwan. Since the acetone embedded airstream often contains high
boiling-point compounds, many treatment facilities couldn’t maintain its high treatment efficiency
as the new one can promise. For the long period of time, many VOCs, e.g. acetone and isopropyl
alcohol which would further be degraded to acetone, go into the residential area adjacent to HSP.

People’s health and safety were seriously concerned.

VOCs are often treated by adsorption, condensation, absorption, incineration, and biofiltration
[Khan and Ghoshal, 2000; Chang and Lu, 2003]. Biofiltration is the most cost-effective method but



it encounters many operational problems such as compaction, drying of filter media, aging and
acidification. The alternative process, biotrickling filter, is able to solve most of the problems, but it
still clogs in a period of time. Bioscrubber has a less efficiency than the other two processes
mentioned above. Also, it needs an additional large treatment facility to treat the circulation liquid,
which contains a high concentration of BOD requiring a long operation time for bacteria to degrade

it before recirculation.

Airlift that possesses a very good mass transfer efficiency in between gas and liquid phases is a well
known bioprocess often used in biochemical engineering. Now the gaseous acetone can be expected
to be well dissolved into the liquid phase of the airlift. However, acetone is very toxic to
microorganisms; therefore, the protection of microorganisms using an immobilization technique is
necessary for the biodegradation. Many articles also demonstrated that the PAA-immobilization
system where microorganism is entrapped into the cell beads is a very stable process and its bare
leakage of microorganisms continuously provides a source of pure culture. Thus, this study is
probably the first report dealing with the three-phase (acetone gas, liquid medium and PAA) airlift

bioprocess treating the waste gases containing acetone.

According to our previous reports, acetone can be degraded by Thiosphaera pantotropha in a
shake-flask culture [Ru, 2003; Lu, 2004] and in a 2.5-m high airlift bioreactor, in which the airlift
design and hydrodynamics properties were thoroughly investigated [Chen, 2006]. In this study, the
optimal treatment capacity in treatment of the acetone-containing gas stream was evaluated, and

kinetics data were modeled under certain assumptions.

EXPERIMENTAL METHODS

Chemicals

Acrylamide Monomer and N,N,N’ N’-tetra- methylethylenediamine (TEMED) were purchased
from Acros organics (as a part of Fisher Scientific) (Belgium). N,N’-methylenebisacrylamide (BIS)
was obtained from Tokyo Kasei. BCA analysis kit was purchased from Pierce company (Thermo
Fisher Scientific Inc). Acetone was purchased from Union Chemical Company (Taiwan). All the

other chemicals were of reagent grade.

Microorganisms

T. pantotropha (also named as Paracoccus pantotrophus) ATCC 35512 was purchased from
Bioresource Collection and Research Center (BCRC), Taiwan. The storage of microorganism was
annually manipulated at -78 °C, but subculture was done every month. The composition of medium

used for airlift is shown as Table 2-1.

Table 2-1. The composition of acetone biodegradation working medium



Components Quantity Company

Na,HPO,4 42¢ Shimakyu, Japan
KH,PO4 15¢g Union Chemicals, Taiwan
MgSO;4 - 7 H20 0.1g Union Chemicals, Taiwan
NaNO; 0.1g Union Chemicals, Taiwan
Tap water Fillto 1.0 L Union Chemicals, Taiwan

Free cell was measured by an optical density, ODgoonm, and dry cell weight (105 °C for 12 h).
Immobilized cell concentration was determined by the protein content of the cell beads using the

BCA Protein Assay kit [Pierce chemical company, 1997].

Polyacrylicamide (PAA) Cell Beads

Acrylicamide monomer, crosslinker BIS and accelerator TEMED were added into aseptic distillated
water under a constant proportion at 4 °C and mixed thoroughly. On the other side, the settled
centrifuged culture (20%, v/v) mixed with sodium alginate (0.5%, w/v) at 4 °C. Next, the polymer
solution and the culture solution were instantaneously mixed into a small syringe by a peristaltic
pump before ejected into the calcium chloride solution (0.3% * w/v). The calcium and alginate will
immediately form a very stable complex, helping the fast formation of cell beads in a 0.5-1.0 h.
When the cell beads were solidified, they were screened and moved to the potassium phosphate
solution (pH 7.8) to remove the calcium alginate. At the meantime, the polyacrylic amide (PAA)
cell beads were formed. The size of cell beads can be controlled by the needle size of the syringe

used.

Acetone Analysis

Acetone gaseous and liquid concentrations were analyzed by a Gas Chromatograph (GC) (China
Chromatography 8900, Taipei County, Taiwan) equipped with a flame ionized detector (FID). A
15-m long 0.53-mm ID Supelco, SPB-5 capillary column with a fused thickness of 3.0 pm was used.
Nitrogen carrier gas of GC is used. The oven, injector and detector temperature were 150, 180 and

200 °C, respectively.

Gaseous acetone calibration was prepared by placing 1, 2, 3, 4 and 5 pl of acetone solvent into five
10-liter SKC Tedlar air sample bags, respectively, and measuring them after the bags were placed

into an oven at 70 °C for 1 minute and then cooled down to room temperature.

Standard liquid acetone solution was prepared using a 250-ml brown bottle with a gas-tight

rubber/Teflon stopper. The bottles containing different amount of acetone were placed in a water



bath at 150 rpm and 30 °C for 30 minutes. The samples were mixed with 0.5% propyl alcohol as an
inner standard in a proportion of 1:1 (v/v). of The 2-ml sample was centrifuged at 6,000 rpm for 10

minutes and then 0.5 pl supernatant was withdrawn into GC/FID for analysis.

Airlift Bioreactor

The airlift bioreactor is depicted in Table 2-1. The column of the airlift was made of acrylic, 2.5 m
high and 19 cm ID with a total working volume of 41 1. It was divided by a flat plate of 127 cm
long x 19 cm wide into two sections, i.e. the drag tube and downcomer. This configuration with a
diameter-to-height ratio of 1:9 is very suitable for gas transfer into the liquid. The gaseous acetone
at 10 I min™' came into the reactor through the bottom gas distributor. The Dissolved oxygen, pH

and ORP sensors were installed for monitoring the performance of system.
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Figure 2-1. The airlift bioreactor. (1) Diaphragm air pump, (2) rotameter, (3) needle valve, (4) VOC
bottles, (5) equalization basin, (6) sampling port, (7) gas distributor, (8) D.O. meter, (9) pH meter,
(10) temperature sensor, (11) temperature control relay, (12) heating ribbon, (13) U-shape
manometer, (14) auto-sampler, (15) GC, (16) computer, (17) check valve.

One ml of gaseous acetone was automatically sampled by using a Valco 16-port stream selector and
a Valco 10-port 2-position injector. All the relay control signal and the GC analysis signal were
transmitted from or to the personal computer, respectively, through a NI-DAQ card (NI-6024,
National Instrument, Austin). All the liquid samples were withdrawn from the top surface of

bioreactor using a siphon tube.

RESULTS AND DISCUSSION

Our new innovative artificial-cell-bead-embedded airlift bioreactor requires external nutrition
sources; for example, nitrogen. Once using this bioreactor to treat waste VOC gases was feasible,
the stability (pH, conductivity, dissolved oxygen and redox potential, duration and maximum

treatment capacity were the most interested issues to be investigated.



Microbial Characteristics

The characteristics of T. pantotropha has thoroughly been studied in a shake flask culture [Lyuu,
2003]. T. pantotropha is a nitrogen requiring bacterium. In the previous study, various organic
nitrogen sources: i.e. yeast extract, monosodium L-glutamate and Urea, and inorganic sources:
sodium nitrate and ammonium chloride were chosen for evaluating the efficiency of acetone
biodegradation. We found that using the nitrate as a nitrogen nutrient is the best results in
biodegradation of acetone. Only 12 h was needed for 90% acetone removal; 20 h for completely
biodegradation of acetone (data not shown). In addition, it has the advantages of less biomass
produced and lower cost for nitrate purchase. The optimal loading of 1 g 1" was chosen for the rest

of experiment.

The acetone biodegradation activity was seriously inhibited when the liquid acetone concentration
was more than 700 mg I"". The acetone removal efficiency was then decreased from 100% to 57%.
However, this microbial toxicity could be prevented by using an immobilization technique, to have
the microorganisms entrapped into the PAA cell beads. The acetone removal efficiency could

maintain 91% (data not shown).

Treatment of Gaseous Acetone in Airlift

The acetone-containing gas stream was treated by the airlift with the PAA-immobilized T.
pantotropha entrapped -cell beads. The 85-day performance data are shown in the Figure 4-1. The
average input and output concentration of gaseous acetone were about 300 ppmv and 63 ppmv,
respectively. The removal efficiency was around 79%. The accumulated liquid acetone

concentration was 25 mg 1" in average.

During day 24-35, the gas auto-sampler for GC/FID was clogged. Because less quantity of acetone
shown in the computer screen, the opening of VOCs valve was turned to the maximum, leading to
the real acetone input concentration more than 631 ppmv. The gaseous and liquid acetone
concentrations were 97 ppmv and 23 mg I, respectively. Since the removal efficiency was more
than 85%, it demonstrated that the liquid water can provide a large load-buffering intensity in

equalization of the capacity; i.e. absorption of the peak acetone gas stream immediately.
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Figure 4-1. The time course profile of acetone biodegradation by the airlift with 2-1
PAA-immobilized cell beads in treatment of the gas stream containing 300 ppmv of acetone at 10 1

min’!.

The Nutrition Demand

In the reality, we need the absorption solvent to capture acetone, but we couldn’t use the enrichment
medium to carry the PAA cell-entrapped gel beads due to the high cost of chemicals. Therefore,
only a constant amount of tap water (41 1) with HCMM medium (Hwang et al., 2003) containing
1-g I'" sodium nitrate was used as a cell bead carrier. The result of acetone biodegradation is shown
in Figure 4-2. However, the system couldn’t start up unless our adding 100 mg I"' of sodium nitrate
to the tap water. An additional amount of sodium nitrate was further required 5 times to maintain a
stable treatment efficiency when the removal efficiency of 300-ppmv gaseous acetone decreased

down to below 60% or the liquid acetone concentration increased to above 30 -50 mg 1™

For example, at day 19, the acetone removal efficiency of 90% decreased down to 69% which was
corresponding to the rising of liquid acetone concentration to 27 mg 1"'. Day 20 after the addition of
25 mg I"' sodium nitrate, the removal efficiency increased from 69% to 80% with the further
duration of 11 days. Except the period of day 24-35 when GC gas auto sampler was clogged;
otherwise, the trend of coming down and then going up in the gaseous acetone concentration was
kept for a couple of weeks until at day 74, the liquid acetone concentration was over 50 mg 1™,

Therefore, 5-times dosage of 125-mg 1" sodium nitrate was added to the system. The apparent



improvement in the liquid acetone concentration was observed. In fact, the system was not added

any nitrogen source for a year (data not shown).

In calculation of nitrogen dosage, the results are shown in Table 4-1. For the first 19 days, the COD:
N ratio was maintained at 100:10.5, if both the initial 1 g I of sodium nitrate and its external
addition of 100 mg 1"" were taken into account. As seen in Table 4-1, the COD:N ratio becomes less
and less. Eventually, no more nitrogen source was added to the system after day-74 addition. The
system was run for almost one year until it became too slurry. This trend of COD:N also provides a
good information regarding how to feed the nutrition for this type of artificial cell-entrapped gel

beads. In other words, it is economically feasible.

Table 4-1. The COD:N ratio during the acetone biodegradation

Da Addition of_1 Acc?umulation_lc)f g—l\!1 g—C_1 g—CO_lD COD:N
nitrate, mg | nitrate, mg | day day day 100:N
0 100 1,100 2.37 6.35 22.57 10.5
19 25 1,125 1.49 6.35 22.57 6.6
31 25 1,150 1.12 6.35 22.57 5.0
42 25 1,175 0.88 6.35 22.57 3.9
55 25 1,200 0.66 6.35 22.57 2.9
74 125 1,325

*: The conversion factor of g-acetone to g-COD and to g-C are 2.2 (=128/58) g-COD/g acetone
and 0.62 (=36/58), respectively; the 10 lpm of 300-ppmv acetone gas stream gives the mass flow
rate of 10.2 g-acetone/day.

Generally, the ratio of COD:N:P in a biological treatment plant was suggested to be 100:5:1 in
textbook. Brauer [1986], and Johnson and Scow [1999] suggested the C:N:P ratio should be 100:5:1
in order to prevent the limit of Nitrogen nutrient and to maintain the microbial activity in
biodegradation. Acuna et al. [2002] reported the type of nutrient sources and its concentration were
also very important in treatment of toluene. Brar and Gupta [2000] used the same T. pantotropha to
metabolize the TCE at the optimal C:N ratio of 100:20 that was in the range of our C:N ratios
(37.4-10.5) calculated from Table 4-1.
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Figure 4-2.  The time course profile of nitrogen nutrient in acetone biodegradation by the airlift
with 2-1 PAA-immobilized cell beads in treatment of the gas stream containing 300 ppmv of

acetone at 10 1 min™.

The Stability of the Airlift System

1. pH

Most bacteria cannot survive in the environments where the pH is below 5 or above 9. In our
previous study, free T. pantotropha could only metabolize the acetone at pH 7 and 8.5, not at pH
below 5.5 or above 10. In this study, the pH was maintained in between 7.10-7.25, indicating the
system had a strong buffering intensity to neutralize the carbonaceous acid. Thus, the culture
medium was used for one-year operation without any blow-down operation. The phosphate
buffering intensity, p, was finally determined to be 1.18x107 initially and 1.50x10~ mole L™ at day
85. Although the buffering intensity is still available, the PAA cell beads normally will provide a
good environment for pH change by altering the distribution of hydrogen ions through the

formation of hydrogen-bond in its matrix.

Optical density for free cell growth in the liquid
The growth of suspended cell in the liquid phase can be evaluated by optical density (OD). In this

study, the OD value increased from 0.3 (absorbance) in the beginning of the operation to 1.5 finally.
It took first 10 days to achieve the OD value of 1.2, and then increased slowly to 1.5 at day 85.
Bailey et al. [1986] reported that the biomass in the fed-batch bioreactor usually attained to a steady

state where the microorganisms were under stationary phase due to the limit of other nutrient supply.



According to the results of acetone concentration modeling, the removal of acetone was gradually
dependent upon the biomass existing in the liquid phase instead of those in the PAA cell beads.
This result demonstrates that the PAA entrapped-cell beads could provide an initial source for the

dominant microorganism.

Conductivity
Conductivity was used to analyze the electrolyte content of the liquid water in the airlift. At day 85,

the conductivity value and ionic strength were 4.5-5.6 mS cm™ and 0.072-0.089 M, respectively.
According to the water body classification standard in Taiwan, Class 1 used for water supply and
swimming should contain the conductivity and ionic strength of below 750 pS cm™ @25°C and
0.012 M, respectively. An IC foundry uses a pure water met with the standard of the conductivity
and ionic strength of below 0.0556 pS cm™ @25°C and 8.9x10-7 M, respectively. The reverse
osmosis for drinking purpose gives a water with the conductivity and ionic strength of 0.0625 pS
em” @25°C and 1.0x10° M, respectively. A fresh activated sludge and anaerobic digested sludge
obtained from the Chang Chun PetroChemical Co., LTD. had the conductivity of 2.53 and 3.40 mS
cm” and ionic strength of 0.04110.054 M, respectively. Obviously, our liquid water had the
similar property with the sludge.

Normally, the microorganisms couldn’t survive under the ionic strength more than 0.1 M which was
corresponding to the conductivity of 6.3 mS cm™. Our liquid water had the ionic strength close to
0.1 M but the system could continuously metabolize acetone without any inhibition, indicating the

immobilized cell beads could provide a barrier for high salinity gradient.

Dissolved oxygen
Dissolved oxygen can reflect the aerobic microbial activity in degradation of acetone. Figure 4-3

shows the time course of dissolved oxygen in biodegradation of acetone in an airlift bioreactor.
During the period of 85-day operation, the dissolved oxygen decreased from 8.5 to 4.6 mg O, 1,
with the average value of 6.3 mg O, I'". The decreasing trend indicates the more biological activity
produced in the liquid water. The maximum dissolved oxygen in pure water is 9.07 mg but its value
decreased down to 2-3 mg O, 1" in the aerated basin in a full-scale activated sludge system.

Therefore, our designed system could provide enough oxygen for microbial degradation.
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Figure 4-3. The time course profile of dissolved oxygen and redox potential in acetone
biodegradation by the airlift with 2-1 PAA-immobilized cell beads in treatment of the gas stream

containing 300 ppmv of acetone at 10 1 min™".

Implication of Nutrient Demand and the Redox Potential

Both the dissolved oxygen and the redox potential can provide the information whether the system
is in the aerobic or anaerobic condition. The redox potential change also provides the information of
the oxygenic compound composition variation in the water and the biological activity increase.
From the Figure 4-3, the shock loading of sodium nitrate caused the pulse change of redox potential.
The peak ORP value became less and less significant in the course of the operation time. Since no
nitrogen nutrient was needed after day 85, this redox potential could further be used as an indicator

for determining whether the system was in a steady-state condition.

The gradually decrease of peak change in redox potential could be redrawn in Figure 4-4. The ORP
values were between 170-332 mV, with the average of 299 mV. We can see the response of the
ORP values after adding the sodium nitrate from Figure 4-4. In the beginning of operation, the
microbial activity had not achieved a stable condition, so the redox potential decreased immediately
when the nitrate was reduced to nitrogen, and recovered right away after some oxygenate
compounds were formed by the culture. The peak change became less and less when the
microorganisms were more and more active in the last two addition of nitrate. Eventually, the
addition of oxygenate nitrate and depreciation of oxygen balanced in the course of time. Hsu [2002]
reported that the fast increase of redox potential corresponded to a better aerobic activity; but the

decrease corresponded to a better anaerobic activity. Wang [2002] reported that the removal



efficiency in tetra-chloro-ethylene became the best while the ORP value anaerobically changed
from -250 mV to -350 mV.
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Figure 4-4. The redox potential during the 5 days after addition of nitrate into the system in acetone
biodegradation by the airlift with 2-1 PAA-immobilized cell beads in treatment of the gas stream

containing 300 ppmv of acetone at 10 1 min™".

Elimination Capacity of Acetone

The elimination capacity (EC) versus acetone loading is drawn in Figure 4-5. The acetone-carbon
elimination capacity of 109.6 g-C m~h™ when the carbon loading was 137.5 g-C m™ h™'. Chang and
Lu [2003] reported that the treatment capacity of isopropyl alcohol and acetone in their biofilters
were 80 and 53 g-Cm™ h™', respectively, when the influent concentration was between 75-300 ppmv
with 90% removal efficiency. Obviously, our system using liquid water as a media can provide a

better treatment capacity but less removal efficiency.
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Figure 4-5. The elimination capacity versus acetone loading in acetone biodegradation by the airlift
with 2-1 PAA-immobilized cell beads in treatment of the gas stream containing 300 ppmv of

acetone at 10 1 min™.

SUMMARY

The innovation of the PAA entrapped-cell beads embedded in the airlift for acetone waste gas
treatment made the system become a three-phase bioreactor. The elimination capacity of 300-ppm
acetone was 109.6 g-C m~h™" with 79% removal efficiency. It is higher than the data reported for
biofiltration. In the nutrition issue, the gradually increasing COD:N ratio demonstrated the nitrogen
cycle in the bioreactor was eventually formed. The maximum COD:N ratio was 100:3. The sudden
decrease of the redox potential could be used to detect if the system requires more nitrogen nutrient

or to show the denitrification phenomenon.
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