## 行政院國家科學委員會專題研究計畫 成果報告

## 隧道開挖面前期收斂行為與反算分析之研究及其應用軟體 之研發(第2年)

## 研究成果報告(完整版)

| 計 | 畫 | 類 | 別 | : | 個別型                       |
|---|---|---|---|---|---------------------------|
| 計 | 畫 | 編 | 號 | : | NSC 96-2221-E-216-020-MY2 |
| 執 | 行 | 期 | 間 | : | 97年08月01日至98年07月31日       |
| 執 | 行 | 單 | 位 | : | 中華大學土木與工程資訊學系             |

#### 計畫主持人:李煜舲

計畫參與人員:博士班研究生-兼任助理人員:劉益銓

處 理 方 式 : 本計畫涉及專利或其他智慧財產權,2年後可公開查詢

## 中華民國 98年10月21日

# 行政院國家科學委員會補助專題研究計畫 ☑ 成 果 報 告□ □ 期中進度報告

## 隧道開挖面前期收斂行為與反算分析之研究

## 及其應用軟體之研發

計畫類別: ☑ 個別型計畫 □ 整合型計畫 計畫編號: NSC 96 - 2221 - E - 216 - 020 - MY2 執行期間: 96 年 08 月 01 日至 98 年 07 月 31 日

計畫主持人: 李煜舲

共同主持人:

計畫參與人員:劉益銓

成果報告類型(依經費核定清單規定繳交):□精簡報告 ☑完整報告

本成果報告包括以下應繳交之附件:

□赴國外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

出席國際學術會議心得報告及發表之論文各一份

□ 國際合作研究計畫國外研究報告書一份

處理方式:除產學合作研究計畫、提升產業技術及人才培育研究計畫、 列管計畫及下列情形者外,得立即公開查詢

□涉及專利或其他智慧財產權,□一年☑二年後可公開查詢

執行單位: 中華大學

中華民國九十八年七月三十一日

摘 要

本研究預計為兩年期之研究計畫,研究主題擬定為「隧道開挖面前期收斂行 為與反算分析之研究及其應用軟體之研發」,包含兩研究子題:(I)隧道開挖 面前期收斂行為之研究及其應用軟體之研發(第一年計畫)和(II)隧道開挖支 撐互制行為之反算分析及其應用軟體之研發(第二年計畫)。

本計畫之研究目的有二,首先是考量隧道開挖前進效應影響和現地複雜工程 的條件下,建立快速便捷之斷面收方量測技術,以此改良技術嘗試替換傳統計 測之收斂岩栓方法,進而精確獲得隧道開挖之前期收斂行為,以及現地縱剖面 收斂變形曲線。並以繪圖軟體依據測量時間-空間的變化,處理隧道三維收方量 測座標且繪製整體時間差的隧道變形圖;並同時以微軟視窗程式語言開發新資 訊平台,迅速確實地將隧道測量座標轉換成可用之縱剖面變形曲線與整體隧道 圓弧變形斷面。最後可以提供現場施工單位視窗化之資訊和研判,以便作出及 時安全評估或支撐系統修正之建議,並達到便捷安穩之工程應用目標。

其次,本計畫之第二研究目的為,乃以現地隧道收斂計測資料為依據(包含 隧道開挖計測岩栓、伸張儀、收方量測之變形剖面或曲線等相關收斂位移資 料),利用數值化收斂圍束法理論,並採用外顯式分析法建立反計算分析流程 和步驟;同時開發視窗應用程式新資訊平台,繪製隧道開挖縱剖面變形曲線, 並經由回歸分析而獲得此曲線之模式參數,計算獲得隧道開挖無支撐之前期位 移量,建立地盤收斂曲線和支撐反力曲線與互制關係,進而完成隧道輪進開挖 支撐設計之檢核或修正,以達現地施工現況及時反應控制之目標。

研究計畫內容和預期成果包括:(1)隧道斷面收方技術與其視窗應程式之 建置、(2)隧道斷面收方技術應用於開挖面收歛位移量測方法之建立、(3) 隧道斷面收方技術應用於隧道整體變形量測之預估、(4)隧道斷面收方視窗應 程式之改善與功能更新、(5)反算分析視窗應用程式之新資訊平台建立、(6) 隧道開挖收斂行為之結果比較、和(7)隧道斷面收方和開挖面收歛計測資料系 統之建立等。

關鍵詞:隧道開挖面前期收斂、斷面收方測量、反算分析、收斂圍束法、外顯 式分析、視窗應用程式

## ABSTRACT

The phase of project is estimated two years. The subject of this research is, "Pre-convergence behavior of working face in tunnel excavation by using the analysis of back calculation and developing the applicable software", that consists of two objects considered : (I) Pre-convergence behavior of working face in tunnel excavation and software development (for the fist year), and (II) Analysis of back calculation in tunnel excavation and software development (for the second year).

The two objectives of this paper are, the first is that the field measurements obtained by convergence measurements that is particularly replaced by the wriggle survey method was established in this study. The information platform developed by using Microsoft program language is considered to make the relation between filed measurements and standard profile, and to check the stability immediately after the advancing face of tunnel excavation. The tunnel deformation profile is plotted by using the graphic program to present the deformation behavior in tunneling.

The second is that the using of the numerical Convergence-Confinement method, the establishment of explicit steps of analysis and the calculation by means of the regression analysis obtained from field measurements are particularly studied. The prediction of behavior of the interaction between rock mass and support system in tunnel excavation, for example the longitudinal deformation profile, ground response curve and support reaction curve etc., is realized by the numerical analysis program developed in the research laboratory.

The results obtained of this study include that (1) establishment of windows programming for the tunnel wriggle survey method, (2) establishment of windows programming for the convergence measurement by using the tunnel wriggle survey method, (3) prediction of 3D tunnel deformation by using the tunnel wriggle survey method, (4) update and renews of windows programming, (5) establishment of windows programming for the back calculation method, (6) comparison of results between numerical calculation and experimental data; and (7) establishment of data system of measurement in tunneling.

Keywords : Pre-Convergence of tunnel excavation, Wriggle Survey, Back Calculation Analysis, Convergence-Confinement Method, Explicit Analysis, Windows Software Development

# 目 錄

| 摘  |     | 要                                  |
|----|-----|------------------------------------|
| 目  |     | 錄                                  |
| 表  | 目   | 錄V                                 |
| 圖  | 目   | 錄VI                                |
| 圖  | 目   | 錄VI                                |
| 第· | 一章  | 緒論1                                |
|    | 1.1 | 研究背景1                              |
|    | 1.2 | 研究方法與目的1                           |
|    | 1.3 | 研究內容與架構2                           |
| 第. | 二章  | 文獻回顧                               |
|    | 2.1 | 前言4                                |
|    | 2.2 | 收斂圍束法之基本理論4                        |
|    |     | 2.2.1 圍束損失                         |
|    |     | 2.2.2 地盤反應曲線                       |
|    |     | 2.2.3 支撑反力曲線                       |
|    |     | 2.2.4 岩體開挖與結構互制之行為12               |
|    | 2.3 | 隧道開挖之前進效應13                        |
|    | 2.4 | 岩體開挖之破壞模式14                        |
|    | 2.5 | 開挖岩體之潛變行為15                        |
|    | 2.6 | 隧道斷面測量技術16                         |
|    |     | 2.6.1 接觸式(Contact methods)17       |
|    |     | 2.6.2 非接觸式(None-contact methods)17 |
|    | 2.7 | 隧道斷面測量原理                           |
|    |     | 2.7.1 前方交會法                        |
|    |     | 2.7.2 後方交會法                        |
|    |     | 2.7.3 綜合式後方交會法                     |

| 第三章<br>3.1 | 隧道開挖與支撐之力學行為模擬分析方法前言           | .30<br>30 |
|------------|--------------------------------|-----------|
| 3.2        | 有限元素法分析                        | 31        |
|            | 3.2.1 有限元素原理介紹                 | 31        |
|            | 3.2.2 有限元素分析程式之處理程序介紹          | 31        |
|            | 3.2.3 有限元素程式模擬分析步驟             | 32        |
| 3.3        | 新外顯法                           | 34        |
|            | 3.3.1 新外顯法之基本假設                | 34        |
|            | 3.3.2 新外顯法之分析處理程序              | 35        |
|            | 3.3.3 新外顯法之模擬分析步驟              | 36        |
| 第四章<br>4.1 | 無支撐隧道開挖之地盤反應行為模擬分析前言           | .67<br>67 |
| 4.2        | 模擬分析之假設                        | 67        |
| 4.3        | 新外顯法模擬結果                       | 68        |
|            | 4.3.1 彈性模式                     | 68        |
|            | 4.3.2 彈性完全塑性模式                 | 68        |
| 4.4        | 有限元素法模擬結果                      | 68        |
|            | 4.4.1 彈性模式                     | 68        |
|            | 4.4.2 彈性完全塑性模式                 | 69        |
| 4.5        | 新外顯法與有限元素法之分析結果比較              | 69        |
| 第五章<br>5.1 | 隧道開挖支撐之互制行為模擬分析<br>圍束損失參數影響性探討 | .90<br>90 |
| 5.2        | 支撑構件使用參數與假設條件                  | 91        |
| 5.3        | 新外顯法模擬結果                       | 91        |
|            | 5.3.1 彈性模式                     | 91        |
|            | 5.3.2 彈性完全塑性模式                 | 92        |
| 5.4        | 有限元素法模擬結果                      | 93        |

|            | 5.4.1 彈性模式               | 93         |
|------------|--------------------------|------------|
|            | 5.4.2 彈性完全塑性模式           | 93         |
| 5.5        | 新外顯法與有限元素法之分析結果比較        | 94         |
| 第六章<br>6.1 | :視窗程式架構建立與運算流程視窗程式發展架構說明 | 129<br>129 |
| 6.2        | 資料庫建立之說明                 | 129        |
| 6.3        | 視窗程式之運算流程                | 129        |
|            | 6.3.1 前處理程序              | 129        |
|            | 6.3.2 主運算程序              | 130        |
|            | 6.3.3 後處理程序              | 130        |
| 6.4        | 視窗程式表單內容說明               | 130        |
|            | 6.4.1 資料輸入表單             | 131        |
|            | 6.4.2 主運算程序表單            | 131        |
|            | 6.4.3 資料輸出表單             | 132        |
|            | 6.5 計算驗證                 | 132        |
| 第七章<br>7.1 | : 結論與建議<br>結論            | 129<br>143 |
| 7.2        | 建議                       | 144        |
| 參考文        | 獻                        | 145        |

# 表目錄

| 表 3-1 有限元素程式 | 、計算基本資料檔       |                                |                      |
|--------------|----------------|--------------------------------|----------------------|
| 表 3-2 反向節點力之 | 2設定資料檔(LAM     | )                              | 41                   |
| 表 3-3 應力與位移值 | 直之擷取設定檔(las)   | )                              |                      |
| 表 4-1 新外顯法與有 | 「限元素法之圍束損失     | 失彈性極限值λe之比較                    | 71                   |
| 表 4-2 新外顯法與有 | 「限元素法模擬無支持     | 掌隧道開挖之徑向位移量                    | 之比較 71               |
| 表 4-3 彈性完全塑性 | 上新外顯法與有限元章     | 素法之塑性半徑結果比較                    |                      |
| 表 5-1 噴凝土支撑棒 | <b>靖件參數輸入值</b> |                                |                      |
| 表 5-2 岩栓支撑構作 | +參數輸入值         |                                |                      |
| 表 5-3 彈性模式下新 | f外顯法與有限元素》     | 去計算之平衡點                        |                      |
| 表 5-4 彈性完全塑性 | Ł模式下新外顯法與7     | <b>肓限元素法計算之平衡點</b>             | $(\lambda_d=0.4)$ 97 |
| 表 5-5 彈性完全塑性 | Ł模式下新外顯法與7     | <b>肓限元素法計算之平衡點</b>             | $(\lambda_d=0.7)$ 98 |
| 表 5-6 彈性模式下支 | 支撑勁度斜率 k 值比轉   | 交表                             |                      |
| 表 5-7 彈性完全塑性 | Ł模式下支撑勁度斜3     | 率 k 值比較表(λ <sub>d</sub> =0.4)。 |                      |
| 表 5-8 彈性完全塑性 | Ł模式下支撑勁度斜率     | 率 k 值比較表(λ <sub>d</sub> =0.7)。 |                      |

# 圖目錄

| 圖 | 1-1  | 研究流程                             | 3  |
|---|------|----------------------------------|----|
| 圖 | 2-1  | 隧道開挖時岩體收斂與支撐圍束互制示意圖              | 25 |
| 圖 | 2-2  | λ值示意圖                            | 26 |
| 圖 | 2-3  | 地盤反應曲線與支撐反力曲線之互制關係圖              | 26 |
| 圖 | 2-4  | 地盤反應曲線與支撐反力曲線之互制關係圖              | 27 |
| 圖 | 2-5  | 不同之稱系統其支撐反力曲線變化圖                 | 27 |
| 圖 | 2-6  | 不同支撑結構所提供的支撐壓力與位移關係圖             | 28 |
| 圖 | 2-7  | 複合式支撐系統之勁度示意圖                    | 28 |
| 圖 | 2-8  | 隧道頂拱、側壁與仰拱之支撐應力與位移曲線圖            | 29 |
| 圖 | 3-1  | 無支撐隧道開挖引致岩體變形收斂圖                 | 43 |
| 圖 | 3-2  | 隧道開挖岩體收斂與支撐圍束之互制關係圖              | 44 |
| 圖 | 3-3  | 有限元素分析程式之計算執行流程                  | 45 |
| 圖 | 3-4  | 有限元素之網格示意圖                       | 46 |
| 圖 | 3-5  | 有限元素程式模擬隧道開挖之網格局部節點編號情況          | 47 |
| 圖 | 3-6  | 有限元素程式模擬隧道開挖之網格局部元素編號情況          | 47 |
| 圖 | 3-7  | 有限元素程式模擬隧道未開挖之初始應力分佈圖            | 48 |
| 圖 | 3-8  | 有限元素程式模擬隧道未開挖之初始位移分佈圖            | 48 |
| 圖 | 3-9  | 有限元素程式模擬無支撐隧道開挖完成之應力分布圖(λ=1.0)   | 49 |
| 圖 | 3-1  | 0 有限元素程式模擬無支撐隧道開挖完成之位移分布圖(λ=1.0) | 49 |
| 圖 | 3-1  | 1 有限元素程式模擬隧道開挖後之應力分布圖(λ=0.4)     | 50 |
| 圖 | 3-12 | 2 有限元素程式模擬隧道開挖後之位移分佈圖(λ=0.4)     | 50 |
| 圖 | 3-1  | 3 有限元素程式模擬之隧道開挖支撐最終應力分佈圖         | 51 |
| 圖 | 3-1- | 4 有限元素程式模擬之隧道開挖支撐最終位移分佈圖         | 51 |
| 圖 | 3-1  | 5 二維有限元素模擬程式之輸出檔(頂拱位移值)          | 52 |

圖 3-23 新外顯法模擬彈性完全塑性無支撐隧道開挖之地盤反應曲線圖 ........60 圖 3-26 新外顯法模擬彈性有支撑隧道開挖之地盤反應曲線圖 .......63 圖 3-28 新外顯法模擬彈性完全塑性有支撐隧道開挖之計算過程......65 圖 3-29 新外顯法模擬彈性完全塑性有支撐隧道開挖之地盤反應曲線圖 ........66 圖 4-1 新外顯法模擬無支撐隧道開挖之地盤反應曲線圖(彈性模式)............73 圖 4-2 新外顯法模擬無支撐隧道開挖之地盤反應曲線圖(彈性完全塑性模式) 圖 4-3 新外顯法圍束損失彈性極限值λ<sub>e</sub>與凝聚力 c、內摩擦角 ϕ 之關係圖.....74 圖 4-5 有限元素法模擬無支撐隧道開挖之地盤反應曲線圖(彈性模式).......75 圖 4-6 有限元素法模擬無支撐隧道開挖之地盤反應曲線圖(彈性完全塑性模式)

圖 4-7 有限元素法損失彈性極限值 λe 與凝聚力 c、內摩擦角 φ 之關係圖........76

圖 4-9 新外顯法模擬無支撐隧道開挖之地盤反應曲線圖(波松比 v 影響分析)

圖 4-10 有限元素法模擬隧道開挖無支撐地盤反應曲線圖(波松比 v 影響分析)

| 4-11 新外顯法模擬無支撐隧道開挖之地盤反應曲線圖(彈性模數E影響分析) | 圖 4-11 |
|---------------------------------------|--------|
|                                       |        |
| 4-12 有限元素法模擬無支撑隧道開挖之地盤反應曲線圖(彈性模數E影響分  | 圖 4-12 |
| 析)                                    | ;      |
| 4-13 新外顯法與有限元素法模擬無支撑隧道開挖之地盤反應曲線比較圖    | 圖 4-13 |
| (c=0.1, φ=10°)                        |        |
| 4-14 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖    | 圖 4-14 |
| (c=0.1, φ=20°)                        |        |
| 4-15 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖    | 圖 4-15 |
| $(c=0.1, \phi=30^{\circ})$ 80         |        |
| 4-16 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖    | 圖 4-16 |
| (c=0.1, \$\$\phi=40^{\circ}\$)        |        |
| 4-17 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖    | 圖 4-17 |
| (c=0.1, \$\$\phi=50^{\circ}\$)        |        |
| 4-18 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖    | 圖 4-18 |
| $(c=0.2, \phi=10^{\circ})$ 81         |        |
| 4-19 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖    | 圖 4-19 |
| (c=0.2, φ=20°)82                      |        |
| 4-20 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖    | 圖 4-20 |
| (c=0.2, φ=30°)82                      |        |
| 4-21 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖    | 圖 4-21 |
| (c=0.2, \$\$\phi=40^{\circ}\$)        |        |
| 4-22 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖    | 圖 4-22 |
| (c=0.2, φ=50°)83                      |        |
| 4-23 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖    | 圖 4-23 |

|   |      | $(c=0.3, \phi=10^{\circ})$                                            | . 84          |
|---|------|-----------------------------------------------------------------------|---------------|
| 圖 | 4-24 | 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖                                         |               |
|   |      | $(c=0.3, \phi=20^{\circ})$                                            | . 84          |
| 圖 | 4-25 | 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖                                         |               |
|   |      | (c=0.3, \$\phi=30^{\circ})                                            | . 85          |
| 圖 | 4-26 | 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖                                         |               |
|   |      | $(c=0.3, \phi=40^{\circ})$                                            | . 85          |
| 圖 | 4-27 | 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖                                         |               |
|   |      | $(c=0.3, \phi=50^{\circ})$                                            | . 86          |
| 圖 | 4-28 | 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖                                         |               |
|   |      | $(c=0.4, \phi=10^{\circ})$                                            | . 86          |
| 圖 | 4-29 | 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖                                         |               |
|   |      | $(c=0.4, \phi=20^{\circ})$                                            | . 87          |
| 圖 | 4-30 | 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖                                         |               |
|   |      | $(c=0.4, \phi=30^{\circ})$                                            | . 87          |
| 圖 | 4-31 | 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖                                         |               |
|   |      | $(c=0.4, \phi=40^{\circ})$                                            | . 88          |
| 圖 | 4-32 | 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖                                         |               |
|   |      | $(c=0.4, \phi=50^{\circ})$                                            | . 88          |
| 圖 | 4-33 | 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖(                                        | 〔凝            |
|   |      | 聚力 c 影響性分析 )                                                          | . 89          |
| 圖 | 4-34 | 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖(                                        | (內            |
|   |      | 摩擦角 ♦ 影響性分析)                                                          | . 89          |
| 圖 | 5-1  | 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,λd<λs<                                  | $(\lambda_e)$ |
|   |      |                                                                       | . 99          |
| 圖 | 5-2  | 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(λ <sub>d</sub> <λ <sub>s</sub> <λ <sub>e</sub> ) | . 99          |

| 圖 5-3 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,λ <sub>d</sub> <λ <sub>e</sub> <λ <sub>s</sub> ) |
|--------------------------------------------------------------------------------------|
|                                                                                      |
| 圖 5-4 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖 (λ <sub>d</sub> <λ <sub>e</sub> <λ <sub>s</sub> )100      |
| 圖 5-5 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC, $\lambda_e < \lambda_d < \lambda_s$ )           |
|                                                                                      |
| 圖 5-6 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖 $(\lambda_e < \lambda_d < \lambda_s)$ 101                 |
| 圖 5-7 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈性模                                              |
| 式,t=20)102                                                                           |
| 圖 5-8 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖 (彈性模式,t=20) 102                                           |
| 圖 5-9 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈性模                                              |
| 式,t=60)103                                                                           |
| 圖 5-10 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖 (彈性模式,t=60).103                                          |
| 圖 5-11 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈性模                                             |
| 式,t=20+rb)104                                                                        |
| 圖 5-12 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖 (彈性模式,t=20+rb)                                           |
|                                                                                      |
| 圖 5-13 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈塑性                                             |
| 模式,t=20)105                                                                          |
| 圖 5-14 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖 (彈塑性模式,t=20)                                             |
|                                                                                      |
| 圖 5-15 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈塑性                                             |
| 模式,t=60)106                                                                          |
| 圖 5-16 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖 (彈塑性模式,t=60)                                             |
|                                                                                      |
| 圖 5-17 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈塑性                                             |
| 模式,t=20)107                                                                          |
| 圖 5-18 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖 (彈塑性模式,t=20)                                             |

| 圖 5-19         | )新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈塑性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | 模式,t=60)108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 圖 5-20         | )新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(彈塑性模式,t=60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ·              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 圖 5-21         | 新外顯法模擬隧道開挖支撑之收斂圍束曲線圖(含無支撑 GRC,彈塑性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | 模式,t-20+rh) 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 回500           | (长达)[[10]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 回 3-22         | 利外線法候擬隧道開花又拆之收斂邕米曲線圖(理型性候式,1-20+10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 同口〇〇           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 靣 3-23         | )有限兀 东 法 榠 擌 隧 迫 開 挖 支 得 之 收 斂 圍 來 曲 線 圖 ( 含 無 支 得 URC , 弹 性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                | 模式,t=20)110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 圖 5-24         | ·有限元素法模擬隧道開挖支撐之收斂圍束曲線圖(彈性模式,t=20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 圖 5-25         | 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | 模式,t=60)111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 圖 5-26         | 5 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖(彈性模式,t=60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 圖 5-27         | '有限元素法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                | 模式,t=20+rb)112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 圖 5-28         | 3 有限元素法模擬隧道開挖支撑之收斂圍束曲線圖(彈性模式,t=20+rb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 圖 5-29         | ) 有限元素注模擬隧道開控支控之收劍圍吏曲線圖(今無支控 GRC, 彈性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Щ <i>5 2)</i>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 同 こ 20         | $ ( \mathbf{x}, \mathbf{y}, \mathbf{z}, $ |
| <b>園 3-3</b> 0 | 「有限兀 奈 法 模擬 隧 迫 開 挖 支 撐 之 收 斂 圍 宋 曲 線 圖 ( 理 性 模 式 , t=20 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 圖 5-31         | 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | 模式,t=60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

圖 5-32 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖(彈性模式,t=60) 圖 5-33 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈性 模式,t=20).....115 圖 5-34 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖(彈性模式,t=20) 圖 5-35 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈性 模式,t=60)......116 圖 5-36 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖 (彈性模式,t=60) 圖 5-37 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈性 模式,t=20+rb).....117 圖 5-38 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖(彈性模式,t=20+rb) 圖 5-39 新外顯法與有限元素法模擬隧道開挖支撐之比較圖 ( 含無支撐 GRC , 彈 性模式,t=20)......118 圖 5-40 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(彈性模式,t=20) 圖 5-41 新外顯法與有限元素法模擬隧道開挖支撐之比較圖 (含無支撐 GRC,彈 性模式,t=60)......119 圖 5-42 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(彈性模式,t=60) 圖 5-43 新外顯法與有限元素法模擬隧道開挖支撐之比較圖 (含無支撐 GRC,彈 性模式,t=20+rb).....120 圖 5-44 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(彈性模式,t=20+rb) 圖 5-45 外顯法與有限元素法之最終平衡位移比較圖(彈性模式)......121

| 圖 | 5-46 | 外顯法與有限元素法之最終支撐應力比較圖(彈性模式)121                |
|---|------|---------------------------------------------|
| 圖 | 5-47 | 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(含無支撐 GRC,彈           |
|   |      | 塑性模式,t=20)122                               |
| 圖 | 5-48 | 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(彈塑性模式,t=20)          |
|   |      |                                             |
| 圖 | 5-49 | 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(含無支撐 GRC,彈           |
|   |      | 塑性模式,t=60)123                               |
| 圖 | 5-50 | 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(彈塑性模式,t=60)          |
|   |      |                                             |
| 圖 | 5-51 | 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(含無支撐 GRC,彈           |
|   |      | 塑性模式,t=20)124                               |
| 圖 | 5-52 | 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(彈塑性模式,t=20)          |
|   |      |                                             |
| 圖 | 5-53 | 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(含無支撐 GRC,彈           |
|   |      | 塑性模式,t=60)125                               |
| 圖 | 5-54 | 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(彈塑性模式,t=60)          |
|   |      |                                             |
| 圖 | 5-55 | 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(含無支撐 GRC,彈           |
|   |      | 塑性模式,t=20+rb)126                            |
| 圖 | 5-56 | 新外顯法與有限元素法模擬隧道開挖支撐之比較圖 ( 彈塑性模式 ·            |
|   |      | t=20+rb)                                    |
| 圖 | 5-57 | 外顯法與有限元素法之最終平衡位移比較圖(λ <sub>d</sub> =0.4)127 |
| 圖 | 5-58 | 外顯法與有限元素法之最終支撐應力比較圖(λ <sub>d</sub> =0.4)127 |
| 圖 | 5-59 | 外顯法與有限元素法之最終平衡位移比較圖(λ <sub>d</sub> =0.7)128 |
| 圖 | 5-60 | 外顯法與有限元素法之最終支撐應力比較圖(λ <sub>d</sub> =0.7)    |

XIV

## 第一章 緒論

## 1.1 研究背景

台灣為島國地形且地狹人稠,可供利用土地之開發情況已趨於飽和,興建 隧道或公路是為連絡各地區更為便利的方式,並能有效提高土地利用效益。近 年來,於隧道興建之施工方式漸多採用新奧地利工法(NATM),並搭配使用收 斂圍束法(Convergence Confinement Method)理論為設計開挖支撐之依據,且 利用圍束損失(Convergence Loss)之觀念,模擬開挖支撐的過程。使用數值模 擬分析方式為最為便利與有效的預測隧道收斂情形,現今坊間所使用的模擬分 析程式,多需繁複的輸入與建立模型步驟,若能以易取得之試算程式配合理論 方法加以分析,必定能更有效減少分析時所需要花費之時間與成本。

## 1.2 研究方法與目的

當隧道開挖之時,隨著開挖面的前進,週遭圍岩受到擾動而失去平衡,岩 體應力為達到平衡,亦隨之重新調整分佈,此時即會產生岩體的變形。而由岩 體變形與應力之間的關係,可得知岩體應力釋放之情形,進而評估隧道開挖與 支撐互制行為之安全性。

有限元素法分析可進行二維與三維之模擬分析,但計算繁雜不易瞭解,且 於決定圍束損失也較繁複。所以新外顯法為利用簡便之試算程式,以二維分析 模式,並配合收斂圍束法理論,並更直接且明瞭的引入圍束損失,以模擬隧道 開挖前進與架設支撐之過程,用以替代計算繁雜之三維模式分析,則能顯著提 高隧道模擬分析之便利性。

本論文的研究目的主要為,使用新外顯法(New Explicit Method, NEM)做 隧道開挖與支撐互制之模擬,並與有限元素法(Finite Element Method, FEM) 作相比較之結果差異。

## 1.3 研究內容與架構

本文共分為七個章節,第一章為緒論,闡述研究背景、方法、目的及內容。 第二章為文獻回顧,藉由國內外學者及相關研究論文簡述隧道開挖變形行為、 收斂圍束法理論以及支撐互制行為之相關探討。第三章為隧道開挖支撐之數值 模擬與分析方法,闡述有限元素法分析與新外顯法之原理步驟與計算推導過 程。第四章為無支撐隧道開挖之新外顯法與有限元素法之分析結果比較,由二 維數值模擬隧道開挖無支撐情況下,分別探討彈性與彈性完全塑性模式之地盤 反應曲線(Ground Response Curve, GRC),並做兩種模擬方式之比較。第五章 為有支撐隧道開挖之新外顯法與有限元素法之分析結果比較,利用此兩種模擬 方式,分別模擬隧道開挖與支撐互制之收斂圍束曲線結果並比較其合理性。第 六章為視窗程式架構建立與運算流程。第七章為結論與建議:研究分析之結果 與後續研究建議之方向。



圖 1-1 研究流程

## 第二章 文獻回顧

## 2.1 前言

隧道開挖過程中,周圍岩體受到隧道開挖影響,失去自持力而破壞平衡, 岩體隨即釋放應力而重新調整以達到新的平衡狀態。岩體應力的增減即會使岩 體產生變形,而岩體變形可由裝設儀器測量之,其影響此變形因素、應力重新 分布之過程皆可利用數值分析方法加以模擬,以預估岩體與支撐結構間之互制 行為。本章將利用國內外學者對於收斂圍束法、新外顯法分析、隧道開挖前進 效應、支撐結構勁度、岩體與支撐間之互制關係等之相關文獻做一回顧。

## 2.2 收斂圍束法之基本理論

新奧地利施工法(NATM),其基本原理為隧道開挖後之應力調整、主要承 力結構以及支撐構件與岩體間之力平衡。此後 1970 年起,於歐洲逐漸發展出一 套以新奧工法為基礎之隧道開挖支撐的分析方式與設計方法,即收斂圍束法 (Convergence Confinement Method)。

收斂圍束法之精神為以二維平面應變問題,代替處理較複雜的三維隧道開 挖問題,且隨著隧道的開挖前進,受擾動之岩體產生變形,此時可藉由現場監 測儀器計測岩體變形收歛之情形,即可加以研判支撐構件種類、多寡與架設時 機,進而設計隧道之支撐構件。其分析理論重點包括:地盤反應曲線(Ground Response Curve, GRC)、支撐反力曲線(Support Reaction Curve, SRC)、縱剖 面變形曲線(Longitudinal Deformation Curve, LDC)、縱剖面應力曲線 (Longitudinal Stresses Curve, LSC)、互制作用曲線(Interaction Curve, IC)、 圍束損失(Confinement Loss,  $\lambda$ )以及平衡點(Equilibrium Point, EP)如圖 2-1 (李煜舲, 2003)。

#### 2.2.1 圍束損失

法國學者 Panet (1979) 提出相關理論,假設在等向性初始應力條件下 ( $K_0$ =1),一圓形無支撐深隧道(半徑 R)開挖於均質且線彈性材料之岩體中, 導入圍束損失( $\lambda$ )用疊代的方式以模擬隧道開挖前進之應力釋放與岩體收斂情 形。在距離開挖面前方遠處時,因岩體未受到隧道開挖的影響,其徑向應力  $\sigma_R$ 與初始應力  $\sigma_v$ 之比值為 1,此時之  $\lambda$  值為 0;然而隨著隧道持續開挖前進,岩體 圍束應力持續釋放,當離開挖面後方無窮遠處時,周圍岩體因壓力完全釋放而 達一平衡狀態,其徑向應力與現地應力比為 0,此時之  $\lambda$  值為 1,如圖 2-2 所示; 由於已達最終平衡狀態,所以其徑向位移量  $U_R$ 即為最大位移量  $U_{R(max)}^c$ 。

上述之隧道開挖面上岩體應力與位移變化可分別表示如下:

當
$$\lambda = 0$$
時  $U_R = 0$   $\sigma_R = \sigma_v$   $\sigma_\theta = \sigma_v$  (2-1)

當 
$$0 < \lambda < 1$$
時  $U_R = \lambda \frac{\sigma_v R}{2G}$   $\sigma_R = (1-\lambda)\sigma_v$   $\sigma_\theta = (1+\lambda)\sigma_v$  (2-2)

當
$$\lambda = 1$$
時  $U_{R(max)} = \frac{\sigma_v R}{2G}$   $\sigma_R = 0$   $\sigma_\theta = 2\sigma_v$  (2-3)

式中,U<sup>e</sup><sub>R(max)</sub>為開挖面上無窮遠處之彈性徑向位移量最大值,即無支撐最大徑向 位移量;σ<sub>v</sub>為初始應力;σ<sub>R</sub>及σ<sub>θ</sub>分別為徑向應力與切向應力;G為岩體之剪力 模數(李煜舲,2003)。

當隧道開挖,岩體應力釋放與支撐結構間互制過程中,應用地盤反應曲線 與支撐反力曲線之間的關係作為隧道支撐設計方法。隧道開挖之時,即會產生 變形位移,而抑制變形過大即需施作支撐以抵制其變形;隧道開挖面至支撐結 構間之無支撐距離 d,其相對應一圍束損失λd值。當周圍岩體材料為彈性極限 時,此時之圍束損失值為λe。再依照岩體應力釋放及位移收斂狀況,模擬出徑 向位移量之大小,選擇適合之支撐構件與時機,以達安全且經濟之目的。

#### 2.2.2 地盤反應曲線

(1) 彈性範圍

當假設隧道開挖擾動之岩體材料為線彈性材料時,地盤反應曲線為表示地 盤之應力與位移關係。當隧道尚未開挖時,岩體未受擾動(λ=0),此時徑向位 移量為零。當隧道開挖前進,岩體持續受到擾動,為了產生新的平衡,岩體會 藉由產生位移,使得應力重新調整。在徑向應力和徑向位移正規化之關係中呈 現一直線(圖 2-1)。當岩體應力完全釋放時,產生一最大徑向位移量 U<sup>e</sup><sub>R(max)</sub>。 可看出最大徑向位移量 與隧道半徑、岩體彈性模數及初始應力有關。其中, 地盤反應曲線斜率為 2G,且與岩體材料之彈性模數和波松比有關。

$$U_{R(\max)}^{e} = \frac{\sigma_{v}R}{2G} \tag{2-4}$$

(2) 彈塑性範圍

考慮岩體材料為彈性完全塑性時,地盤反應曲線之收斂趨勢呈現非線性曲線。岩體受到擾動時,一開始尚在彈性範圍內,所呈現出來的地盤反應曲線為 直線段,當擾動持續達塑性半徑範圍,則進入完全塑性狀態,所呈現的地盤反 應曲線則為一非線性曲線。岩體因受擾動所產生的位移量,會隨著岩體材料之 參數而有所變化,即岩體材料強度愈差,開挖後所產生的徑向位移量則愈大。

李煜舲(2002)考慮以圍束損失 $\lambda$ 之觀念,分析隧道彈塑性徑向位移量 $U_R^{ep}$ 及彈性極限之圍束損失 $\lambda_e$ 。並根據 Mohr-Coulomb 破壞準則之降伏函數 f (yielding function)與塑性勢能函數 g (plastic potential function):

降伏函數: 
$$f = \sigma_1 - \sigma_3 K_p - \sigma_c$$
 (2-5)

塑性勢能函數:  $g = \sigma_1 - \sigma_3 K_{\psi}$  (2-6) 式中,  $\sigma_c$ 為單壓強度,

$$K_{p} = \tan^{2}(45 + \frac{\phi}{2})$$
 for  $K_{\psi} = \tan^{2}(45 + \frac{\psi}{2})$  (2-7)

其中 $\phi$ 與 $\forall$ 分別為內摩擦角與膨脹角;當 $\phi=\forall$ 時,符合塑性諧和流則 $K_p=K_{\psi}$ ;而  $\phi\neq\psi$ 時, $K_p\neq K_{\psi}$ 為塑性非諧和流。

當隧道持續開挖前進,而岩體應力持續釋放達到滿足破壞準則時,圍束損

失λ等於彈性極限之圍束損失λ<sub>e</sub>,經由彈性方程式 2-2 之徑向應力及切向應力帶 入方程式 2-5 可得出:

$$\lambda_e = \frac{1}{K_p + 1} \left[ K_p - 1 + \frac{\sigma_c}{\sigma_v} \right]$$
(2-8)

在彈塑性範圍內之彈性階段 $(0 \leq \lambda \leq \lambda_e)$ 時,方程式如下所示:

$$\sigma_{R} = (1 + \lambda_{e})\sigma_{0} , \sigma_{\theta} = (1 - \lambda_{e})\sigma_{0} , U_{R}^{e} = \lambda_{e}U_{R(\max)}$$
(2-9)

而彈塑性範圍內之塑性階段 $(\lambda_e \leq \lambda \leq 1)$ 時,岩體應力滿足平衡方程式

$$\frac{d\sigma_R}{dr} + \frac{\sigma_R - \sigma_\theta}{r} = 0 \tag{2-10}$$

且同時滿足 Mohr-Coulomb 破壞準則 $\sigma_1 = K_p \sigma_3 + \sigma_c$ ,此時隧道之塑性半徑為:

$$R_{p} = R \left[ \frac{2\lambda_{e}}{\left(K_{p}+1\right)\lambda_{e}-\left(K_{p}-1\right)\lambda} \right]^{\frac{1}{K_{p}-1}}$$
(2-11)

$$\sigma_{\theta} = \sigma_{R} \mathbf{K}_{p} + \sigma_{c} \tag{2-12}$$

彈塑性範圍內之徑向位移量為:

$$U_{R} = \lambda_{e} U_{R(\max)} \left(\frac{R_{p}}{r}\right)^{K+1}$$
(2-13)

式中, $\lambda_e$ 為彈性極限之圍束損失,當 $\lambda < \lambda_e$ 時,岩體尚處於彈性範圍,但 $\lambda \ge \lambda_e$ 時,岩體則進入塑性範圍, $R_p$ 為塑性半徑, $\sigma_e$ 為岩體單壓強度, $K_p$ 為被動吐壓力係數。

Carranza-Torres 和 Fairhurst (1999) 定義地盤反應曲線 (GRC) 如圖 2-3, 即減少隧道內之內部支撐壓力 *pi*與增加壁面之徑向位移 *u<sub>R</sub>*之關係,且採用符合 Hoek-Brown 破壞準則之觀點:

$$P_{i} = \frac{p_{i}}{m_{b}\sigma_{ci}} + \frac{s}{m_{b}^{2}}$$
(2-14)

$$S_o = \frac{\sigma_o}{m_b \sigma_{ci}} + \frac{s}{m_b^2} \tag{2-15}$$

式中,p<sub>i</sub>為內部之稱應力;S<sub>o</sub>為現地量測應力。 在彈性部份,其應力、位移與距離開挖面之距離 r 關係式如下:

$$\sigma_{R} = \sigma_{0} - (\sigma_{0} - p_{i}) \left(\frac{b}{r}\right)^{k+1}$$
(2-16)

$$\sigma_{\theta} = \sigma_0 + \frac{1}{k} (\sigma_0 - p_i) \left(\frac{b}{r}\right)^{k+1}$$
(2-17)

$$U_{R}^{e} = \frac{u_{R}^{e}}{b} \frac{2kG}{\sigma_{0}}$$
(2-18)

另外,如圖 2-4 中之曲線段 OPQ,由O點(內部壓力 p<sub>i</sub>=σ<sub>0</sub>初始應力)開始 延伸至 Q點(p<sub>i</sub>=0)。而 P點定義為臨界點(彈性之極限點),其所對應之內 部壓力為 p<sub>i</sub>\*。

量測的極限壓力 
$$p_i^* = \frac{1}{16} \left[ 1 - \sqrt{1 + 16S_o} \right]$$
 (2-19)

實際的極限壓力 
$$p_i^* = \left[ P_i^{cr} - \frac{s}{m_b^2} \right] m_b \sigma_{ci}$$
 (2-20)

若內部支撐壓力 pi>pi\*,則產生塑性半徑ξ。

$$\sigma_{R} = \sigma_{0} - \left(\sigma_{0} - \sigma_{R}^{*}\right) \left(\frac{b\xi}{r}\right)^{k+1}$$
(2-21)

$$\sigma_{R} = \sigma_{0} + \frac{1}{k} \left( \sigma_{0} - \sigma_{R}^{*} \right) \left( \frac{b\xi}{r} \right)^{k+1}$$
(2-22)

$$U_{R}^{P} = \frac{u_{R}^{P}}{b} \frac{2kG}{\sigma_{0} - P_{I}^{*}}$$
(2-23)

#### 2.2.3 支撑反力曲線

支撑反力曲線是為支撐構件應力與位移之相關曲線,目前施工常用之支撐 構件有噴凝土、鋼支保、岩栓...等,隨著選用之支撐構件不同,所能提供的支 撑勁度也不同。支撐構件之支撐勁度愈大,所能提供之支撐應力也愈多(如圖 2-5),進而愈能有效的控制隧道之徑向位移量多寡,但欲提供較大的支撐勁度, 就需架設與施作更多的支撐構件,相對的成本也大幅的提升,如圖 2-6 所示。關 於支撐構件之應力與使用之勁度方法如下:

(一) 單一支撐系統

支撐架設主要的目的是為了在隧道開挖後,防止隧道變形過大引致於產生 崩塌,應在適當時機施作噴凝土、岩栓、鋼支保等支撐構件,以承受岩壓並穩 定岩盤。

(1) 噴凝土:

在 1980 年 Hoek and Brown 提出噴凝土、岩栓及鋼支保的計算方程式,其基本假設隧道斷面為圓形、現地應力為均向且支撑應力均勻作用於隧道壁上,而 其計算方程式如下:

(a) 支撐勁度之計算

當隧道半徑與噴凝土厚度之比大於 10 時(r/t<sub>c</sub> >10),可使用下列公式計 算支撐勁度之大小,

$$K_{c} = \frac{E_{c} \left[ R^{2} - (R - t_{c})^{2} \right]}{(1 + v_{c}) \left[ (1 - 2v_{c}) R^{2} + (R - t_{c})^{2} \right]}$$
(2-24)

當隧道半徑與噴凝土厚度之比小於 10 時 (r/t<sub>c</sub> ≦10),則可使用下列公式 計算支撐勁度,

$$K_{c} = \frac{E_{c}}{1 - v^{2}} \frac{t_{c}}{R}$$
 (2-25)

式中,Ec=噴凝土之彈性模數

R=隧道半徑

Vc=噴凝土之波松比

(b) 最大支撐壓力之計算

$$P_{s(\max)} = \frac{1}{2} \sigma_{c} \left[ 1 - \frac{\left(R - t_{c}\right)^{2}}{R^{2}} \right]$$
(2-26)

式中, oc=噴凝土之單軸壓縮強度

$$P_{s(\max)}$$
=噴凝土之最大支撐壓力

(2) 岩栓:

Hoek and Brown (1980)提出非灌浆岩栓之公式,其計算公式如下:

(a) 支撐勁度之計算:

$$\frac{1}{K_{\text{tiple}}} = \frac{S_c S_l}{r_i} \left[ \frac{1}{E_b A} + Q \right]$$
(2-27)

式中,Sc=岩栓環向間距

S1=岩栓縱向間距

r<sub>i</sub>=隧道半徑

*E*<sub>b</sub>=岩栓之彈性模數

Q=由下列公式求得

$$Q = \frac{(u_2 - u_{eb2}) - (u_1 - u_{eb1})}{T_2 - T_1}$$

(b) 支撑應力之計算

$$P_{s(\max)} = \frac{T_{bf}}{S_c S_l} \tag{2-28}$$

式中,Tbf= 岩栓拉拔試驗之極限荷重

P<sub>s(max)</sub>=岩栓之最大支撑應力

(二) 複合支撑系統

隧道的複合支撐系統施作順序為開挖後立即施做第一層 5cm 厚之噴凝土以 控制岩體變形,並使開挖面變的平滑,接著架設鋼支保及鋪設鋼絲網後再施行 第二層噴凝土;噴凝土完成之後,即開始鑽孔,後於孔內灌漿,並安裝岩栓加 以鎖定。

Oreste(2003)提出計算複合式支撐系統時(如圖 2-7 所示),假設為平行 之彈簧且勁度以疊加的方式進行評估計算。

$$k_{tot} = \sum_{i} k_i \tag{2-29}$$

 $k_{tot}$ 為各支撐系統勁度加總之合, $k_i$ 為單一支撐系統之勁度。

若支撐系統未達彈性極限(*u*<sub>el,i</sub>),則當載重 *P*<sub>i</sub>作用於支撐,其徑向半徑位 移量(*u*-*u*<sub>in</sub>)與勁度 *k*<sub>i</sub>間的關係式如下:

$$p_i = k_i \cdot (u - u_{in}) \tag{2-30}$$

當位移 u 逐漸增加,並大於彈性極限時,則勁度變為零。

$$k_{tot} = \sum_{i} \bar{k}_{i} \tag{2-31}$$

即當 $u < u_{el,i}$ 時, $\bar{k}_i = k_i$ ;當 $u > u_{el,i}$ 時, $\bar{k}_i = 0$ 。

Hoek and Brown (1980) 提出單一支撐結構可由彈性勁度累加而得,其公式 如下表示:

$$K_{s} = K_{s1} + K_{s2} \tag{2-32}$$

$$\begin{split} & \sqcup u_{\max_{1}} = \frac{P_{S(\max)_{1}}}{K_{S_{1}}} n u_{\max_{2}} = \frac{P_{S(\max)_{2}}}{K_{S_{2}}} 中, 用最小位移量來做設計會相對比較保守。\\ & 式中, K_{S_{1}} 、 K_{S_{2}} 分別為第一支撐構件與第二支撐構件之勁度; P_{S(\max)} 為最大支撐\\ & 壓力; u_{\max} 為最大位移量。 \end{split}$$

假設此複合式支撑系統為同時安裝,則合併系統的有效支撑區線公式為:

$$u_i = u_{io} + \frac{P_i r_i}{K_s} \tag{2-33}$$

式中,uio 為隧道安裝支撐前的位移量。

計算複合支撐系統之有效支撐區線流程: a.先個別算出第一與第二支撐系統之最大位移量

$$u_{\max_{i}} = \frac{P_{S(\max_{i})_{i}}r_{i}}{K_{S_{i}}}$$
(2-34)

$$u_{\max_{2}} = \frac{P_{S(\max_{2})}r_{i}}{K_{S_{2}}}$$
(2-35)

b.由兩支撐系統勁度可累加而得

$$u_{12} = \frac{r_i \times P_i}{\left(K_{s_1} + K_{s_2}\right)}$$
(2-36)

c.判別,當
$$u_{12} < u_{\max_1} < u_{\max_2}$$
,則 $\frac{u_i}{r_i} = \frac{u_{io}}{r_i} + \frac{P_i}{\left(K_{S_1} + K_{S_2}\right)}$  (2-37)

當 
$$u_{12} > u_{\max_1} < u_{\max_2}$$
 ,則  $P_{S(\max_1)_2} = \frac{u_{\max_1} \times (K_{\varsigma} + K_{\varsigma})}{r_i}$  (2-38)

當 
$$u_{12} > u_{\max_2} < u_{\max_1}$$
 ,則  $P_{S(\max_2)} = \frac{u_{\max_2} \times (K_{S_1} + K_{S_2})}{r_i}$  (2-39)

若為 $u_{12} < u_{max_1} < u_{max_2}$ 情況時,代表支撐系統仍在彈性範圍內,若為 $u_{12} > u_{max_1} < u_{max_2}$ 、  $u_{12} > u_{max_3} < u_{max_3}$ 情況,則表示複合支撐構件已達塑性狀態。

#### 2.2.4 岩體開挖與結構互制之行為

李煜舲(2003)考量隧道開挖前進面與支撐結構間之無支撐距離 (unsupported span, d),利用地盤反應曲線與支撐反力曲線間之關係作為隧道 支撐設計方法時,其相對應之圍束損失為λd;當地盤反應曲線與支撐反力曲線 交會於一點時,表示岩體與支撐結構間之應力互制已達一新平衡狀態,此點即 為平衡點(Equilibrium Point, EP)如圖2-1所示。當支撐應力為支撐構件所能 承受,則隧道之開挖安全無虞;反之,則將會危害到隧道開挖前進之安危。若 考慮彈性岩體時,地盤反應曲線與單一支撐結構勁度時,其互制方程式可表示 如下:

地盘反應曲線:

$$\sigma_R + 2G\frac{U_R}{R} - \sigma_v = 0 \tag{2-40}$$

支撑反力曲線:

$$\sigma_R - K_n \frac{U_R^s - U_R^d}{R} = 0 \tag{2-41}$$

式中,Kn為支撐結構總勁度。

由上述方程式 2-40 與 2-41 兩式,可求得平衡點之支撐結構應力 Ps 與徑向位移量 Us :

$$P_s = \frac{K_n}{2G + K_n} (1 - \lambda_d) \sigma_v \tag{2-42}$$

$$\frac{U_R^s}{R} = \frac{2G + \lambda_d K_n}{2G + K_n} \left(\frac{\sigma_v}{2G}\right)$$
(2-43)

若考慮支撐架設前之無支撐距離 d,所對應的圍束損失為λ<sub>d</sub>,此時隧道之徑 向位移量為:

$$\frac{U_R^d}{R} = \lambda_d \, \frac{\sigma_v}{2G} \tag{2-44}$$

由以上結果可知,隧道徑向位移量和支撐構件所受應力與岩體剪力模數、 支撐構件勁度、無支撐時之位移量、隧道幾何斷面和隧道開挖前進效應等影響 有關。

## 2.3 隧道開挖之前進效應

Panet、Gaudin 和 Sulem (1987)利用三向度有限元素法模擬隧道開挖變形的增加,得知岩體的變形係由兩個因素,(1)隧道開挖面之前進與(2)岩體依時性之力學行為。

假設在彈性介質無支撐圓形隧道中,而在距離開挖前進面 x 處之變形量 C (x) 為

$$C(x) = C_{\infty} \left[ 1 - \exp\left(-\frac{x}{X}\right) \right]$$
(2-45)

其中,C∞為不受隧道開挖前進影響之總彈塑性位移量。X為曲線參數:

$$X = \frac{1 - \lambda_0}{\left(\frac{d\lambda}{dx}\right)_{x=0}}$$
(2-46)

X 其實代表著隧道後方的某段距離, $\lambda$ 代表隧道位移量與最大位移量之比值, $\lambda_0$ 為前進開挖面上位移量與最終位移量之比。

而於無黏性(non-viscous)地層中之無支撐隧道,收斂變形的依時行為僅與 開挖速率 Va 有關,如下所示:

$$C = C_{\infty} \left[ 1 - \exp\left(-\frac{t}{Ta}\right) \right]$$
 (2-47)

式中,
$$Ta = \frac{X}{Va}$$
 (2-48)

並針對彈塑性介質中之無支撐圓形隧道進行模擬分析,提出修正式,當考 慮彈塑性行為時建議如下:

$$C(x) = C_{\infty} \left[ 1 - \left( \frac{X}{x - X} \right)^2 \right]$$
(2-49)

其中,X=a×R<sub>n</sub>,X為相對 R<sub>p</sub>的距離;R<sub>p</sub>為塑性半徑範圍;a為常數,約為 0.84。

未開挖之部分岩體可提供已開挖部分些許的支撑作用,此支撑作用並不足 以支撑隧道開挖後之應力釋放,而是在已開挖的隧道壁體上有類似的支撑作 用,此支撐力會隨著開挖面的前進而逐漸減小,可表為下式:

$$\sigma_{\rm R} = (1 + \lambda)\sigma_{\rm v} \tag{2-50}$$

式中之 $\lambda = \frac{U_R 2G}{R\sigma_v}$ 。其中, $\sigma_R$ 為徑向位移量,G為剪力模數,R為隧道半徑, $\sigma_v$ 為初始應力。

Unlu(2003)等人,利用三維有限差分程式 Flac3D 模擬隧道開挖前進效應, 結果指出位移多發生於開挖面附近並且受到開挖面附近岩體波松比(Poisson's ratio)之影響。而在隧道開挖前進面之前就會產生大約 20~30%之徑向位移量(相 較於最終位移量)。

Karakus (2003) 等人,利用有限元素法分析三種開挖順序形式(1)兩邊側 壁開挖、(2) 單邊側壁開挖及(3) 頂拱先開挖;由結果可知全斷面開挖與二 階開挖時若位於軟弱岩層中皆需盡早完成支撐架設,延遲支撐將會造成過大的 位移與沉陷;且可知地表沉陷量與假設彈性模數(Hypothetical Modulus of Elasticity, HME) 有關,愈高的 HME 值所產生的地表沉陷值愈少。

## 2.4 岩體開挖之破壞模式

施國欽(2004)提到,隧道一旦開挖後,因其周圍岩體應力之重新分佈與 改變,常有地質災害發生如抽心、擠壓、岩爆及邊坡滑動等等,而隧道圍岩之 破壞機制分為塑性變形、鬆脫破壞、岩塊崩落、彎曲折斷破壞及脆性破壞(岩爆)等五種,以下則分別簡述之:

- (1)塑性變形:軟岩或含泥質破碎岩體,其因岩體強度低、自立性差,當隧道 開挖解壓後,其周圍岩體應力重新分佈,導致圍岩產生塑性變形,造成隧 道之淨空不足或損壞,一般稱此種破壞為擠壓破壞。
- (2)鬆脫破壞:隧道在極破碎岩體且淺覆蓋的岩層中開挖,因岩體自持強度低,隧道開挖後,引起週圍岩體應力會重新分佈,造成圍岩應力大於岩體強度時,隧道之周圍岩體因本身自持力不足,破碎岩體極容易因鬆脫潰散,導致在洞頂的岩塊直接崩落至洞內,而側壁岩體也會坍滑至洞內。
- (3)岩塊崩落:當岩體被弱面及開挖面切割成有限之大小,因重力作用會造成 岩塊之崩落翻倒或墜落。
- (4)彎曲折斷破壞:岩體中如果有一組極發達的弱面,尤其夾有軟岩互層時, 當隧道開挖後,常發生彎曲折斷破壞;此狀況乃因弱面間的剪力強度低, 薄層岩體抗彎強度也不高,在隧道開挖後,其周圍岩體因解壓又受到重 力與圍岩應力的雙重影響,導致薄狀岩層向洞內位移彎曲變形,當影響 因子大時,甚至會彎曲張裂折斷類似挫屈破壞,以致岩塊墜落或翻落掉 到洞內。
- (5) 脆性破壞:高強度且完整之岩體,當隧道開挖後,其四周應力會重新分佈, 若切向應力超過岩體強度時,加上側向應力之解除,圍岩將會產生劇烈的 脆性爆炸損壞,此即岩爆;一般高強度且具高現地應力的岩體中,遇到開 挖解壓時極可能發生岩爆。

#### 2.5 開挖岩體之潛變行為

岩體潛變行為的現象,經由各種實驗與現地資料可得出,此現象主要是受 到了大地應力影響而使得岩體開挖時,產生了潛變行為,而潛變的速率亦隨著 大地應力的強弱而有所快慢;其次環境的因素也會影響其速率變化,如溫度、 充足的水分、濕度等。

或

由現地的收斂量測資料可知,潛變速率(creep-rates)隨著時間與開挖深度 的增加而減小,此外,隧道開挖中心的潛變速率會大於開挖邊緣的速率。隧道 周圍岩體所產生的此種潛變行為不僅為岩體流變特性(rheological property)下 的產物,亦是殘存應力所造成的結果。所以隧道徑向的位移量與依時潛變方程 式可表示如下:

$$U_r(t) = U_r(t \to 0) F_c(t)$$
 (2-51)

$$U_r(t) = U_r(t \to \infty) F_c(t)$$
(2-52)

其中, $U_r(t)$ 表示在時間t時,隧道壁面位移量; $U_r(t \rightarrow 0)$ 與 $U_r(t \rightarrow \infty)$ 則分別為最 初與最終位移; $F_c(t)$ 為潛變方程式。因為隧道開挖過程,原本開挖部分的原始 支撐應力減少,導致隧道收斂位移量增大,其距離隧道中心x處之徑向位移量 可表達如下:

$$U_r(x) = F(x)U_r(x \to \infty) \tag{2-53}$$

 $U_r(x \to \infty)$ 表示從隧道面到無窮遠處之徑向位移量; F(x)為與 x 有關之標準位移 方程式。

當考慮岩體的黏彈性行為時,其地盤反應曲線將會受到開挖順序與架設支 撐時機互制的影響。

#### 2.6 隧道斷面測量技術

隧道斷面測量主要包含空間位置以及方向兩種資料,這些資料做為下列應用所需(Clark, T. A., 1996):

(一) 估計隧道淨空

- (二) 檢視定線之方向
- (三) 監測位移變化
- (四) 編輯竣工圖

(五) 測定開挖襯砌之體積

(六) 指出結構是否受到破壞

- (七) 收集作為整修之資訊
- (八) 檢核隧道堀進是否正確
- (九) 監控工程進展

隧道斷面收方為根據隧道斷面測量成果,進行斷面之土方計算。然而有許 多不同的儀器與不同的方法可以測量隧道斷面,概略可分為接觸式與非接觸式 兩大類,以下對於較常見的儀器及方法依其發展狀況做一簡介。

#### 2.6.1 接觸式(Contact methods)

顧名思義,接觸式測量方法其測量儀器需要與被測體有接觸,在斷面測量中,主要是以探針、量角器以及伸張計構成,由探針接觸隧道壁經由量角器紀錄測點之相對角度並由伸張計讀取距離,由人工手繪斷面圖(Clark, 1996)。

#### 2.6.2 非接觸式(None-contact methods)

非接觸式測量方法分為兩類,手動式與全自動式。手動式:即在測量程序 中必須依靠人員的操作;全自動式:只需對儀器做有限的管理與監督,對測點 之觀測以及資料處理與輸出皆為自動執行。以下分別對手動式與全自動式儀器 做介紹。

(一) 手動式

(1)經緯儀(theodolite)、電磁波測距(Electro-magnetic Distance measurement, EDM) 或電子測距儀(electronic tacheometer):一般而言,經緯儀負責測量角度,電磁波 測距(EDM)用以測量距離,然而為了因應儀器之功能性,多將測角與測距功能結 合在一起發展,如電子測距儀或是全測站儀。測量所得之點皆以 X、Y、Z 座標 表示,其測角之精度可達1秒,測距精度可到正負1至10mm。主要特性為在可 在現場執行資料之收集與處理,潛在精度高。其缺點則是若要達到理想觀測狀 況而逐點測量,將會花費大量的時間,故多取具代表性之測點做測量(Clark, 1996)。

(2) 光學測距(optical tacheometer):目前光學測距已被取代,但是其功能可以做為斷面測量,精度依不同測量方法介於1:500~1:1000。主要特性為便宜、使用快速且堅固,可用於具危險性之環境。缺點為精度有限,勞力密集且由人工紀錄, 被測體需要一定的照明(Clarke, & Lindsey, 1992)。

(3) 雷射測距(laser tacheometer):主要特性為便宜且操作簡單,應用於不同的用途皆能有良好的精度。缺點為人工操作且須手動紀錄,必須遵守雷射安全規範(Clark, 1996)。

(4)攝影測量(photogrammetry):由於數值資訊的發展,攝影測量可由單相攝影 或是雙相攝影達成快速且非接觸式之影像數值資料紀錄。運用非量測型照像機 或是量測型照像機於現地快速取得照片,再由實驗室做後置處理及分析。攝影 測量之成果可提供一完整之檔案資料庫,在任何時間皆可調出檔案視需要進行 再次的測量,精度高且相片資料取得快速。其缺點為需要有專業的人員進行資 料分析且需要昂貴之分析設備;在現場必須要有均匀的照明,而在建立測量標 點時多需要昂貴之量測型照相機(Clark, 1996)。

(5) 光切法測量(light sectioning):近年來在攝影測量中最重要的發展便是光切法 測量,光切法測量是以平面光投射至待測物體,受到投射的部位具有明顯之亮 帶與暗帶,可顯示出待測物體之斷面形狀,利用各種形式的照相機做攝影,經 過分析即可得知斷面之數值資料。

運用於隧道斷面之測量時,運用雷射定位確保光源保持在同一值線上,由比例 尺訂出比例;光源經由電鍍鋁盤投射至斷面上,斷面之輪廓經由照相機攝影曝 光至底片上。精度可高達到 30mm,具有不錯的測量速度,每小時可得 25-40 張 斷面資料,後續之測量可以了解隧道之位移狀況。其缺點在於需要專業人員操 作,在使用雷射線測量法時,其曝光時間較長(Clarke, & Lindsey, 1992)。

(6) 三維雷射掃描:主要原理分為三種,計算飛行時間法(time-of-flight)是利用計算雷射撞擊待測點反射回感應器之往返飛行時間求得掃描頭至待測點之距離觀測量,據此計算待測點之座標位置。雙相機三角量測法(triangulation

principle-double camera solution),利用雷射光撞擊於待測點上時,瞬間由兩側之 相機攝影該光點形成三角關係,而兩相機位置為固定基線長度,藉以計算待測 點之座標位置。單相機三角量測法(triangulation principle-single camera solution): 利用雷射光撞擊於待測點上時,瞬間由另一側之相機攝影該光點形成三角關 係,而雷射頭與相機位置為固定基線長度,藉以計算待測點之座標位置。主要 特性為廣視野掃描,高精度(最高可達 0.1mm),高密度的蒐集三維座標級影 像資料。方便攜帶、可遙控及機動地定點操作,室內外皆宜。對環境適應性強, 直接蒐集目標的結構及表面屬性(張裕民、吳瑞一、洪本善、高書屏,2003)。 (二) 全自動式

(1)免反射稜鏡電子測距儀(reflectorless EDM):一般的電子測距儀受限於反射稜鏡,因此無法測量斷面上所有的點;而免稜鏡電子測距儀經由廠商的改良,增加自動化測量的設備並視需要可擴充,如伺服馬達驅動定位裝置可依照設定的角度自動旋轉進行測量,以及附帶後級處理系統,自動收集資料並做後處理,達到快速完成斷面測量,且能測得以往受限於反射稜鏡所無法測量到的斷面點。操作簡單,測量速度中等且全自動紀錄資料,非常適合隧道斷面測量。主要的缺點為設備昂貴,且使用在隧道之外的場合其精度並不高(Collett, 2005)。
(2)自動化經緯儀(automated theodolites):將經緯儀之望遠鏡頭改良為CCD(Charge Coupled Device,感光耦合元件)鏡頭,加上佈置一系列可識別之準標,經由設定,經緯儀可以由準標至準標自動觀測。優點為精度高且能夠自動運作,缺點為測量速度相對較慢,需要設定,昂貴且不適合用於隧道測量。
(3)光學三角測量(Optical triangulation):將光學測距儀加以改良,使用 CCD線性感應器,經由這樣的電眼系統,使得觀測速度可達到每秒 100 點以上,精度可達到+/-2mm,超過隧道測量所要求之精度。測量速度快,可自動紀錄,堅固

但是輕便,必須符合雷射使用安全規範(Clarke, & Lindsey, 1990)。 (4) 軌道測量車(Railway gauging train):於軌道載具上架設一定數量之相機以及 儀器,一邊移動一邊測量,具有一定的照明。主要用途為檢查隧道淨空以及軌

道週邊之建築界線是否符合標準,測量速度極快但只適用於特殊狀況而且十分 昂貴。針對以上所提及測量技術,其相對精度與可測量範圍。

#### 2.7 隧道斷面測量原理

測量之意義為測定地球表面上及其附近各點間之相關位置,故測量之基本 原理在於應用各種方法以求得「點」之關係位置,通常皆由地面上已設立且經 確定相關位置之點(稱之為基點 base station)測定出新點之位置。此等新點復可作 為定出其他新點之基點,如此不僅可求得欲測各點之相關位置,且可標示於圖 上,由圖上各點連成線面,並繪成所需之圖籍。以下將各種定出新點之方法歸 納為七種,分述如下(葉怡成,1999):

(一) 導線法(traversing)

若 A、B 兩點為基點,求新點 C 之位置,可測量角 CAB 之角度及量 AC 之距離,定出 C 點,此法即為導線測量中所用之法。

(二) 偏角法(method of deflection angle)

以A、B兩點為基點,C為新點,惟AC點間之距離無法量時,可測角CAB 之角度在量BC距離亦可定出C點之位置,但此法可能產生C與C'兩種結果, 應參考實地情形,選擇適用之一種,此法因有此顧慮,於測量上較少應用,僅 見於細部測量及曲線測設之偏角法。

(三) 支距法(offset method)

以A、B兩點為基點,欲求新點C之位置,可由C點做垂直於AB線之直線CD並量其距離,稱為支距(Offset),再量AD或BD之距離,即可定出C點之位置。此法常用於細部測量。

(四) 前方交會法(forward intersection)

以A、B兩點為基點,C為新點,亦可測量角CAB角CBA兩角度,而定得 C點之位置。倘B點或A點不能架設儀器,則可測量角CAB、角ACB、角CBA 或角BCA等組角度,求得C點位置。此法即為三角測量中所使用之法。 (五)後方交會法(resection)
以 A、B、D 三點為基點,C 為新點,可測α、β 兩角。即可求得 C 點。此 法應用於三角測量及平板儀測量之後方交會法。

(六) 距離交會法(Distance Intersection)

以A、B 兩點為基點,C 為新點,欲求C與A、B 兩點於平面上之相關位置, 可測量 AC 與 BC 兩段距離,求得 AC 與 BC 之交點,即為C 點之位置。此法即 為三邊測量中所用之法。

(七) 直線交會法(linear intersection)

以 A、B、E、F 四點為基點, 欲求新點 C(即交點)之位置, 可以 AE 及 BF 線連結之, 定出點之位置。此法常用於定樁測量及工程測量之直線焦點測設。

測量之基本資料為水平距離、垂直角、水平角、斜距及高程差,其原理是 因時、因地使用不同之測量方法測量基本資料,以下章節僅對就本研究使用之 前方交會法、後方交會法及綜合前述測量原理之綜合式後方交會法原理理論進 行介紹。

#### 2.7.1 前方交會法

經緯儀先後在A、B測站上照準P點測得α,β角,其交角γ=180°-(α+β)。 惟一般規定 角不可小於30°,或大於120°,故交會點P應與已知點作適當配合, 交會點P之座標計算法如下(管晏如,1990):

(一) 直接按三角形計算:

(1)  $\overline{AB}$ 、  $\overline{AP}$  及  $\overline{BP}$  的方位角計算:  $\overline{AB}$  方位角 $\phi_{AB}$ :

 $\phi_{AB} = \tan^{-1} \frac{x_B - x_A}{y_B - y_A}$ (2-1)

 $\overline{AP}$  及  $\overline{BP}$  方位角 $\phi_{AP}$ 、  $\phi_{BP}$ :

$$\phi_{AP} = \phi_{AB} - \alpha$$

$$\phi_{BP} = \phi_{AB} + 180^{\circ} + \beta$$
(2-2)

(2) 計算 $\overline{AB}$ 、 $\overline{AP}$  及 $\overline{BP}$  各邊的邊長:

$$\overline{AB} = \frac{x_B - x_A}{\sin_{\phi_{AB}}} = \frac{y_B - y_A}{\cos_{\phi_{AB}}}$$
(2-3)  
$$\overline{AP} = \frac{\overline{AB}}{\sin(\alpha + \beta)} \sin \beta$$
$$\overline{BP} = \frac{\overline{AB}}{\sin(\alpha + \beta)} \sin \alpha$$
$$(2-4)$$

(3) 計算測點P之座標:

$$x_{p} = x_{A} + \overline{AP} \sin \phi_{AP} = x_{B} + \overline{BP} \sin \phi_{BP}$$

$$y_{p} = y_{A} + \overline{AP} \cos \phi_{AP} = y_{B} + \overline{BP} \cos \phi_{BP}$$
(2-5)

(二) 角度法:

在已知點 A、B 測站上,觀測得 、 角,可按下列所推演的公式,直接求 得交會點 P 的座標。

由(2-5)知

$$x_{P} = x_{A} + \overline{AP} \sin \phi_{AP} = x_{A} + \frac{AB \sin \beta}{\sin(\alpha + \beta)} \times \sin(\phi_{AB} - \alpha)$$
(2-6)

$$x_{P} = y_{A} + \overline{AP}\cos\phi_{AP} = y_{A} + \frac{AB\sin\beta}{\sin(\alpha + \beta)} \times \cos(\phi_{AB} - \alpha)$$
(2-7)

 $\sin(\phi_{AB}-\alpha)=\sin\phi_{AB}\cos\alpha-\cos\phi_{AB}\sin\alpha$ 

$$=\frac{x_B - x_A}{\overline{AB}}\cos\alpha - \frac{y_B - y_A}{\overline{AB}}\sin\alpha$$
(2-8)  
(2-8) 式代入(2-6) 式得:

$$x_{P} = x_{A} + \frac{\sin\beta\cos\alpha}{\sin(\alpha+\beta)}(x_{B} - x_{A}) - \frac{\sin\alpha\cos\beta}{\sin(\alpha+\beta)}(y_{B} - y_{A})$$
$$= x_{A} + \frac{\cot\alpha}{\cot\alpha+\cot\beta}(x_{B} - x_{A}) - \frac{1}{\cot\alpha+\cot\beta}(y_{B} - y_{A})$$
$$x_{P} = \frac{(x_{B} - x_{A}) + x_{A}\cot\beta + x_{B}\cot\alpha}{\cot\alpha+\cot\beta}$$
(2-9)

同理可推演得:

$$Y_{P} = \frac{(Y_{B} - Y_{A}) + Y_{A} \cot \beta + Y_{B} \cot \alpha}{\cot \alpha + \cot \beta}$$
(2-10)

#### 2.7.2 後方交會法

後方交會法又稱三點法,經緯儀整置在求點 P。照準三已知點 A、M、B 觀 測其間夾角α、β,按幾何圖形推算ω、φ角及γ角再由三已知點座標,按前方交會 計算法計算所求點 P 的座標值。但所求點 P 的觀測位置,不可與三已知點位於 同一圓周上,否則計算結果不準確,或不能解算(管晏如,1990)。ω、φ角的計算 公式為:

$$\omega + \phi + \alpha + \beta + \gamma = 360^{\circ}$$
  

$$\therefore \phi = 360^{\circ} - (\alpha + \beta + \gamma) - \omega \qquad (2-11)$$
  
假設こ知H  

$$H = 360^{\circ} - (\alpha + \beta + \gamma)$$
  

$$\therefore \phi = H - \omega \qquad (2-12)$$

且

$$\frac{a\sin\beta}{b\sin\alpha} = \frac{\sin\phi}{\sin\omega} = K$$
(2-13)
$$K = \frac{\sin\phi}{\sin\omega} = \frac{\sin(H-\omega)}{\sin\omega} = \frac{\sin H\cos\omega - \cos H\sin\omega}{\sin\omega}$$

$$= \sin H \cot\omega - \cos H$$
(2-14)

則

$$\cot \omega = \frac{K + \cos H}{\sin H} \tag{2-15}$$

求得 角後,則由(2-11)式可計算得 角。後方交會點 P 的座標,可按(2-6)式及 (2-7)式計算而得。

#### 2.7.3 綜合式後方交會法

當後方交會法測站角度限制介於 30°~120 時°,容易產生誤差。為兼顧架設

儀器站多種方法選擇,發展「綜合式後方交會法」,當測站與稜鏡站皆為已知 點時,於後置處理虛擬另一位觀測點,距離設定為0.1 mm,將方向偏差量控制 在半徑 0.1mm 以內,若條件符合(角度介於 30°~120°)則使用後方交會法(許榮 達,2004)。



圖 2-1 隧道開挖時岩體收斂與支撐圍束互制示意圖 (李煜舲, 2003)



圖 2-3 地盤反應曲線與支撐反力曲線之互制關係圖 (Hoek and Brown, 1980)





圖 2-4 地盤反應曲線與支撐反力曲線之互制關係圖 (Carranza-Torres and Fairhurst, 1999)





圖 2-6 不同支撑結構所提供的支撐壓力與位移關係圖 (Carranza-Torres and Fairhurst, 2000)



圖 2-7 複合式支撐系統之勁度示意圖 (Oreste, 2003)



圖 2-8 隧道頂拱、側壁與仰拱之支撐應力與位移曲線圖 (Asef、Reddish and Llotd, 2000)

## 第三章 隧道開挖與支撐之力學行為模擬分析方法

## 3.1 前言

隧道工程屬於土木重大建設工程,並且在施工過程中常遭遇到不同的地質 問題。但若能利用數值分析方法模擬隧道開挖與支撐情況,進而從中找出隧道 開挖過程中易發生問題的地方,加以防範並且改進,這將會大幅提升隧道開挖 過程中的安全性。

隧道分析法乃用模擬隧道開挖及支撐系統之行為,作為分析模式,其方法 可分為數值模擬分析與解析解模擬分析。目前在常用的數值分析中,包含了有 限元素法(Finite Element Method, FEM)、有限差分法(Finite Difference Method, FDM)、邊界元素法(Boundary Element Method, BEM)、及不連續變形分析 法(Discontinuous Deformation Analysis, DDA)等,以上乃依據力學理論建立數 值模型,模擬隧道開挖與支撐之力學行為。在解析解方面,新外顯法(New Explicit Method, NEM)則為以收斂圍束法為理論基礎,將岩體開挖後之應力釋放,以 圍束損失之疊加方式將收歛情況分階計算,即可計算出每次疊加所產生之位移。

李煜舲(2003)提出新外顯法於岩體為彈性模式開挖隧道時,岩體收斂與 支撐圍束之互制示意圖(如圖 2-1),圖中可看出彈性時之地盤反應曲線其斜率 皆為 2G。但當岩體為彈性完全塑性模式時,無支撐之岩體將不同於彈性模式下 之收斂曲線(如圖 3-1 所示)。當岩體超過彈性極限時,地盤反應曲線將不再為 斜率 2G 之直線,直到支撐開始,由於支撐亦假設為彈性模式,所以支撐開始後 之地盤反應曲線將與彈性時之無支撐隧道之曲線平行(如圖 3-2)。

本研究模擬隧道開挖與支撐過程之分析方法,其數值分析採用有限元素分析法,並配合實驗室研發之有限元素法分析程式,以及應用新外顯法,加以分 析對照,其模擬方式與分析步驟將分別說明如下章節。

30

### 3.2 有限元素法分析

#### 3.2.1 有限元素原理介紹

對於有限元素法理論分析概念,為利用虛功原理(virtural works theory)將 固定空間之材料,如樑、柱、桿等元素做離散化(discretization),將欲分析之 材料依使用者需求離散成個別元素,再藉由各元素矩陣結合成整體結構矩陣, 進行運算求其未知量。一般可分為力法(force method)與位移法(displacement method)兩種方法,主要差別在於未知量及所求解之方程式不同。而一般工程 分析上,大多為已知荷重,為求其未知之位移量,則常採用位移法做分析計算。

#### 3.2.2 有限元素分析程式之處理程序介紹

使用本實驗室研發之有限元素分析模擬程式,進行隧道開挖與支撐模擬分析。關於本有限元素程式模擬分析時,主要包括三個部份: (1)前處理程序、 (2)主要計算分析程序以及(3)後處理程序。如圖 3-3 所示,其步驟分別敘述 如下:

(1) 前處理程序:

依據分析範圍及邊界設定,自動建立隧道開挖之網格,依照各模組參數需 求輸入參數,並參生一基本資料檔,其步驟如下:

- (a) 定義網格邊界範圍, 並製作四分之一隧道模型。
- (b) 自動產生元素
- (c) 將所須計算之節點編號
- (d)依照選擇之組成律模式數入其所需之參數值,並定義各模 組之群組編號(group)。
- (e)進入計算過程,於運算方法上採用初始應力法,所以在此 輸入初始應力、疊代數及容許精度。

(f) 輸入欲讀取之檔名。

(g) 輸入欲輸出之檔名。

#### (2) 主要計算分析程序:

(a) 讀取元素各群組之參數。

(b) 讀取各節點之座標值。

(c) 讀取各模組之組成律參數。

(d) 讀取各節點之自由度。

(e) 讀取施力狀況。

(f)依照所選擇之破壞準則、疊代數以及容許精度開始計算。

(g) 讀取初始應力。

(h) 輸出計算結果。

(3) 後處理程序:

依照計算分析程序所擷取出之檔案,可於後處理程序針對所選擇之群組或 各元素做(1)等值位移分佈圖、(2)等值應力分佈圖、(3)應力場分佈圖、 (4)位移場分佈圖、(5)塑性點表示及(6)位移變形分佈圖等表示,並依照 前述步驟,逐一完成有限元素模擬隧道開挖與支撐之計算與分析。

#### 3.2.3 有限元素程式模擬分析步驟

在前處理程序中,依照分析範圍及邊界設定,自動建立元素網格,且依照 所需研究參數之不同,可先行產生一基本資料檔(如表 3-1),其步驟說明如下:

(a) 定義分析模型之最大邊界範圍,  $(x_1=0, y_1=0) \rightarrow (x_2=100, y_2=100)$ 。

- (b)建立一等向均質之二維隧道模型,並產生網格。由於為深隧道開挖亦將此 模型之四周邊界束制,且設定初始位移值為零(如圖 3-4)。產生各元素 與節點之編號(如圖 3-5 與 3-6 所示)。
- (c)建立模型完成後,接著為準備計算階段,輸入檔案之主副檔名。在計算資料選擇及種類上為數入完全數據與靜力模式,此為計算用之數據。而計算

幾何問題上採用平面應變狀態,並選擇組成律為莫爾庫倫準則(無應變硬 化)後,開始依序輸入單位重、彈性模數、波松比、凝聚力、內摩擦角及 膨脹角。

(d)上述完成後,依序輸入荷載疊加次數(increment) λ=1、迭代數(iteration)
 100次、及容許精度(tolerance) 0.001。開啟所設定檔案之 data 檔,進行
 荷載疊加數之修正,及整體數據資料之檢查。

以上步驟完成後,即進入主要計算分析程序,經由輸入程式指令 cesar 後並 輸入所需計算之主副檔名,即開始進行計算過程,其計算執行步驟包括讀取元 素各群組元素參數、各節點之座標值、各模組之組成律參數、各節點之自由度 及施力狀態,並依照所設定之破壞準則、疊加數、迭代數及容許精度進行計算。 計算完成後可輸出一計算結果檔。

(一) 無支撐隧道開挖模擬步驟

使用有限元素分析法應用於隧道開挖之數值模擬方面,乃是將欲開挖區內 之元素移除,接下來在開挖面上施予反向節點力,最後使開挖面上之徑向應力 收歛至零。其開挖模擬步驟如下所述:

- (1)將基本資料檔複製於一新資料夾內,重新設定所需模擬之岩體參數,執行 cesar,計算整體結構未開挖之之初始應力狀態,其應力與位移狀態分佈 圖,如圖 3-7 和 3-8 所示。
- (2) 製作施於開挖面上之反向節點力設定檔(LAM)(如表 3-2)。
- (3)初始應力計算完成後,將開挖區之參數假設為零,以代表開挖,並於開挖 面上施加反向節點力(將 LAM 設定檔覆蓋原初始大地應力設定),修正 荷載疊加數(increment) λ=1、迭代數(iteration)100 次、及容許精度 (tolerance)0.001後,輸入執行指令 cesar 進入計算分析程序。
- (4)將開挖面上之節點力收歛至零,並計算開挖後整體元素結構之應力與位移 狀態分佈圖(如圖 3-9 與 3-10)。
- (5) 計算完成後,查取頂拱之節點號碼,並製作 las.dat 檔(如表 3-3),並於

程式中執行指令 las,可從計算結果檔中, 擷取所需點位之各階位移值及 應力值,依所輸出的檔案,由 Excel 繪製地盤反應曲線圖。

(二)有支撑隧道開挖與支撑架設之模擬步驟

- (1)將基本資料檔內欲開挖區之岩體參數設為零,以代表開挖完成。
- (2)修改程式內荷載疊加數(increment)為4,並輸入指令 cesar,開始執行計算。再輸入指令 las 可得隧道開挖無支撐時(λ<sub>d</sub>=0.4)之頂拱衛移值與應力值(如圖 3-11 與圖 3-12)。
- (3)完成開挖後,接著在襯砌區之群組輸入噴凝土襯砌參數,並將反向節點力 參數(LAM)值以POI之指令覆蓋,修改疊加數,並執行 cesar 指令以活 化噴凝土支撐(如表 3-4)。
- (4)接著將原本之反向節點力(LAM)替代指令POI,並將疊加數修改為6, 繼續完成支撐後之應力釋放,直接釋放至岩體與支撐互制平衡(λ=1.0)。
   再輸入指令las取得支撐開始後隧道頂拱位置之位移值與應力值(如圖3-13 與圖 3-14)。

由步驟2、4所輸出之位移與應力值,可匯入試算程式後擷取所需之數值, 即可繪製地盤反應曲線(如圖 3-15、圖 3-16 與圖 3-17)。

#### 3.3 新外顯法

#### 3.3.1 新外顯法之基本假設

「新外顯法」(New Explicit Method)是以收斂圍束法(Convergence Confinement Method)為基礎理論,並根據現地收斂量測資料,計算求得前期位移(無支撐距離d)時之圍束損失λ,採用疊加計算之方式以模擬隧道開挖時之前進效應,如此即可模擬隧道開挖時之岩體自持力收歛與支撐結構間之互制行為的分析方法。以下為外顯分析法之基本假設:

(1) 岩體材料為彈性完全塑性材料。

- (2) 噴凝土、鋼支保及岩栓等支撐構件為彈性完全塑性材料
- (3) 岩體力學行為不考慮時間效應。
- (4) 假設支撐結構系統架設位置距離隧道開挖面為無支撐距離。
- (5) 隧道開挖不考慮地下水之影響。

#### 3.3.2 新外顯法之分析處理程序

於新外顯法之分析過程中,所使用的參數包括:隧道開挖半徑、岩體單位 重、岩體波松比、凝聚力、內摩擦角以及支撐構件參數,經由迴歸計算獲得岩 體的彈性模數 E、架設支撐時之圍束損失比值λd 與支撐構件應力 Ps 值。最後, 利用圍束損失作疊加計算迴圈關係,如此可繪製出地盤反應曲線(GRC)、支 撐反力曲線(SRC)和互制曲線(IC)(李煜舲,2003)。其計算方法與分析步 驟說明如下:

- (1)採用岩體各項基本參數計算出其彈性模數、被動土壓力係數等相關參數, 並假設圍束損失λd值;
- (2) 由公式 $U_R^d = \lambda_d \frac{\sigma_v R}{2G}$ 計算出 $\sigma_R^d \to U_R^d$ 值;
- (3)由 2.2.2 節所提之噴凝土支撐勁度(公式 2-24)與岩栓支撐勁度(公式 2-27),計算支撐結構之總支撐勁度 K<sub>n</sub>。
- (4) 計算圍東損失比值之變化量為 $\Delta \lambda = \frac{1}{n} \left[ \frac{2G(1 \lambda_d)}{2G + K_n} \right];$
- (5)模擬隧道開挖前進效應作用下,岩體因開挖發生徑向應力釋放和位移收 斂,以及互制作用之支撐壓力產生。以應力釋放之疊加值n表示疊加迴圈 關係,因此可以累加求得下列關係

 $圍 
束 
損 
失 : \lambda = \lambda_a + \Delta \lambda$ 

地盤反應曲線: $U_{R}^{s}=U_{R}^{d}+n\Delta\lambda$ 和 $\sigma_{R}^{s}=\sigma_{R}^{d}+n\Delta\lambda$ 

支撐反力曲線:  $P_s = n\Delta\lambda\left(\frac{K_n}{2G}\right)$ 

- (6)重複步驟(5)之計算,最後求得平衡點之結構支撐壓力 Ps或岩體應力σ<sup>s</sup> 與徑向位移量 U<sup>s</sup><sub>p</sub>;
- (7) 繪製隧道前進開挖岩體收斂和結構支撐圍束之各類曲線,包含地盤反應曲線(GRC)、支撐反力曲線(SRC)、互制作用曲線(IC)等。

#### 3.3.3 新外顯法之模擬分析步驟

於新外顯法之分析過程中,可分為岩體為彈性與彈性完全塑性兩種情況。 其計算方法與分析步驟說明如下:

- (一) 無支撐隧道開挖模擬步驟:
- (A) 岩體為彈性模式:
- (1)將開挖開始至岩體平衡之應力釋放過程,等分為 10 個階段 ( $\lambda=0\rightarrow 1.0$ )。
- (2) 側向土壓力 K=1.0 時之結果可得知,每個釋放階段之徑向應力值為  $\sigma_{R} = (1-\lambda)\sigma_{v}$ ,且徑向位移值為  $U_{R} = \lambda \frac{\sigma_{v}R}{2G}$ 。
- (3)輸入岩體參數值,並計算所需之彈性模數G值、被動土壓力Kp值(如圖 3-18)。
- (4)當岩體為彈性範圍時(0≦λ≦λ<sub>e</sub>),由步驟2之徑向應力、位移公式可算出,岩體未開挖(λ=0)時,徑向應力值σ<sub>R</sub>=1.0、徑向位移值U<sub>R</sub>=0.0;岩 體受到開挖擾動應力隨之釋放(σ<sub>R</sub>→0),岩體之徑向位移亦隨著增加(U<sub>R</sub>→U<sub>R(max)</sub>)(如圖3-19所示)。
- (5)將所計算出之各階徑向位移對彈性最大位移正規化,並與徑向應力值,可 繪出彈性無支撐隧道開挖時之地盤反應曲線圖(如圖 3-20)。
- (B) 岩體為彈性完全塑性模式:
- (1)圖 3-21 輸入岩體參數,求出塑性半徑 Rp 與彈性極限之圍束損失λe,於支 撐假設處假設無支撐開挖距離λd 為 0.7,並可求得完成支撐時之徑向應力 值與位移值(如圖 3-22)。

(2)當岩體為塑性範圍時( $\lambda_e \leq \lambda \leq 1$ ),岩體滿足莫爾庫倫破壞準則 (Mohr-Coulomb Failure Criterion),此時在隧道開挖面上(r=R)之應力 與位移關係式可表示為

$$\sigma_{R} = \frac{\sigma_{v}}{K_{p} - 1} \left[ 2\lambda_{e} \left( \frac{R}{R_{p}} \right)^{K_{p} - 1} - \frac{\sigma_{c}}{\sigma_{v}} \right]$$
(3-1)

和

 $\sigma_{\theta} = \sigma_{R} \mathbf{K}_{p} + \sigma_{c} \tag{3-2}$ 

$$U_{R} = \lambda_{e} U_{R(\max)}^{e} \left(\frac{R_{p}}{R}\right)^{K+1}$$
(3-3)

且塑性破壞半徑 Rp為與彈性極限之圍束損失 Ae為

$$R_{p} = R \left[ \frac{2\lambda_{e}}{\left(K_{p}+1\right)\lambda_{e}-\left(K_{p}-1\right)\lambda} \right]^{\frac{1}{K_{p}-1}}$$
(3-4)

$$\lambda_e = \frac{1}{K_p + 1} \left[ K_p - 1 + \frac{\sigma_c}{\sigma_v} \right]$$
(3-5)

- (3)如圖 3-22 所示,經由以上式子,可計算出每階段徑向之位移值,即可各別 對最終位移值做正規化,並繪出隧道無支撐之地盤反應曲線圖(如圖 3-23)。
- (二)有支撐隧道開挖與支撐架設之模擬步驟:
- (A) 岩體為彈性模式:
- (1)假設無支撐距離之圍束損失λ<sub>d</sub>=0.4,依照彈性無支撐隧道開挖之順序依序 輸入岩體參數,並可計算出彈性極限之圍束損失λ<sub>e</sub>與塑性半徑 R<sub>p</sub>。輸入 噴凝土參數,並可由公式 2-23 計算出噴凝土勁度(K<sub>n</sub>)。假設支撐疊加 (increment)為10次(n=10),可計算出圍束損失之變化量(如圖 3-24)。
- (2)模擬隧道開挖前進效應作用下,岩體因開挖發生徑向應力釋放和位移收 斂,以及互制作用之支撐壓力產生。若以應力釋放之疊加值 n 表示疊加迴 圈關係,因此可以累加求得下列關係

圍東損失: $\lambda = \lambda_a + \Delta \lambda$ 

- (3)完成參數設定後,進入計算過程。當λd≤λe時,岩體於支撐前並未產生塑 性行為,進入支撐開始後(λd=0.4),支撐勁度以固定值Δλ,依n值之增 加而,而岩體之徑向應力則隨著支撐後之λ值之增加而減少,隨後互制平 衡時,支撐勁度將與岩體之殘餘應力相等。而徑向位移於支撐後隨著λ值 之增加而增加(圖 3-25)。
- (4)由上一步驟之計算頁面所得出的徑向位移與應力值,即可繪製出岩體為彈 性模式時有支撑隧道開挖之地盤反應曲線圖(圖 3-26)。
- (B) 岩體為彈性完全塑性模式:
- (1)輸入岩體參數,同彈性完全塑性無支撐隧道開挖時,求得所需之計算值, 並在支撐假設部份,假設開挖無支撐距離之圍束損失λd為0.7(如圖 3-27)。
- (2)當λ<sub>e</sub>≦λ<sub>d</sub>時,岩體於支撐前即產生了塑性變形行為,此時在架設支撐前之 岩體變形量可由塑性無支撐公式求得。進入支撐架設後,由於支撐模式為 彈性行為,所以對照無支撐距離d時之徑向位移比值,並減去λ<sub>d</sub>值可得一 差值,此時將支撐開始後之λ<sub>s</sub>值各別加上此一差值,即可得支撐開始後之 徑向位移比值(圖 3-28)。
- (3)接著可依照所計算得出之徑向應力位移值,繪製地盤反應曲線圖與支撐反 力曲線圖(圖 3-29)。

## 表 3-1 有限元素程式計算基本資料檔

\_

```
EXEC
ILIG
COMT
_____
                                              -
_
                                              _
-
- Nom de l'ETUDE : n1 <- 主檔名
- Nom du CALCUL : p0 <- 副檔名
_
- Familles
       : 1
 Module
        : MCNL
-
 . 1971 noeuds <-節點個數
-
    3 groupe (s)
                  <-群組個數
 .
-
  . 658 elements : <-元素個數
_
-
          540 MBQ8
_
          118 MBT6
_
   _____
COOR
 2 1
ELEM
 2 1
s1
10 1 0.20000E-01 0.30000E+03 0.25000E+00
  0.20000E+00 0.30000E+02 0.30000E+02
s2
10 1 0.2000E-01
                 0.30000E+03 0.25000E+00
   0.20000E+00 0.30000E+02 0.30000E+02
s3
10 1 0.2000E-01
                 0.30000E+03 0.25000E+00
  0.20000E+00
           0.30000E+02
                      0.30000E+02
COND
 2
```

```
2
 116
 1885 1878 1877 1830 1829 1792 1791 1754 1753 1716 1715 1678 1677 1640 1639 1602
 1601 1564 1563 1526 1525 1488 1487 1450 1449 1412 1411 1374 1373 1336 1335 1298
 1297 1260 1259 1222 1221 1184 1183 1146 1145 1108 1107 1070 1069 1032 1031 994
 993 956 955 918 917 880 879 842 841 804 803 766 765 728 727
                                                                        690
 689 652 651 614 613 576 575 538 537 500 499 462 461 424 423
                                                                        386
 385 348 347 310 309 272 271 234 233 196 195 158 157 111
                                                                   110
                                                                         71
      42
          41
                 22
                     21
                         11
                              9 3 1 1912 1910 1940 1938 1956 1954 1962
  68
 1960 1970 1968 1971
 10
 2
 116
 1971 1964 1963 1942 1941 1914 1918 1893 1895 1881 1885 232 231 270 269 308
 307 346 345 384 383 422 421 460 459 498 497 536 535 574 573 612
 611 650 649 688 687 726 725 764 763 802 801 840 839 878 877
                                                                        916
 915 954 953 992 991 1030 1029 1068 1067 1106 1105 1144 1143 1182 1181 1220
 1219 1258 1257 1296 1295 1334 1333 1372 1371 1410 1409 1448 1447 1486 1485 1524
 1523 1562 1561 1600 1599 1638 1637 1676 1675 1714 1713 1752 1751 1790 1789 1828
 1827 1876 1873 1904 1906 1912 1 2 5 6 24
                                                    27
                                                              51
                                                         48
                                                                   89
                                                                        90
 152 155 194 193
01
 0
CHAR
 2
SIG
    0
          0
     1
     3
     1
          2
                3
  -0.10000E+01 -0.10000E+01
                             0.00000E+00 -0.10000E+01
MCNL
 2
   1(疊加數) 100(迭代數)
                          0.10000E-04 (容許精度)
   1
   0.10000E+01
STK
n1_rp0.resu
```

NUL

40

# 表 3-2 反向節點力之設定資料檔(LAM)

| C  | OMT        |         |           |            |               |              |     |     |     |     |     |  |  |  |  |
|----|------------|---------|-----------|------------|---------------|--------------|-----|-----|-----|-----|-----|--|--|--|--|
|    |            |         |           |            |               |              |     |     |     |     | _   |  |  |  |  |
| _  |            |         |           |            |               |              |     |     |     |     | _   |  |  |  |  |
| -  |            |         |           |            |               |              |     |     |     |     | -   |  |  |  |  |
| -  | Nom        | de l'ET | 'IIDE · n | 1          | / 主           | 治夕           |     |     |     |     | -   |  |  |  |  |
| -  | Nom        | du CAI  |           | 1<br>. n() | ヽ- 工/<br>~ 回D | ■<br>口<br>階夕 |     |     |     |     | -   |  |  |  |  |
| -  | NOIII      | uu CA   | LCUL      | . po       | く- 町小         | 面白           |     |     |     |     | -   |  |  |  |  |
| -  | Earri      | 11.00   |           | 1          |               |              |     |     |     |     | -   |  |  |  |  |
| -  | Fami       | nes     | •         | 1          |               |              |     |     |     |     | -   |  |  |  |  |
| -  |            |         |           |            |               |              |     |     |     |     | -   |  |  |  |  |
| -  | Modi       | ule     | :]        | MCNL       |               |              |     |     |     |     | -   |  |  |  |  |
| -  |            |         |           |            |               |              |     |     |     |     | -   |  |  |  |  |
| -  | • ]        | 1971 no | euds      |            | <-節點          | 師數           |     |     |     |     | -   |  |  |  |  |
| -  | •          | 3 gr    | oupe (s   | )          | <-群組          | [個數          |     |     |     |     | -   |  |  |  |  |
| -  | •          | 658 ele | ements    | :          | <-元素          | 國數           |     |     |     |     | -   |  |  |  |  |
| -  | 540 MBO8   |         |           |            |               |              |     |     |     |     |     |  |  |  |  |
| -  | 540 MBQ8   |         |           |            |               |              |     |     |     |     |     |  |  |  |  |
| -  | 118 MBT6 - |         |           |            |               |              |     |     |     |     |     |  |  |  |  |
| -  |            |         |           |            |               |              |     |     |     |     |     |  |  |  |  |
|    |            |         |           |            |               |              |     |     |     |     |     |  |  |  |  |
|    |            |         |           |            |               |              |     |     |     |     |     |  |  |  |  |
| Cł | HAR        |         |           |            |               |              |     |     |     |     |     |  |  |  |  |
|    | 0          |         |           |            |               |              |     |     |     |     |     |  |  |  |  |
| LA | AM         |         |           |            |               |              |     |     |     |     |     |  |  |  |  |
|    | 12         | 3       |           |            |               |              |     |     |     |     |     |  |  |  |  |
|    | 232        | 228     | 230       | 228        | 225           | 227          | 225 | 222 | 224 | 222 | 219 |  |  |  |  |
|    | 219        | 216     | 218       | 216        | 213           | 215          | 213 | 210 | 212 | 210 | 207 |  |  |  |  |
|    | 207        | 204     | 206       | 204        | 201           | 203          | 201 | 198 | 200 | 198 | 195 |  |  |  |  |
|    | 3          |         |           |            |               |              |     |     |     |     |     |  |  |  |  |
|    | -1         | -2      | 3         |            |               |              |     |     |     |     |     |  |  |  |  |

- 1
- n1\_p0.resu

221

209

197

## 表 3-3 應力與位移值之擷取設定檔 (las)

1(選取一個剖面) 1(一個群組取一個點) 1971(全部元素總個數)
 Les noeuds en haut ( 0 degrees, 1 noeuds, 1971 la totalite de noeuds )

0. (選取之剖面為0度)

195 (所需讀取之節點編號)



圖 3-1 無支撐隧道開挖引致岩體變形收斂圖



圖 3-2 隧道開挖岩體收斂與支撐圍束之互制關係圖



圖 3-3 有限元素分析程式之計算執行流程



圖 3-4 有限元素之網格示意圖



圖 3-5 有限元素程式模擬隧道開挖之網格局部節點編號情況



圖 3-6 有限元素程式模擬隧道開挖之網格局部元素編號情況



圖 3-7 有限元素程式模擬隧道未開挖之初始應力分佈圖



圖 3-8 有限元素程式模擬隧道未開挖之初始位移分佈圖



圖 3-9 有限元素程式模擬無支撐隧道開挖完成之應力分布圖 (λ=1.0)



圖 3-10 有限元素程式模擬無支撐隧道開挖完成之位移分布圖 (λ=1.0)



圖 3-11 有限元素程式模擬隧道開挖後之應力分布圖 (λ=0.4)



圖 3-12 有限元素程式模擬隧道開挖後之位移分佈圖(λ=0.4)



圖 3-13 有限元素程式模擬之隧道開挖支撐最終應力分佈圖



圖 3-14 有限元素程式模擬之隧道開挖支撐最終位移分佈圖

| - Boo                              | R             |         |          |                   |                 |                                                                                 |            |               |                |            |          |                 |         |                  | ×        |
|------------------------------------|---------------|---------|----------|-------------------|-----------------|---------------------------------------------------------------------------------|------------|---------------|----------------|------------|----------|-----------------|---------|------------------|----------|
| 医 檢視 (3) 插入(1) 格式                  | (2) 插入(1) 格式  | 10 格式   | 0        | 工具① 資料(           | D) 機籤(W)        | 説明(H)                                                                           |            |               |                |            |          | 輸入標             | 需要解答的問題 |                  | ×<br>©   |
| 3 - 6   • 🕄 🖸   🕅   🗲              | J - G   - 😨 🖫 | J + (H  |          | Σ + 2↓   <b>1</b> | 100% + (        | ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>( | 細明體        | N             | 12 🛃 <b>B</b>  | <u>n</u> z |          | 년 <b>\$</b> **0 | 00 🛊 🛊  | <b>△</b> • ≪ • □ | 2.15     |
| * \$\$                             | ţ,            | 68      |          |                   |                 | 1                                                                               |            |               |                |            |          |                 |         |                  |          |
| U<br>B                             | IJ            |         | D        | ы                 | ц               | Ð                                                                               | Η          | Ι             | -              | K          | Г        | M               | N       | 0                |          |
| This file nam                      | file nan      | nan     | e        |                   | nl pl.out       |                                                                                 |            |               |                |            |          |                 |         |                  | 1        |
| file content the                   | content the   | the     | 8        | number            | of              | nodes                                                                           | 10.0       | las.dat       |                |            |          |                 |         |                  | ľ        |
| file content the                   | content the   | the     |          | coordinate        | of              | nodes                                                                           |            | None          |                |            |          |                 |         |                  | 1.<br>., |
| file content the                   | content the   | the     |          | list              | that            | 18.                                                                             | calculated | by            | CESAR          |            | il.1q_1n | st              |         |                  |          |
|                                    |               |         |          |                   |                 |                                                                                 |            |               |                |            |          |                 |         |                  |          |
| es deplacemei:                     | deplaceme1:   | meı:    |          |                   |                 |                                                                                 |            |               |                |            |          |                 |         |                  |          |
| OINT NOEUD X                       | NOEUD X       | X       |          | Y                 | К               | H                                                                               |            |               |                |            |          |                 |         |                  |          |
| ncrement of cha                    | t of cha      | cha     | Ige      | No                | -               |                                                                                 |            |               |                |            |          |                 |         |                  |          |
| 1 195 0.0                          | 1 195 0.0     | 195 0.0 | DEHC     | 0 -2.15E-03       | -2.15E-03       | 0.00E+00                                                                        |            | 1. 4 30 11 14 | 4              |            |          |                 |         |                  |          |
| ncrement of cha                    | t of cha      | cha     | Ige      | No                | 2               |                                                                                 |            | 日の第日位         | ないない           |            |          |                 |         |                  |          |
| 1 195 0.0                          | 1 195 0.0     | 195 0.( | DOEHO    | 0 4.31E-03        | 4.31E-03        | 0.00E+00                                                                        |            | 医全陷征移         | रु <b>ख</b> ास |            | -        |                 |         |                  | 1        |
| ncrement of cha                    | t of cha      | cha     | Ige      | No                | 1               |                                                                                 |            |               |                |            |          |                 |         |                  |          |
| 1 195 0.0                          | 1 195 0.0     | 195 0.0 | DE+C     | 0 -6.46E-03       | -6.46E-03       | 0.00E+00                                                                        | 0          |               |                |            |          |                 |         |                  |          |
| ncrement of cha                    | t of cha      | cha     | fge      | No                | 4               |                                                                                 |            |               |                |            |          |                 |         | 1                |          |
| 1 195 0.0                          | 1 195 0.0     | 195 0.0 | DE+C     | 0 -8.61E-03       | -8.61E-03       | 0.00E+00                                                                        | 0          |               |                |            | -        |                 |         | -                | 1        |
| ncrement of chai                   | t of chai     | cha     | ge       | No                | 1               |                                                                                 |            |               |                | ہ ۔۔۔      |          |                 |         |                  |          |
| 1 195 0.0                          | 1 195 0.0     | 195 0.0 | DE+C     | 00 -1.09E-02      | -1.09E-02       | 0.00E+00                                                                        | 0          |               |                |            |          |                 |         |                  |          |
| ncrement of cha                    | t of cha      | cha     | Ige      | No                | 2               |                                                                                 |            |               |                |            |          |                 |         |                  |          |
| 1 195 0.                           | 1 195 0.      | 195 0.0 | DOE+C    | 0 -1.13E-02       | -1.13E-02       | 0.00E+00                                                                        | 0          |               |                |            |          |                 |         |                  |          |
| ncrement of cha                    | t of cha      | cha     | uge      | No                | 6               |                                                                                 |            |               |                |            |          |                 |         |                  |          |
| 1 195 0.                           | 1 195 0.      | 195 0.  | 00E+C    | 0 -1.17E-02       | -1.17E-02       | 0.00E+00                                                                        | ~          |               |                |            |          |                 |         |                  |          |
| ncrement of cha                    | t of cha      | cha     | Ige      | No                | 4               |                                                                                 |            |               |                |            |          |                 |         |                  |          |
| 1 195 0.                           | 1 195 0.      | 195 0.0 | DOE+C    | 0 -1.21E-02       | -1.21E-02       | 0.00E+00                                                                        | _          |               |                |            | -        |                 |         |                  |          |
| ncrement of cha                    | t of cha      | cha     | urge     | No                | 5               |                                                                                 |            |               |                |            |          |                 |         |                  |          |
| 1 195 0.                           | 1 195 0.      | 195 0.  | OOE+C    | 0 -1.26E-02       | -1.26E-02       | 0.00E+00                                                                        | 0          |               |                |            |          |                 |         |                  | 1        |
| ncrement of cha                    | t of cha      | cha     | arge     | No                | 9               |                                                                                 |            |               |                |            |          |                 |         |                  |          |
| 1 195 0.                           | 1 195 0.      | 195 0.0 | DOE+C    | 0 -1.30E-02       | -1.30E-02       | 0.00E+00                                                                        | 0          |               |                |            | -        | 1               | -       | -                |          |
|                                    |               |         |          | -                 |                 |                                                                                 |            |               |                |            |          |                 |         |                  |          |
|                                    |               |         |          |                   |                 |                                                                                 |            |               |                |            |          |                 |         |                  |          |
|                                    |               |         |          |                   |                 |                                                                                 |            |               |                |            |          |                 |         |                  | >        |
| <pre>     Sheet2 / Sheet3 / </pre> | Sheet3/       |         |          |                   |                 |                                                                                 |            |               | *              |            |          |                 |         | -                | •        |
|                                    |               | 0       | <b>V</b> |                   | ₹<br> <br> <br> | <b>≡ - ▼</b> -                                                                  | <b>*</b>   | 6             |                |            |          |                 |         |                  |          |
|                                    |               |         |          |                   |                 |                                                                                 |            |               |                |            |          |                 |         | NUM              |          |

圖 3-15 二維有限元素模擬程式之輸出檔(頂拱位移值)

| ●         13         13         K         L         M         N         0           :         had dat         :         had dat         :         had dat         :         had dat         :         n         0         0         0           ::         None         CESAR         :         n1_plikt         n         0         0         0           ::         None         CESAR         :         n1_plikt         n         0         0           ::         None         CESAR         :         n1_plikt         n         0         0           ::         None         CESAR         :         n1_plikt         n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Minimize         12         12         1         1         1         1         N         N         0         N         0         N         0         N         0         N         0         N         0         N         0         N         0         N         0         N         0         N         0         N         0         N         0         N         0         N         0         N         0         N         0         N         0         N         0         N         0         N         0         N         0         N         0         N         0         N         0         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | soft Excel - Bookl<br>:匝 編輯匠 核碱① 插入① 格式①                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Excel - Bookl<br>編輯巴 檢視(巴 插入① 格式())                           | obk1<br>檢視(① 插入(① 格式( <sup>(</sup> )))                      | (入田 格式(0)                             | <u></u>                           | H                         | ■<br>目<br>□<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二<br>二 | 0) 機籤(W) | 説明(H)                                    |            |          |              |               |             | 輸入需要解                                                                   | 容的問題             |                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------|-----------------------------------|---------------------------|------------------------------------------------------------------------------|----------|------------------------------------------|------------|----------|--------------|---------------|-------------|-------------------------------------------------------------------------|------------------|---------------------|
| H         I         I         I         K         L         M         N         O         N           :         las dat         .         las dat         .         nl.         las dat         .         0         0         .         0         0         .           :         None         CESAR         :         nl.pl.litt         .         nl.pl.litt         .         0         0         0         0         0         .         .         0         0         .         .         0         0         .         .         0         0         .         .         0         0         .         .         0         0         0         .         .         0         0         0         .         .         0         0         .         .         .         .         0         0         .         .         0         .         .         .         0         .         .         .         0         .         .         .         0         .         .         0         .         .         0         .         .         0         .         .         .         .         .         .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H         I         J         K         L         M         N         O           :         las.dat         las.dat         las.dat         las.dat         las.dat         las.dat         lone         las.dat         las.dat <th>B B B B B B B A B A C A Σ + 24 B B 100% - 0</th> <th><b>.</b></th> <th>🎎   🖬 🖄 -   🍏 - (2 - 1 🗵 - 2 + 1   🏙 100% - 🥥  </th> <th>→   ∽ + ℃ →   Σ → 24   🌆 100% → 🕲  </th> <th>⊻ ~   Σ • ≜↓   ∰ 100% • €</th> <th>- ≜↓   🏙 100% - 🕢</th> <th>100% • 🔕</th> <th></th> <th>() () () () () () () () () () () () () (</th> <th>御明體</th> <th>E I</th> <th>2 💽 <b>B</b></th> <th><u>z ∏</u> ]≣</th> <th>*<br/>                                    </th> <th>00. 0.4</th> <th>•<br/>■<br/>■<br/>■</th> <th><b>∆</b> - <b>√</b></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B B B B B B B A B A C A Σ + 24 B B 100% - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>.</b>                                                      | 🎎   🖬 🖄 -   🍏 - (2 - 1 🗵 - 2 + 1   🏙 100% - 🥥               | →   ∽ + ℃ →   Σ → 24   🌆 100% → 🕲     | ⊻ ~   Σ • ≜↓   ∰ 100% • €         | - ≜↓   🏙 100% - 🕢         | 100% • 🔕                                                                     |          | () () () () () () () () () () () () () ( | 御明體        | E I      | 2 💽 <b>B</b> | <u>z ∏</u> ]≣ | *<br>       | 00. 0.4                                                                 | •<br>■<br>■<br>■ | <b>∆</b> - <b>√</b> |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H         I         I         I         I         M         N         0           :         haddat         hasdat         is dat         is dat </th <th>N14 + &amp;</th> <th>4 + k</th> <th>* fs</th> <th>Å</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N14 + &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 + k                                                         | * fs                                                        | Å                                     |                                   |                           |                                                                              |          |                                          |            |          |              |               |             |                                                                         |                  |                     |
| : las.dat<br>: None<br>calculated by<br>ST SRT SZZ II [2D(Racine)<br>ST SRT SZZ II [2D(Racine)<br>0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00<br>1.110E+00 5.59E-05 1.00E+00 0.00E+00 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | None     None     None     None     None     None     ST     SRT     SZ     Non     ST     SRT     SZ     Non     ST     SRT     SZ     Non     ST     SRT     SZ     Non     ST     SRT     SZ     I1     ZD(Racine) <u>R</u> 為翰培後之 <u>R</u> <u>R      <u>R</u> <u>R      <u>R</u> <u>R      <u>R</u> <u>R      <u>R</u> <u>R      </u> <u>R      <u>R    </u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u></u> | A B C D E F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E<br>E<br>C<br>C                                              | B E F                                                       | C D E F                               | DEF                               | щ                         | Ŀı                                                                           |          | Ð                                        | Н          | 1        |              | K             | Ч           | M                                                                       | N                | 0                   |
| :         las.dat         .         las.dat           :         None         .         IL_DIList           calculated         by         CESAR         :         IL_DIList           str         Str         SzZ         IL         IZD(Racine)         R\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | :         las.dat         is.dat         is.dat           :         None         None         is.dat         is.dat           :         None         CESAR         :         n1_p1.lit           calculated         by         CESAR         :         n1_p1.lit           fr         sr         sr         sr $k_{m}$ 0         0.00E+00         0.00E+00         0.00E+00         0.00E+00           0         1.10E+00         5.59E.05         1.00E+00         0.00E+00           0.01         1.10E+00         5.59E.05         1.00E+00         0.00E+00           0.01         1.10E+00         5.59E.05         1.00E+00         0.00E+00         if####################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | This file name : n1_p1.out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | This file name : nl_pl.out                                    | file name : n1_p1.out                                       | name : nl_pl.out                      | ne : nl_pl.out                    | : n1_p1.out               | nl_pl.out                                                                    |          |                                          |            |          |              |               |             |                                                                         |                  |                     |
| :         None         Il pliist           calculated         by         CESAR         :         nl pliist           str         Str         SzZ         11         ZD(Racine)         RA#           1         .         Str         SzZ         11         ZD(Racine)         R#           2         .         .         .         .         .         .         .           1         .         .         .         .         .         .         .         .           2         .         .         .         .         .         .         .         .         .           1         .         .         .         .         .         .         .         .         .           2         .         .         .         .         .         .         .         .         .         .           2         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         . <td< td=""><td>····································</td><td>File content the number of node</td><td>File content the number of node</td><td>content the number of node</td><td>ent the number of node</td><td>number of node</td><td>number of node</td><td>of node</td><td>node</td><td>8</td><td></td><td>las.dat</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ····································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | File content the number of node                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | File content the number of node                               | content the number of node                                  | ent the number of node                | number of node                    | number of node            | of node                                                                      | node     | 8                                        |            | las.dat  |              |               |             |                                                                         |                  |                     |
| calculated         by         CESAR         :         n1_p1.list           ST         SRT         SZZ         11         J2D(Racine) $\mu $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | calculated         by         CESAR         :         n1 p1 list           ST         SRT         SZZ         11         ZD(Racine)         R\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | File content the coordinate of node                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | File content the coordinate of node                           | content the coordinate of node                              | ent the coordinate of node            | coordinate of node                | coordinate of node        | of node                                                                      | node     | 8                                        |            | None     |              |               |             |                                                                         |                  |                     |
| ST         SRT         SZZ         11         IZD(Racine)         R. Sakkit K. Collaboration           2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ST         StT         SZZ         11         IZD(Racine)         R. A SAME R C           1         2         1         12D(Racine)         R. SAME R C         1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | File content the list that is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | File content the list that is                                 | content the list that is                                    | ent the list that is                  | list that is                      | list that is              | that is                                                                      | 22.      |                                          | calculated | by       | CESAR        |               | n1_p1.list  |                                                                         |                  |                     |
| ST         SRT         SZ2         I1         I2D(Racine)           1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ST         StT         SZZ         11         IZD(Racine)         R. Sake R. Sace           1         2         1         12D(Racine)         R. Sake R. Sace         1           2         1         1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Les contraintes :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Les contraintes :                                             | contraintes :                                               | raintes :                             |                                   |                           |                                                                              |          |                                          |            |          |              |               |             |                                                                         |                  |                     |
| 1         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | POINT IPLAS SI S2 ANGLE SR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | POINT IPLAS SI S2 ANGLE SR                                    | NT IPLAS SI S2 ANGLE SR                                     | AS SI S2 ANGLE SR                     | S2 ANGLE SR                       | S2 ANGLE SR               | ANGLE SR                                                                     | SR       |                                          | ST         | SRT      | ZZS          | П             | J2D(Racine) | 1. 4 21                                                                 | 1. 11 14 ×       |                     |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Increment No 1 Groupe No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Increment No 1 Groupe No                                      | ement No 1 Groupe No                                        | 1 Groupe No                           | I Groupe No                       | Groupe No                 | No                                                                           |          | -                                        |            |          |              |               |             | た<br>の<br>な<br>た<br>よ<br>の<br>な<br>ち<br>の<br>た<br>の<br>た<br>ろ<br>の<br>た | 田俊之              |                     |
| 400         0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Increment No 1 Groupe No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Increment No 1 Groupe No                                      | ement No 1 Groupe No                                        | 1 Groupe No                           | 1 Groupe No                       | Groupe No                 | No                                                                           |          | (1                                       |            |          |              |               |             | 1月秋照                                                                    | § 71 18          |                     |
| 3         1         10E +00         5.59E -05         1.00E +00         3.00E +00         3.00E +00         1.00E -01         1           1         1         2         0.00E +00         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3         -01         1.10E +00         5.59E ⋅05         1.00E +00         3.00E +00         3.00E +00         1.00E -01           1         1         2         2         2         1.00E +00         3.00E +00         3.00E +00         0.00E +00         2         2           2         0.00E +00         0.00E +00         0.00E +00         0.00E +00         0.00E +00         2         2           3         -1.120E +00         1.12E ⋅04         -1.00E +00         3.00E +00         2.00E -01         2         2           1         1.20E +00         1.12E ⋅04         -1.00E +00         3.00E +00         2.00E +01         2         2           1         1.20E +00         1.12E ⋅04         -1.00E +00         3.00E +00         2.00E +01         2         2           1         1.120E +00         1.12E ⋅04         -9.99E ⋅01         3.00E ⋅01         2.00E ⋅01         2         2         2           1         1.130E +00         1.00E +00         3.00E ⋅01         3.00E ⋅01         2.00E ⋅01         2         2         2         2           1         1.30E ⋅01         1.30E ⋅01         3.00E ⋅01         3.00E ⋅01         2         2         2         2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 195 0 0.00E+00 0.00E+00 4.50E+01 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 195 0 0.00E+00 0.00E+00 4.50E+01 0.00                         | 195 0 0.00E+00 0.00E+00 4.50E+01 0.00                       | 0 0.00E+00 0.00E+00 4.50E+01 0.00     | 00E+00 0.00E+00 4.50E+01 0.00     | 0.00E+00 4.50E+01 0.00    | 4.50E+01 0.00                                                                | 0.0      | )E+00                                    | 0.00E+00   | 0.00E+00 | 0.00E+00     | 0.00E+00      | 0.00E+00    |                                                                         |                  |                     |
| 1.1.10E+00       5.59E-05       1.00E+00       3.00E+00       1.00E-01       1.00E-01         2       0.00E+00       0.00E+00       0.00E+00       0.00E+00       0.00E+00       0.00E+00         3       0.000E+00       0.00E+00       3.00E+00       2.00E-01       1.00E+00       0.00E+00         1       1       0.00E+00       0.00E+00       3.00E+00       2.00E-01       1.00E+00         2       0.00E+00       0.00E+00       3.00E+00       2.00E-01       2.00E-01       1.00E+00         1       1       0.00E+00       0.00E+00       3.00E+00       2.00E-01       2.00E-01         2       0.00E+00       0.00E+00       3.00E+00       3.00E-01       2.00E-01       1.00E+00         3       0.00E+00       0.00E+00       3.00E+00       3.00E-01       1.00E+00       2.00E-01         1       1.30E+01       1.30E+01       3.00E+00       0.00E+00       0.00E+00       1.00E+00       1.00E+00         2       0.00E+00       0.00E+00       0.00E+00       1.00E+00       1.01E-01       1.01E-01         2       1.40E+00       2.728E-01       4.37E+00       1.82E+00       1.82E+00       1.82E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 01       1.10E+00       5.59E-05       1.00E+00       3.00E+00       1.00E-01         1       2       2       2       2       2         00       0.00E+00       0.00E+00       0.00E+00       0.00E+00       0.00E+00         1       1.12DE+04       1.10DE+00       3.00E+00       0.00E+00       0.00E+00         1       1.12DE+04       1.10DE+00       3.00E+00       0.00E+00       0.00E+00         1       1.12DE+04       1.10DE+00       3.00E+00       0.00E+00       0.00E+00         1       1.12DE+04       1.00E+00       0.00E+00       0.00E+00       0.00E+00         1       1.130E+01       1.00E+01       3.00E+01       0.00E+00       0.00E+00         1       1.130E+01       1.68E-04       9.99E-01       3.00E+01       0.00E+00       0.00E+00         1       1.130E+00       1.68E-04       9.99E-01       3.00E+01       0.00E+00       0.00E+00       1.140E+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Increment No 1 Groupe No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Increment No 1 Groupe No                                      | ement No I Groupe No                                        | I Groupe No                           | I Groupe No                       | Groupe No                 | No                                                                           |          | സ                                        |            |          |              |               |             |                                                                         |                  |                     |
| 1         1           2         0.00E+00         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 195 0 -9.00E-01 -1.10E+00 9.00E+01 -9.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 195 0 -9.00E-01 -1.10E+00 9.00E+01 -9.00                      | 195 0 -9.00E-01 -1.10E+00 9.00E+01 -9.00                    | 0 -9.00E-01 -1.10E+00 9.00E+01 -9.00  | .00E-01 -1.10E+00 9.00E+01 -9.00  | -1.10E+00 9.00E+01 -9.00  | 9.00E+01 -9.00                                                               | 00.6-    | E-01                                     | -1.10E+00  | 5.59E-05 | -1.00E+00    | 3.00E+00      | 1.00E-01    |                                                                         |                  |                     |
| 2         0.000E+00         0.000E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2         2         2           400         0.000E +00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Increment No 2 Groupe No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Increment No 2 Groupe No                                      | ement No 2 Groupe No                                        | 2 Groupe No                           | 2 Groupe No                       | Groupe No                 | No                                                                           |          | Ч                                        |            |          |              |               |             |                                                                         |                  |                     |
| 400         0.000E+00         0.00E+00         0.00E+00 <th< td=""><td>400         0.00E +00         0.0</td><td>Increment No 2 Groupe No</td><td>Increment No 2 Groupe No</td><td>ement No 2 Groupe No</td><td>2 Groupe No</td><td>2 Groupe No</td><td>Groupe No</td><td>No</td><td></td><td>CV.</td><td>~</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<> | 400         0.00E +00         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Increment No 2 Groupe No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Increment No 2 Groupe No                                      | ement No 2 Groupe No                                        | 2 Groupe No                           | 2 Groupe No                       | Groupe No                 | No                                                                           |          | CV.                                      | ~          |          |              |               |             |                                                                         |                  |                     |
| 3         1.20E+00         1.12E-04         -1.00E+00         3.00E+00         2.00E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3       -01       -1.20E+00       1.12E-04       -1.00E+00       3.00E+00       2.00E-01       -01         1       -0       0.00E+00       0.00E+00       0.00E+00       0.00E+00       -00         3       -01       -1.30E+00       0.00E+00       0.00E+00       0.00E+00       -00         3       -01       -1.30E+00       1.68E-04       -9.99E-01       3.00E-01       -01         1       0.00E+00       0.00E+00       0.00E+00       3.00E-01       -01       -01         2       0.00E+00       0.00E+00       0.00E+00       3.00E-01       -01       -01         2       0.00E+00       0.00E+00       0.00E+00       1.00E+00       2.00E+01       -01         3       -01       1.40E+00       2.24E-04       -9.99E-01       3.00E+01       -01       -01         1       8T       8T       8Z       11       12D(Racine)       -01       -01         2       -01       3.00E+01       1.01E-01       -01       -01       -01         2       -01       3.00E+01       1.02       -01       -01       -01         2       -01       3.52E-01       1.32E+00       1.82E+00       -01<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 195 0 0.00E+00 0.00E+00 4.50E+01 0.00E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 195 0 0.00E+00 0.00E+00 4.50E+01 0.00E                        | 195 0 0.00E+00 0.00E+00 4.50E+01 0.00E                      | 0 0.00E+00 0.00E+00 4.50E+01 0.00E    | 00E+00 0.00E+00 4.50E+01 0.00E    | 0.00E+00 4.50E+01 0.00E   | 4.50E+01 0.00E                                                               | 0.00E    | 00+:                                     | 0.00E+00   | 0.00E+00 | 0.00E+00     | 0.00E+00      | 0.00E+00    |                                                                         |                  |                     |
| 0.1.200E+00       1.12E-04       -1.00E+00       3.00E+00       2.00E-01       0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01       1.20E+00       1.12E-04       -1.00E+00       3.00E+00       2.00E-01          1       2       0.00E+00       0.00E+00       0.00E+00       0.00E+00          2       0.00DE+00       0.00E+00       0.00E+00       0.00E+00           3       0.1       1.30E+00       1.68E-04       9.99E-01       3.00E-01            1       1.30E+00       1.68E-04       9.99E-01       3.00E+00       3.00E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Increment No 2 Groupe No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Increment No 2 Groupe No                                      | ement No 2 Groupe No                                        | 2 Groupe No                           | 2 Groupe No                       | Groupe No                 | No                                                                           |          | ŝ                                        | ~          |          |              |               |             |                                                                         |                  |                     |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1     1     1       2     0.00E+00     0.00E+00     0.00E+00     0.00E+00       3     -01     1.30E+00     0.00E+00     0.00E+00       -01     1.30E+00     1.68E-04     9.99E-01     3.00E+00       1     0.00E+00     0.00E+00     3.00E+00     3.00E+00       1     1.30E+00     0.00E+00     0.00E+00     0.00E+00       2     -01     1.40E+00     2.24E-04     3.00E+01       3     -01     1.40E+00     2.24E-04     9.99E-01       3     -01     1.40E+00     2.24E-04     9.99E-01       1     1.353E+00     1.95E-01     4.01E-01       2     -01     3.00E+00     1.82E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 195 0 -7.99E-01 -1.20E+00 9.00E+01 -7.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 195 0 -7.99E-01 -1.20E+00 9.00E+01 -7.99                      | 195 0 -7.99E-01 -1.20E+00 9.00E+01 -7.99                    | 0 -7.99E-01 -1.20E+00 9.00E+01 -7.99  | .99E-01 -1.20E+00 9.00E+01 -7.99  | -1.20E+00 9.00E+01 -7.99  | 0.00E+01 -7.99                                                               | -7.99    | E-01                                     | -1.20E+00  | 1.12E-04 | -1.00E+00    | 3.00E+00      | 2.00E-01    |                                                                         |                  |                     |
| 2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2       0.00E+00       0.00E+00       0.00E+00       0.00E+00       0.00E+00         3       -01       11.30E+00       1.68E-04       9.99E-01       3.00E-01       -0         1       1.30E+00       1.68E-04       9.99E-01       3.00E+00       3.00E-01       -0         1       1       1.1.30E+00       1.68E-04       9.99E-01       3.00E+00       0.00E+00       -0         1       2       -01       1.1.40E+00       2.24E-04       9.99E-01       3.00E+00       -0       -0         0       0.00E+00       0.00E+00       0.00E+00       0.00E+00       0.00E+00       -0       -0         1       2       -01       1.140E+00       2.24E-04       9.99E-01       3.00E+00       -0       -0         2       01       1.140E+00       2.24E-04       1.12D(Racine)       -0       -0         1       13.53E+00       1.95E-03       7.28E-01       4.37E+00       1.82E+00       -0       -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Increment No 3 Groupe No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Increment No 3 Groupe No                                      | ement No 3 Groupe No                                        | 3 Groupe No                           | 3 Groupe No                       | Groupe No                 | No                                                                           |          | -                                        |            |          |              |               |             |                                                                         |                  |                     |
| 400       0.000E+00       0.00E+00       0.00E+00       0.00E+00       0.00E+00         3       1.30E+00       1.68E-04       9.99E-01       3.00E+00       3.00E-01         1       2       0.00E+00       0.00E+00       3.00E-01       0.00E+00         2       0.000E+00       0.00E+00       3.00E-01       0.00E+00       0.00E+00         2       0.000E+00       0.00E+00       0.00E+00       0.00E+00       0.00E+00         3       1.40E+00       2.24E-04       9.99E-01       3.00E+00       0.00E+00       0.00E+00         3       1.40E+00       2.24E-04       9.99E-01       3.00E+00       4.01E-01       1.01E-01         3       1.40E+00       2.24E-04       9.99E-01       3.00E+00       4.01E-01       1.01E-01         1       1       12D(Racine)       1.02E+00       1.02E+00       1.02E+00       1.02E+00         2       1       1.95E-03       7.28E-01       4.37E+00       1.82E+00       1.82E+00       1.82E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400       0.000E+00       0.00E+00       0.00E+00       0.00E+00       0.00E+00         3       -01       1.30E+00       1.68E-04       3.00E+01       3.00E-01       0.00E         1       1.30E+00       1.68E-04       9.99E-01       3.00E+00       3.00E-01       0.00E         2       0.00E+00       0.00E+00       0.00E+00       0.00E+00       0.00E+00       0.00E+00         3       0.140E+00       2.24E-04       9.99E-01       3.00E+00       0.00E+00       0.00E+00         0.1140E+00       2.24E-04       9.99E-01       3.00E+00       0.00E+00       0.00E+00       0.00E+00         0.1140E+00       2.24E-04       9.99E-01       3.00E+00       0.00E+00       0.00E+00       0.00E+00         0.13.53E+00       1.95E-03       7.28E-01       4.37E+00       1.82E+00       1.82E+00       1.82E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Increment No 3 Groupe No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Increment No 3 Groupe No                                      | ement No 3 Groupe No                                        | 3 Groupe No                           | 3 Groupe No                       | Groupe No                 | No                                                                           |          | C 1                                      | ~          |          |              |               |             |                                                                         |                  |                     |
| 3<br>1.30E+00 1.68E-04 -9.99E-01 3.00E+00 3.00E-01<br>2<br>400 0.00E+00 0.00E+00 0.00E+00 0.00E+00<br>3<br>401 -1.40E+00 2.24E-04 -9.99E-01 3.00E+00 4.01E-01<br>5.01 -1.40E+00 2.24E-04 -9.99E-01 3.00E+00 4.01E-01<br>5.01 -3.53E+00 1.95E-03 -7.28E-01 4.37E+00 1.82E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3       -01       -11.30E+00       1.68E-04       9.99E-01       3.00E+00       3.00E-01         1       1       -0       1.68E-04       9.99E-01       3.00E+00       3.00E-01         2       -00       0.00E+00       0.00E+00       0.00E+00       0.00E+00         3       -01       1.40E+00       2.24E-04       9.99E-01       3.00E+00         -01       1.40E+00       2.24E-04       9.99E-01       3.00E+00         1       1.40E+00       2.24E-04       9.99E-01       3.00E+00         201       1.40E+00       2.24E-04       9.99E-01       3.00E+00         1       1.353E+00       1.95E-03       7.28E-01       4.37E+00       1.82E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 195 0 0.00E+00 0.00E+00 4.50E+01 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 195 0 0.00E+00 0.00E+00 4.50E+01 0.001                        | 195 0 0.00E+00 0.00E+00 4.50E+01 0.001                      | 0 0.00E+00 0.00E+00 4.50E+01 0.001    | 00E+00 0.00E+00 4.50E+01 0.001    | 0.00E+00 4.50E+01 0.001   | 4.50E+01 0.001                                                               | 00.0     | 00+3                                     | 0.00E+00   | 0.00E+00 | 0.00E+00     | 0.00E+00      | 0.00E+00    |                                                                         |                  |                     |
| 101 -1.30E+00 1.68E-04 -9.99E-01 3.00E+00 3.00E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -01 -1.30E+00 1.68E-04 -9.99E-01 3.00E+00 3.00E-01   1.30E+00 1.68E-04 9.99E-01 3.00E+00 2.00E+00 0.00E+00 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Increment No 3 Groupe No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Increment No 3 Groupe No                                      | ement No 3 Groupe No                                        | 3 Groupe No                           | 3 Groupe No                       | Groupe No                 | No                                                                           |          | с.)                                      |            |          |              |               |             |                                                                         |                  |                     |
| 1         1           2         0.000E+00         0.000E+00         0.000E+00         0.000E+00         0.000E+00           3         1.400E+00         0.000E+00         0.000E+00         4.01E-01         1.1400E+00           5:01         -1.400E+00         2.24E-04         9.99E-01         3.00E+00         4.01E-01           5:01         -1.40E+00         2.24E-04         9.99E-01         3.00E+00         4.01E-01           5:01         -1.40E+00         2.24E-04         9.99E-01         3.00E+00         4.01E-01           5:01         -3.53E+01         1.2D(Racine)         1.2D(Racine)         1.2D(Racine)         1.2D(Racine)           2         1.01         -3.53E+01         4.37E+00         1.82E+00         1.82E+00         1.82E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1     1       2     2       400     0.00E+00     0.00E+00       3     -01       -11.40E+00     0.00E+00       3     -01       -11.40E+00     2.24E-04       9.99E-01     3.00E+00       1     1.1.40E+00       ST     SRT       ST     SRT       2     11       2     11       2     11       01     3.53E+00       1     1.52E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 195 0 -6.98E-01 -1.30E+00 9.00E+01 -6.98B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 195 0 -6.98E-01 -1.30E+00 9.00E+01 -6.98B                     | 195 0 -6.98E-01 -1.30E+00 9.00E+01 -6.98I                   | 0 -6.98E-01 -1.30E+00 9.00E+01 -6.98I | .98E-01 -1.30E+00 9.00E+01 -6.98I | -1.30E+00 9.00E+01 -6.98H | 0.00E+01 -6.98H                                                              | -6.981   | 10-3                                     | -1.30E+00  | 1.68E-04 | -9.99E-01    | 3.00E+00      | 3.00E-01    |                                                                         |                  |                     |
| 2<br>400<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00<br>0.00E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2       0.00E+00       0.00E+00       0.00E+00       0.00E+00         3       -01       1.40E+00       2.24E-04       9.99E-01       3.00E+00       4.01E-01         3       -01       1.40E+00       2.24E-04       9.99E-01       3.00E+00       4.01E-01         1       ST       SRT       SZZ       11       J2D(Racine)       1         2       -01       3.53E+00       1.95E-03       7.28E-01       4.37E+00       1.82E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Increment No 4 Groupe No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Increment No 4 Groupe No                                      | ement No 4 Groupe No                                        | 4 Groupe No                           | 4 Groupe No                       | Groupe No                 | No                                                                           |          | <del></del>                              |            |          |              |               |             |                                                                         |                  |                     |
| +00       0.00E+00       0.00E+00       0.00E+00       0.00E+00         3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +00       0.00E+00       0.00E+00       0.00E+00       0.00E+00         3       -01       -1.40E+00       2.24E-04       -9.99E-01       3.00E+00       4.01E-01         -01       -1.40E+00       2.24E-04       -9.99E-01       3.00E+00       4.01E-01         1       ST       ST       SZZ       11       12D(Racine)         2       -01       -3.53E+00       1.95E-03       -7.28E-01       4.37E+00       1.82E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Increment No 4 Groupe No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Increment No 4 Groupe No                                      | ement No 4 Groupe No                                        | 4 Groupe No                           | 4 Groupe No                       | Groupe No                 | No                                                                           |          | CV.                                      | ~          |          |              |               |             |                                                                         |                  |                     |
| 3<br>1.40E+00 2.24E-04 9.99E-01 3.00E+00 4.01E-01<br>ST SRT SZZ 11 12D(Racine)<br>2<br>2<br>2<br>3.23E+00 1.95E-03 -7.28E-01 4.37E+00 1.82E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3<br>-01 -1.40E+00 2.24E-04 -9.99E-01 3.00E+00 4.01E-01<br>ST SRT SZZ 11 J2D(Racine)<br>2<br>-01 -3.53E+00 1.95E-03 -7.28E-01 4.37E+00 1.82E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 195 0 0.00E+00 0.00E+00 4.50E+01 0.00E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 195 0 0.00E+00 0.00E+00 4.50E+01 0.00E                        | 195 0 0.00E+00 0.00E+00 4.50E+01 0.00E                      | 0 0.00E+00 0.00E+00 4.50E+01 0.00E    | 00E+00 0.00E+00 4.50E+01 0.00E    | 0.00E+00 4.50E+01 0.00H   | 4.50E+01 0.00E                                                               | 0.00H    | 00+3                                     | 0.00E+00   | 0.00E+00 | 0.00E+00     | 0.00E+00      | 0.00E+00    |                                                                         |                  |                     |
| :01     -1.40E+00     2.24E-04     -9.99E-01     3.00E+00     4.01E-01       ST     SRT     SZZ     11     JZD(Racine)       1     1     2     2       2     1.353E+00     1.95E-03     -7.28E-01     4.37E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -01 -1.40E+00 2.24E-04 -9.99E-01 3.00E+00 4.01E-01<br>ST SRT SRT SZZ 11 12D(Racine)<br>-1<br>-01 -3.53E+00 1.95E-03 -7.28E-01 4.37E+00 1.82E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Increment No 4 Groupe No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Increment No 4 Groupe No                                      | ement No 4 Groupe No                                        | 4 Groupe No                           | 4 Groupe No                       | Groupe No                 | No                                                                           |          | (n)                                      |            |          |              |               |             |                                                                         |                  |                     |
| ST         SRT         SZ2         11         12D(Racine)           1         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ST         SRT         SZ2         I1         J2D(Racine)           1         2         2         2         1         3.53E+00         1.95E-03         -7.28E-01         4.37E+00         1.82E+00         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >         >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 195 0 -5.98E-01 -1.40E+00 9.00E+01 -5.98E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 195 0 -5.98E-01 -1.40E+00 9.00E+01 -5.98E                     | 195 0 -5.98E-01 -1.40E+00 9.00E+01 -5.98E                   | 0 -5.98E-01 -1.40E+00 9.00E+01 -5.98E | .98E-01 -1.40E+00 9.00E+01 -5.98E | -1.40E+00 9.00E+01 -5.98E | 9.00E+01 -5.98E                                                              | -5.98E   | 0                                        | -1.40E+00  | 2.24E-04 | -9.99E-01    | 3.00E+00      | 4.01E-01    |                                                                         |                  |                     |
| 1<br>2<br>-01-3.53E+00 1.95E-03 -7.28E-01 4.37E+00 1.82E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>2<br>-01 -3.53E+00 1.95E-03 -7.28E-01 4.37E+00 1.82E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | POINT IPLAS S1 S2 ANGLE SR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | POINT IPLAS SI S2 ANGLE SR                                    | NT IPLAS SI S2 ANGLE SR                                     | AS SI S2 ANGLE SR                     | S2 ANGLE SR                       | S2 ANGLE SR               | ANGLE SR                                                                     | SR       |                                          | ST         | SRT      | SZZ          | 11            | J2D(Racine) |                                                                         |                  |                     |
| 2<br>:01-3.53E+00 1.95E-03 -7.28E-01 4.37E+00 1.82E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2<br>-01-3.53E+00 1.95E-03 -7.28E-01 4.37E+00 1.82E+00<br>■ = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Increment No I Groupe No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Increment No 1 Groupe No                                      | ement No I Groupe No                                        | 1 Groupe No                           | 1 Groupe No                       | Groupe No                 | No                                                                           |          | -                                        |            |          |              |               |             |                                                                         |                  |                     |
| :01-3.53E+00 1.95E-03 -7.28E-01 4.37E+00 1.82E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -01 -3.53E+00  1.95E-03  -7.28E-01  4.37E+00  1.82E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Increment No 1 Groupe No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Increment No I Groupe No                                      | ement No 1 Groupe No                                        | 1 Groupe No                           | I Groupe No                       | Groupe No                 | No                                                                           |          | CV.                                      | ~          |          |              |               |             |                                                                         |                  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v \ Sheer1 \ Sheer2 \ Sheer2 \ Sheer2 \ \ Sheer2 \ | heer1 \ Sheer2 / Sheer3 / 0 -1.13E-01 -3.53E+00 9.00E+01 -1.1 | 195 0 -1.13E-01 -3.53E+00 9.00E+01 -1.1<br>teef? / Sheet3 / | 0 -1.13E-01 -3.53E+00 9.00E+01 -1.1   | .13E-01 -3.53E+00 9.00E+01 -1.1   | -3.53E+00 9.00E+01 -1.1   | 9.00E+01 -1.1                                                                | -1.1     | 3E-01                                    | -3.53E+00  | 1.95E-03 | -7.28E-01    | 4.37E+00      | 1.82E+00    | -                                                                       | _                |                     |

圖 3-16 二維有限元素模擬程式之輸出檔(頂拱應力值)



圖 3-17 二維有限元素模擬程式之輸出檔(繪製地盤反應曲線圖)

| ×       | X<br>FD        | 2.05             |    | < |            |       |         |                  |                     |                   |            |       |                 | - 0           |        |                                                                                                                | m         |                   |                   |                   |            | r      |        | 1   | T  | r.  | 1  | r i |    |    |    | >  |         |                                                                                             |    |
|---------|----------------|------------------|----|---|------------|-------|---------|------------------|---------------------|-------------------|------------|-------|-----------------|---------------|--------|----------------------------------------------------------------------------------------------------------------|-----------|-------------------|-------------------|-------------------|------------|--------|--------|-----|----|-----|----|-----|----|----|----|----|---------|---------------------------------------------------------------------------------------------|----|
|         |                | 4                |    | ſ |            |       |         |                  |                     |                   |            |       |                 |               |        | ,                                                                                                              | 亚         |                   |                   |                   |            |        |        |     |    |     |    |     |    |    |    |    |         |                                                                                             |    |
|         |                | 5                |    |   |            |       |         |                  |                     |                   |            |       |                 |               | _      |                                                                                                                | ₹Λd       | -                 |                   |                   |            |        | _      | _   | -  |     | -  | -   |    |    |    | _  |         |                                                                                             | M  |
|         | 引題             | EB               |    | I |            |       |         |                  |                     |                   |            |       |                 |               |        | the second s | 観         |                   |                   |                   |            |        |        |     |    |     |    |     |    |    |    | 1  | -       |                                                                                             | DN |
|         | 网络的            |                  |    |   |            | 0.4   | 10      | 0.6              | 33                  | œ                 | 90         |       |                 | _             | _      |                                                                                                                | 支援        | 2 v °             |                   |                   |            | _      | _      | _   | +  | -   | -  |     | 1  |    |    | -  |         |                                                                                             |    |
|         | 八需要角           | 0.4              |    |   |            | -     |         |                  | 0.008               | 3.431             | 0.010      |       |                 |               |        |                                                                                                                | 武王        | ▲                 |                   |                   |            |        |        |     |    |     |    |     |    |    |    |    |         |                                                                                             |    |
|         | 镭              | \$ *.0           |    | Ц |            |       |         |                  | 500 <del></del> 500 | 107.              | -          |       |                 |               |        |                                                                                                                | 45<br>101 | tia               |                   |                   |            |        |        |     |    |     |    |     |    |    |    |    |         |                                                                                             |    |
|         |                | 1.               |    |   |            | U.    | Ц       | <sup>то</sup> ос |                     | <u>.</u>          | -11        |       |                 |               | 1      |                                                                                                                | _         |                   |                   |                   | _          | _      |        |     | _  |     |    |     |    |    |    |    |         |                                                                                             |    |
|         |                | ililili<br>Idala |    |   |            | ۲۹    | ц       | 値の1              | UR                  | 度Kn               | ίΔλ        |       | 5               | 1             |        |                                                                                                                |           |                   |                   |                   | 1          |        |        |     |    |     |    |     |    |    |    |    |         |                                                                                             |    |
|         |                |                  |    |   |            |       |         | 1應力              |                     | に体勁               | 生代值        |       | /               | 2             |        |                                                                                                                |           |                   |                   |                   | <b>太</b> 並 |        |        |     |    |     |    |     |    |    |    |    |         |                                                                                             |    |
|         |                | D                |    | U | <b>討導個</b> |       |         | が極る              |                     | 製                 | 大人         | /     |                 |               |        |                                                                                                                |           |                   |                   |                   | 条          | 一世中    | XII    |     |    |     |    |     |    |    |    |    |         |                                                                                             |    |
|         |                | B                |    |   | 47         |       |         | 路路               |                     |                   | 雄圈         |       |                 |               |        |                                                                                                                |           |                   |                   |                   | 教教         | いた     | 4 40   |     |    |     |    |     |    |    |    |    |         |                                                                                             |    |
|         |                | <b>F</b>         |    |   |            |       |         | 支钵               |                     |                   | + <b>X</b> |       |                 |               |        |                                                                                                                |           |                   |                   |                   | ~          | 耳<br>+ | *      |     |    |     |    |     |    |    |    |    | ~       |                                                                                             |    |
|         |                | × 12             |    | - | 8          | -     | -       |                  |                     |                   |            |       |                 |               |        |                                                                                                                |           |                   |                   | -                 | 2.載        | i 🧐    | ŧ      |     |    |     |    |     |    |    |    |    |         |                                                                                             |    |
|         |                |                  |    | ц |            |       |         |                  |                     |                   |            | _     | -               | -             | -      | -                                                                                                              | _         |                   | 1                 | /                 |            |        |        |     |    |     |    |     |    |    |    |    |         | •                                                                                           |    |
|         |                |                  |    |   |            | .025  | 0000    | 0.2              | 0.2                 | 431               | 4          |       | 0               | 0             | 0      | 0                                                                                                              | 0         | 0                 | 0                 | 0                 |            |        |        |     |    |     | Γ  |     |    |    |    |    |         |                                                                                             |    |
|         |                | 明键               |    | ш |            | 0     | 3       |                  |                     | 1073.             |            |       |                 |               |        |                                                                                                                |           |                   |                   |                   |            |        |        |     |    |     |    |     |    |    |    |    |         | 144<br>                                                                                     |    |
|         | 8              |                  |    |   |            |       |         |                  |                     | 100               |            |       |                 |               |        |                                                                                                                |           |                   |                   |                   |            |        |        |     |    |     |    |     |    |    |    |    |         |                                                                                             |    |
|         | 說明             | : 16             |    |   |            | /m)=  | (Pa)=   | ₽° Л             | (m)=                | (Pa)=             |            |       |                 | (m)=          | =(m)=  | (m)=                                                                                                           | (m)=      | (Pa)=             | m <sup>2</sup> )= | (Pa)=             |            |        |        | 110 |    |     |    |     |    |    |    |    |         | 4                                                                                           |    |
|         | 8<br>8         |                  |    | D | 土城         | °(MPa | E.(N    |                  |                     | K <sub>o</sub> (N |            |       | 日本              | 東東西           | 赵赵     | ŝ                                                                                                              | 2         | E <sub>b</sub> (M | 動樹(               | K <sub>b</sub> (M |            |        |        | 大洋  | 值。 |     |    |     |    |    |    |    |         | 1                                                                                           |    |
|         | ()<br>()<br>() | %00              |    |   | 墳          | ٢     |         |                  |                     |                   |            |       | τŀ <del>Λ</del> | <b>兆</b><br>北 | 粘      |                                                                                                                |           |                   | 检释                |                   |            |        |        | 冬   | 資料 |     |    |     |    |    |    |    |         | <b>S</b>                                                                                    |    |
|         | 日茶畑            | 1                |    | _ | -          |       | _       |                  | _                   |                   |            |       | -               | -             | _      | _                                                                                                              | _         |                   | 9/E               | _                 |            | -      | -      | 語   | 須寺 | _   | -  |     |    |    | _  |    |         |                                                                                             |    |
|         |                | ¥.               |    | υ |            |       |         |                  |                     |                   |            |       |                 |               |        |                                                                                                                |           |                   |                   |                   |            |        |        | く何  | 其所 |     |    |     |    |    |    |    |         | 000<br>000<br>100                                                                           |    |
| sls     | ਸੋ             | W                |    |   | -          | -     | S       |                  | 8                   | 25                | 02         | 8     | 60              | 60            | 40     | 8                                                                                                              | _         | 8                 | 8                 | 33                |            | -      | -      | し、  | 河井 | -   | -  |     |    |    |    |    |         | 4                                                                                           |    |
| 1       | 認知(の           | z                |    |   |            |       |         |                  | ŝ                   | o.                | o.         | 10    |                 |               | N      | 13.92                                                                                                          |           | 14.92             | 12.92             | 0.020             |            | 1      | /      |     |    |     |    |     |    |    |    |    |         |                                                                                             |    |
| の相談     | 9              | 2                | ¥  | Щ |            |       |         |                  |                     |                   |            |       |                 |               |        |                                                                                                                |           |                   |                   | ~                 |            | /      |        |     |    |     |    |     |    |    |    |    |         |                                                                                             |    |
| 朝余事     | (捕)            | 1                |    |   |            | 11    | 11      |                  | п                   | - 11              | П          | П     | п               | - 11          | п      |                                                                                                                |           | - 11              | н                 | н                 | /          |        |        |     |    |     |    |     |    |    |    | -  |         | 1                                                                                           |    |
| 大田      | 檢視区            |                  | •  |   | 285        | MPa): | i (m)R: | Ko               | MPa):               | Å                 | Pa/m):     | MPa): | ⊅())            | ())           | (1+n): | $\left(\frac{\phi}{2}\right)^2 =$                                                                              | 5         | Kp+l:             | Kp-1:             | R/2G:             |            | 385    |        |     |    |     |    |     |    |    |    |    | 過程人     | ,<br>e                                                                                      |    |
| - 新夕    | e              |                  |    | A | 參數         | )^́   | 遗半论     |                  | Ĕ                   |                   | Y(M)       | ő     |                 | 10<br>T       | G=E/   | 15°+.                                                                                                          |           |                   |                   | ⊧συ*              |            | Ŀ      | Å<br>Å | 8   |    |     |    |     |    |    |    |    | 「計算」    | 東回茶                                                                                         |    |
| Excel   | 编章             | 9                | 31 |   | 批調         |       | ×       |                  |                     |                   |            |       |                 |               | LN.    | tan (4                                                                                                         |           |                   |                   | (m)               |            |        | =2C    |     |    |     |    |     |    |    |    | Ŧ  | 「「「「「」」 | (単) か)                                                                                      |    |
| flosore | 御業団            | 20               | Ň  |   |            |       |         |                  |                     |                   |            |       |                 |               |        | ۲<br>۲                                                                                                         | ĥ         |                   |                   | UR(n              |            |        | 6      | g l |    |     |    |     |    |    |    |    |         | - A                                                                                         |    |
| A Min   |                |                  |    |   |            | ~     | e       | 4                | S                   | 9                 | 7          | ∞     | 6               | 10            | 11     | 12                                                                                                             | 13        | 14                | 15                | 16                | 17         | 100    | 61     | 8   | 28 | 3 8 | 24 | 25  | 26 | 27 | 28 | 53 | •<br>•  | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 就緒 |

圖 3-18 新外顯法模擬彈性無支撐隧道開挖之參數輸入表格

圖 3-19 新外顯法模擬彈性無支撐隧道開挖之計算過程


圖 3-20 新外顯法模擬彈性無支撐隧道開挖之地盤反應曲線圖

|          | lierosoft Excel - 新外題法- <u></u>              | <u>ままは終着(明準</u> 計<br>插入① 格式(G<br>(査・  り・ [ <sup>1</sup> | E).≭Is<br>10 II.∰(10)<br>  Σ 2_ | 資料(D) 親裔(W) 説<br>   100% ・ (6)              | 明(出)     |        | *  <sup>12</sup> *  B I U   ≣ ≣ ≣        | · · · · · · · · · · · · · · · · · · · | 答的問題<br> <br>         |   | 🔀 × 🎫 |
|----------|----------------------------------------------|---------------------------------------------------------|---------------------------------|---------------------------------------------|----------|--------|------------------------------------------|---------------------------------------|-----------------------|---|-------|
|          | N30                                          | ¥                                                       |                                 |                                             |          |        |                                          |                                       |                       |   |       |
|          | Å                                            | В                                                       | ບ                               | D                                           | ш        | н      | G                                        | Н                                     | Ι                     | 1 | <     |
|          | 抬體參數                                         |                                                         |                                 | 山流士                                         |          |        | 支撑假設                                     |                                       |                       |   |       |
| $\sim$   | $\sigma_v(MPa) =$                            | 1.000                                                   |                                 | r 。(MPa/m)=                                 | 0.025    |        | λd=                                      | 0.7                                   |                       |   |       |
| ŝ        | 隧道半径(m)R=                                    | 5.000                                                   |                                 | E <sub>o</sub> (Mpa)=                       | 25000    |        | n=                                       | 10                                    |                       |   |       |
| 4        | Ko=                                          | 1.000                                                   |                                 | ₽° A                                        | 0.2      |        | 支撑開始之徑向應力值 or <sup>d</sup> =             | 0.6                                   |                       |   |       |
| ß        | E(MPa)=                                      | 300                                                     |                                 | t(m)=                                       | 0.2      |        | UR <sup>d</sup> =                        | 0.01458                               |                       |   |       |
| 9        | н<br>П                                       | 0.25                                                    |                                 | K <sub>o</sub> (MPa)=                       | 1073.431 |        | 總支撑勁度Kn=                                 | 1073.43148                            |                       |   |       |
| 5        | γ(MPa/m)=                                    | 0.02                                                    |                                 |                                             |          |        | 支撑圏束之迭代値ムル=                              | 0.00548                               |                       |   |       |
| $\infty$ | c(MPa)=                                      | 0.2                                                     |                                 |                                             |          |        | /                                        | 1 2 3 4 1 - 2 1                       |                       |   |       |
| σ        | ∅()                                          | 30                                                      |                                 | 岩栓                                          |          | _      | $\nabla \mathcal{X} = \frac{1}{2}$       | $\frac{1}{(P_{N-1}) \sim 2}$          |                       |   |       |
| 10       | ψ(度)=                                        | 30                                                      |                                 | 岩拴長度(m)=                                    | 0        |        | /                                        | n 2G+K <sub>n</sub>                   |                       |   |       |
| П        | 2G=E/(1+v)=                                  | 240                                                     |                                 | 岩栓直径(m)=                                    | 0        | _      | /                                        |                                       |                       |   |       |
| 12       | K = $\tan (45^{\circ} + \frac{\phi}{2})^2 =$ | 3                                                       |                                 | S <sub>o</sub> (m)=                         | 0        | _      |                                          |                                       | and the second second |   |       |
| 13       | b 2                                          |                                                         |                                 | S <sub>1</sub> (m)=                         | 0        | _      |                                          | 3.設立支払                                | 掌假設λ <sub>0</sub>     | 進 |       |
| 14       | Kp+1=                                        | 4                                                       |                                 | Eb(MPa)=                                    | 0        | -      |                                          | 計算△20。                                |                       |   |       |
| 15       | Kp-1=                                        | 2                                                       |                                 | 岩栓段函積(m <sup>2</sup> )=                     | 0        | -      |                                          |                                       |                       |   |       |
| 16       | $U^{e}_{R(max)}(m) = \sigma v^{*}R/2G =$     | 0.021                                                   |                                 | Kb(MPa)=                                    | 0        | 7      |                                          |                                       |                       |   |       |
| 17       | Ø ₀=                                         | 0.69282                                                 |                                 | L <sup>1</sup>                              |          | 0      | 輸入支撑条數花計                                 |                                       |                       |   |       |
| 18       | λ e <sup>=</sup>                             | 0.67                                                    | v° = 7                          | $\sqrt{\Lambda_p}$                          |          | j (jin | ▲· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                                       |                       |   |       |
| 19       | <b>鲍性半径 Rp=</b>                              | 6.97025                                                 |                                 | 1 [ σ.                                      |          | ¥      | XXXXXXX                                  |                                       |                       |   |       |
| 20       | $U_{R(max)} = \lambda e^* \sigma v^* R/2G =$ | 0.0195517                                               | $\lambda_e = \frac{1}{K}$       | $\frac{1}{+1}$ $K_p - 1 + \frac{1}{\sigma}$ |          |        |                                          |                                       |                       |   |       |
| 21       | ~                                            |                                                         | 6                               |                                             | 1        | and a  |                                          |                                       |                       |   |       |
| 3        |                                              |                                                         |                                 | 22                                          | K        | Ŀ      |                                          |                                       |                       |   |       |
| 24       |                                              |                                                         | $R_p = K$                       | $\left(\frac{(K+1)}{(K+1)}\right)$          | K -1) 2  |        |                                          |                                       |                       |   |       |
| 52       | 1 輸入 岩體 參數                                   | 卡花計                                                     |                                 |                                             | [./_ d_  |        |                                          |                                       |                       |   | 1     |
| 8 5      | 算其所須計算(                                      | 道。                                                      |                                 |                                             |          |        |                                          |                                       |                       |   |       |
| 28       |                                              |                                                         |                                 |                                             |          |        |                                          |                                       |                       |   | >     |
| T<br>T   | ▶ ■\\ 參數 < 計算過程 < 图                          | <b>e</b> /                                              |                                 |                                             |          |        |                                          |                                       | 775                   | ~ |       |
| 響        | 副区)・ 🎖  快取圖案 (()・ 🖊                          |                                                         |                                 | ▼ • <u>~</u> • <u>~</u> • <u>~</u>          |          | •      |                                          |                                       | ATTA                  |   |       |
| MAR      |                                              |                                                         |                                 |                                             |          |        |                                          | 1                                     | INI                   | R | 1     |

圖 3-21 新外顯法模擬彈性完全塑性無支撐隧道開挖之參數輸入表格

|        | ierosoft Exeel - # | <b>支票</b> -新羅代 | (基础节) (有型件) 。                 | ds                             |                         |      |                  |                        |                 |                   |             |         | ×      |
|--------|--------------------|----------------|-------------------------------|--------------------------------|-------------------------|------|------------------|------------------------|-----------------|-------------------|-------------|---------|--------|
| 1      | 檔案 ① 編輯 (1)        | 檢視(公) 推        | 11人口 格式(0)                    | 工具団管料団                         | 根窗(M) 就明田)              |      |                  |                        |                 | 镭                 | 入需要解答的問題    | j́⊧     | ×<br>© |
|        |                    |                | + 12 + 61 +                   | Σ → <u>2</u> ↓   <u>100%</u>   |                         | 所細明體 | •                | 12 🔸 🖪                 | z <u>u</u>  ≣ ≣ | ÷°<br>■<br>■<br>■ | 8 *00 🛊 🛊 🗌 | - 3 - A | 2.15   |
|        | 033                |                | fr                            |                                |                         |      |                  |                        |                 |                   |             |         |        |
|        | A                  | щ              | υ                             | Δ                              | ш                       | ц    | υ                | Н                      | Ι               | ſ                 | К           | Ц       | <      |
|        | 無支撐隧道分             | -析(《泉理性社       | (模式)                          |                                |                         |      |                  |                        |                 |                   |             |         |        |
| $\sim$ | 國東損失比              |                | 徑向應力                          | 徑向位移                           | 徑向位移比                   |      | 1. 設定園、          | 束損失值(                  | 0~1·並∉          | 鮨へ                |             |         |        |
| С      | r                  |                | or=(1-λ)σv                    | $Ur = \lambda (\sigma v R/2G)$ | Ur2G/Rov                |      | 福州極限             | 之國支援                   | \$ (0.67)       | 0                 |             |         |        |
| 4      | 0                  |                | 1                             | 0000                           | 0                       |      |                  | XXX                    | 1.2.2           |                   |             |         |        |
| ы      | 1.0                |                | 0.0                           | 0.002                          | 1.0                     |      |                  |                        |                 |                   | ſ           |         |        |
| 9      | 0.2                |                | 0.8                           | 0.004                          | 0.2                     |      | 2.於彈性,           | 極限之圍                   | 束损失辟            | 1始,即產             | -#1         |         |        |
| ~      | 0.3                |                | 0.7                           | 0.006                          | 0.3                     |      | 、 凹 寸 辱          | 可由公式                   | (3-4)計          | 算得知其鄉             | 华           |         |        |
| 00     | 0.4                |                | 0.0                           | 0.008                          | 0.4                     |      | ₩ [] (           | 1<br>1<br>,            |                 |                   | 1           |         |        |
| σ      | 0.5                | 塑性半徑           | 0.5                           | 0.010                          | 0.5                     |      | 十徑。              |                        |                 |                   | 17          |         | 6      |
| 10     | 0.6                | Rp             | 0.4                           | 0.013                          | 0.6                     |      |                  |                        |                 |                   |             |         | re-    |
| 11     | 0.67               | 5.000          | 0.327                         | 0.014                          | 0.673                   |      | 3.於彈性;           | 極限之圍                   | 束损失牒            | 出始,即產             | -##         |         |        |
| 12     | 0.7                | 5.103          | 0.300                         | 0.015                          | 0.730                   |      | 都住區,             | 可由公式                   | (3-1)計          | 算得知其應             | 4           |         |        |
| 13     | 0.8                | 5.550          | 0.200                         | 0.021                          | 1.022                   |      | 下<br>( 1)<br>( ) |                        |                 |                   |             |         |        |
| 14     | 6.0                | 6.140          | 0.100                         | 0.032                          | 1.531                   |      | 。<br>1]          |                        |                 |                   |             |         |        |
| 15     | Ţ                  | 6.970          | 0.000                         | 0.053                          | 2.542                   |      | 1 3V 372 Ld      | Let the two IED        | + 10 4 as       | T T T             | 1           |         |        |
| 16     | •                  |                | -                             |                                |                         |      | 4. 次, 净 炬        | 極辰之團                   | 米溴天屏            | 143.9日            | C'          |         |        |
| 17     |                    |                |                               |                                |                         |      | 式(3-3)計          | 「算得知其                  | 其位移值            | 0                 |             |         | 1      |
| 18     | 步驟1                | 步驟空            | <del>步</del> 戰3               | 先戰4                            | 步驟5                     |      |                  |                        |                 |                   |             |         |        |
| 19     | - 11/2             | (公式34)         | (公式3-1)                       | (公式3-3)                        |                         |      | 5.將步驟,           | 4 平学出く                 | こ徑向位            | 移,同除最             | Υ<br>Υ      |         |        |
| 20     |                    |                | 200 Bird 200 Constanting Con- |                                |                         |      | 彈性位移             | ;,即可繪                  | 「製地盤」           | 反應曲線圖             | o           |         |        |
| 21     |                    |                |                               |                                |                         |      |                  |                        |                 |                   |             |         |        |
| 22     |                    |                |                               |                                |                         |      |                  |                        |                 |                   |             |         |        |
| 23     |                    |                |                               |                                |                         |      |                  |                        |                 |                   |             |         |        |
| 24     |                    |                |                               |                                |                         |      |                  |                        |                 |                   |             |         |        |
| 25     |                    |                |                               |                                |                         |      |                  |                        |                 |                   |             |         |        |
| 26     |                    |                |                               |                                |                         |      |                  |                        |                 |                   |             |         |        |
| 27     |                    |                |                               |                                |                         |      |                  |                        |                 |                   |             |         |        |
| 28     |                    |                |                               |                                |                         |      |                  |                        |                 |                   |             |         |        |
| 29     |                    |                |                               |                                |                         |      |                  |                        |                 |                   |             |         |        |
| 30     |                    |                |                               |                                |                         |      |                  |                        |                 |                   |             |         |        |
| 31     |                    |                |                               |                                |                         |      |                  |                        |                 |                   |             |         | >      |
| •<br>• | ▶ ■ \ 參數 \ 計       | 基過程人間/         |                               |                                |                         |      |                  | <ul> <li>()</li> </ul> |                 | 1946<br>1947      |             |         | ~      |
| 物區     | 3(K) + 😓   快取圖     | 、、、回業          |                               |                                | ∎ • <b>▼</b> • <b>▼</b> |      |                  |                        |                 |                   |             |         |        |
| 就緒     |                    |                |                               |                                |                         |      |                  |                        |                 |                   |             | NUM     |        |

圖 3-22 新外顯法模擬彈性完全塑性無支撐隧道開挖之計算過程



圖 3-23 新外顯法模擬彈性完全塑性無支撐隧道開挖之地盤反應曲線圖

|                | K       | ×      | 2.00          |    | < |       |       |             |     |                   |                  |       | (     |      |             | 1      |                    | mi                 |                                                                                          | 1                          |                   |         | ľ      |         | -1   | T        | r -     |        |   | 1 | 1  | -1 | >        | 7                  |            |
|----------------|---------|--------|---------------|----|---|-------|-------|-------------|-----|-------------------|------------------|-------|-------|------|-------------|--------|--------------------|--------------------|------------------------------------------------------------------------------------------|----------------------------|-------------------|---------|--------|---------|------|----------|---------|--------|---|---|----|----|----------|--------------------|------------|
|                |         | 1      | 4             |    | ĥ |       |       |             |     |                   |                  |       |       |      |             |        | ,                  | Ħ                  |                                                                                          |                            |                   |         |        |         |      |          |         |        |   |   |    |    | 1        | 2                  |            |
|                |         |        | \$            |    |   |       |       |             |     |                   |                  |       |       |      |             |        |                    | ξλ <sub>d</sub> .  | -                                                                                        |                            |                   |         | _      | _       |      |          | +       | -      | _ |   | _  | _  | -        |                    | X          |
|                |         | 题      |               |    | п |       |       |             |     |                   |                  |       |       |      |             |        |                    | 観                  |                                                                                          |                            |                   |         |        |         |      |          |         |        |   |   |    |    | -        | 7                  | UN         |
|                |         | 間的部門   |               |    |   |       | 4.    | 0           | 9.  | 3                 | 00               | 5     |       |      |             | _      | T. Nate            | 取め                 | °<br>X                                                                                   |                            |                   |         | _      | _       |      |          | -       | -      |   | _ | _  | _  | _        |                    |            |
|                |         | 経要罪    | 1911<br>0014  |    |   |       | 0     | 5005        | 0   | .0083             | 4314             | 0109  |       |      |             |        |                    | Ħ                  |                                                                                          |                            |                   |         |        |         |      |          |         |        |   |   |    |    |          |                    |            |
|                |         | 新      | 000°*         |    | H |       |       |             |     | 0                 | 1073             | 0     |       |      |             |        |                    | 5.截                | tio                                                                                      |                            |                   |         |        |         |      |          |         |        |   |   |    |    |          |                    |            |
|                |         |        | <del>\$</del> |    |   |       |       |             |     |                   |                  |       |       |      |             | 1      | /                  |                    |                                                                                          |                            |                   |         |        |         |      |          |         |        |   |   |    |    |          |                    |            |
|                |         |        |               |    |   |       | λď=   | n=          | LOR | UR <sup>d</sup> = | Kn=              | ∠ λ = |       |      | 1           | /      |                    |                    |                                                                                          |                            |                   |         |        | -       |      |          |         |        |   |   |    |    |          |                    | <u></u>    |
|                |         |        |               |    |   | 24    |       |             | 惠力値 |                   | 年勤房              | 代值 2  |       | 1    | 1           |        |                    |                    |                                                                                          |                            |                   | 法計      |        |         |      |          |         |        |   |   |    |    |          |                    |            |
|                |         |        | D             |    | 5 | 掌俄彭   |       |             | 極向人 |                   | 總支也              | 文瑛    | 1     | /    |             |        |                    |                    |                                                                                          |                            |                   | 教       | 。世     | ×       |      |          |         |        |   |   |    |    |          |                    |            |
|                |         |        | 7 8           |    |   | 技     |       |             | もあ  |                   |                  | 國家    |       |      |             |        |                    |                    |                                                                                          |                            |                   | 著       | 新学     | 1 3/1   |      |          |         |        |   |   |    |    |          |                    |            |
|                |         |        |               |    |   |       |       |             | 雄智  |                   |                  | 支払    |       |      |             |        |                    |                    |                                                                                          |                            |                   | もん      | もち     | X       |      |          |         |        |   |   |    |    |          |                    |            |
|                |         |        | 12            |    |   |       | _     | _           | HX. |                   | _                |       |       |      |             |        |                    |                    |                                                                                          |                            |                   | 率       | T<br>T | ¥<br>-  | _    |          |         | -      |   |   |    | _  | 1        | 4                  |            |
|                |         |        |               |    | щ |       |       |             |     |                   |                  |       |       | -    |             | _      | -                  | -                  | -                                                                                        | -                          | 7                 | 5       | -      | r       |      |          |         |        |   |   |    |    |          |                    | 19         |
|                |         |        |               |    |   | -     | Ь     | 0           | 2   | N                 | _                | -     |       |      | 0           | 0      | 0                  | 0                  | 0                                                                                        | -                          | 0                 |         | _      |         |      |          | -       | _      | _ | _ |    | _  | _        | 0                  |            |
|                |         |        | Ð             |    |   |       | 0.02  | 2500        | ö   | o.                | 73.43.           |       |       |      |             | 152863 |                    |                    |                                                                                          |                            | 15960             |         |        |         |      |          |         |        |   |   |    |    |          |                    | ∎<br>.‡    |
|                |         |        | 所出明備          |    | ш |       |       |             |     |                   | 107              |       |       |      |             |        |                    |                    |                                                                                          |                            |                   |         |        |         |      |          |         |        |   |   |    |    |          |                    | -          |
|                |         | 明田     | 1 IP          |    |   |       | п     | П           | - H | п                 | -11              |       |       |      | Ш           | 11     | II                 | п                  | н                                                                                        |                            | -11               |         |        |         |      |          | _       |        |   |   |    |    | _        |                    |            |
|                |         | 新<br>の | ۲             |    |   | 11    | Pa/m) | (Mpa)       | V.o | t(m)              | (MPa)            |       |       | 10   | 廃(m)        | 極(m)   | S <sub>e</sub> (m) | S <sub>l</sub> (m) | (MPa)                                                                                    | <b>≹</b> (m <sup>2</sup> ) | (MPa)             |         |        |         | 吉    | 0        |         |        |   |   |    |    |          | V - 6              |            |
|                |         | 温暖(図   |               |    | Δ | 一 滅 垣 | r 。(M | )°Э         |     |                   | K <sub>e</sub> ( |       |       | 岩橇   | 捡長.         | 检道:    |                    |                    | E <sub>b</sub> (                                                                         | 受函行                        | K <sub>b</sub> (  |         |        |         | 数山   | 値        |         |        |   |   |    |    |          | 1                  |            |
|                |         | 0      | 100%          |    |   | ш     | 1000  |             |     |                   |                  |       |       |      | 3/E         | 9¦£    |                    |                    |                                                                                          | 站格                         |                   |         |        |         | 警察   | 手度       |         |        |   |   |    |    |          | R 1 0              | 2          |
|                |         | 菜純     |               |    |   |       |       | _           |     | _                 | _                | -     |       | -    |             |        |                    | _                  |                                                                                          |                            |                   |         |        |         | 岩    | 行须       |         | T      |   |   |    |    | -        | 4                  | 3          |
|                |         |        | Z +           |    | υ |       |       |             |     |                   |                  |       |       |      |             |        |                    |                    |                                                                                          |                            |                   |         |        |         | く領   | 其角       |         |        |   |   |    |    |          | 5°                 | 101 IV     |
| -              | xIs     | ਸ<br>a | × N           |    |   |       |       | Ь           | -   | 800               | .25              | .02   | 8     | 60   | 60          | 240    | 28                 | _                  | 83                                                                                       | 8                          | 83                |         |        |         | -191 | 蒼        | -       |        |   | _ |    |    | -        |                    |            |
|                | (H) (H) | し、武裕   | 2.            |    |   |       |       |             |     |                   | 0                | 0     | Ħ     |      |             |        | 13.9               |                    | 14.9                                                                                     | 12.9                       | 0.020             |         | 1      |         |      |          |         |        |   |   |    |    |          | •                  |            |
| and the second |         | 9      | 2             | ţ, | ш |       |       |             |     |                   |                  |       |       |      |             |        |                    |                    |                                                                                          |                            |                   |         | /      |         |      |          | . >     |        |   |   |    |    | <u>_</u> |                    | <u>ו</u> ב |
|                | 御文目     | 増      | •             |    |   |       | п     | п           | П   | - 11              | - 11             | m     | п     | -11  | - Ĥ         |        |                    |                    | п                                                                                        | п                          | п                 | /       |        |         |      | 6        | 6       |        |   |   |    |    | 1 (B)    |                    | ,          |
| 1              | ۲.<br>H |        | 7             |    |   |       | MPa)= | (m)R=       | K   | MPa)=             | 4<br>T           | :(m/e | MPa)= | Ë)   | -<br>B<br>U | 1+v)=  | ے <sup>1</sup>     |                    | <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre> | Kp-1=                      | R/2G=             |         |        |         |      | 5        | -<br>   |        |   |   |    |    | 111.12   |                    |            |
| 2.4            |         | -<br>  |               |    |   | 參數    | q_()  | <b>赵</b> 本曾 |     | Ε(                |                  | γ(MF  | 00    | a    | ħ           | G=E/(  | 50+5               |                    |                                                                                          |                            | =0V*]             |         |        | Å       | -    | <u>۲</u> |         | l.     |   |   |    |    | 1        |                    |            |
|                | Excel   | 編輯     | -             |    | A | 加調    |       | N.          |     |                   |                  |       |       |      |             | ŭ      | an (4              |                    |                                                                                          |                            | x)(m):            |         |        | 2C.1    | 2    | -        | +.<br>  | 1<br>• |   |   |    |    | 2. 金小茸儿  | 20.24.2<br>1 4 H H | -          |
|                | HOSO    | 憲法     |               | N3 |   |       |       |             |     |                   |                  |       |       |      |             |        | ×<br>t             | ρ.                 |                                                                                          |                            | U <sub>R(me</sub> |         |        | li<br>b | 8    | 1        | مہ<br>ا |        |   |   |    |    | 4        |                    | 24         |
|                | E HIGI  | 響      |               |    |   | Ţ     | 2     | ŝ           | 4   | 5                 | 9                | 7     | 00    | 6    | 10          | 11     | 12 1               | 13                 | 14                                                                                       | 15                         | 16                | 17      | 8      | 61      | 2    | 25       | 3 22    | 24     | ß | 8 | 52 | 8  | 0        | も同会                |            |
| L              |         |        |               | 1  |   |       | 2225  | 1           |     |                   | -3403            | 1     | 1000  | - 23 | 10          | 1000   | 100                |                    | 1000                                                                                     |                            | 100               | e18204. |        | -       |      |          |         | 1 4    |   |   |    |    |          |                    | · 100      |

圖 3-24 新外顯法模擬彈性有支撐隧道開挖之參數輸入表格

| ×                | ×              | 2.10                                            |     | <  | 1    |       |              |       |       |       |       |                   |       |       |       |       |       | 1     | íí<br>I |       |       |       |    | Ŧ     | i a         |        |        |               | 1     |                                                       | 1   | 1      | 2        |                                                                                             |
|------------------|----------------|-------------------------------------------------|-----|----|------|-------|--------------|-------|-------|-------|-------|-------------------|-------|-------|-------|-------|-------|-------|---------|-------|-------|-------|----|-------|-------------|--------|--------|---------------|-------|-------------------------------------------------------|-----|--------|----------|---------------------------------------------------------------------------------------------|
| f0               | 40<br>  <br> } | → ▲ -                                           |     | M  |      |       |              |       |       |       |       |                   |       |       |       |       |       |       |         |       |       |       |    |       |             |        |        |               |       |                                                       |     |        | ^        |                                                                                             |
|                  | 的問題            | •                                               |     | -1 |      |       |              |       |       |       |       |                   |       |       |       |       |       |       |         |       |       |       |    |       |             |        |        |               |       |                                                       |     |        |          | MUN                                                                                         |
|                  | 輸入需要解答         | <u></u><br>==================================== |     | М  |      |       |              |       |       |       |       |                   |       |       |       |       |       |       |         |       |       |       |    |       |             |        |        |               |       |                                                       |     |        |          |                                                                                             |
|                  |                | ≣<br>                                           |     | ĥ  |      |       |              |       |       |       |       |                   |       |       |       |       |       |       |         |       |       |       |    |       |             |        |        |               |       |                                                       |     |        |          |                                                                                             |
|                  |                | ū  ≣ ≣                                          |     | Ι  |      |       |              |       |       |       |       |                   |       |       |       |       |       |       |         |       |       |       |    |       |             |        |        |               |       |                                                       |     |        |          |                                                                                             |
|                  |                | → B Z                                           |     | Н  |      |       |              |       |       |       |       |                   |       |       |       |       |       |       |         |       |       |       |    | در    |             |        |        |               |       |                                                       |     |        |          |                                                                                             |
|                  |                | + 12                                            |     | υ  |      |       |              |       |       |       |       |                   |       |       |       |       |       |       |         |       |       |       |    | 多正規1  | с<br>с<br>4 | 21215  |        |               |       |                                                       |     |        | ~        |                                                                                             |
|                  |                | 明體                                              |     | щ  |      | 至向位移比 | Ur2G/Rov     | 0     | 0.1   | 0.2   | 0.3   | 0.4               | 0.411 | 0.422 | 0.433 | 0.444 | 0.455 | 0.466 | 0.477   | 0.488 | 0.499 | 0.510 |    | 6.做位利 | L 12 40     | 。《北川向  | 2      | 1             |       |                                                       |     |        |          |                                                                                             |
|                  | N KHU          | ● 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1         |     | ш  |      | 目的位称  | l (ovR/2G)   | 0.000 | 0.002 | 0.004 | 0.006 | 0.008             | 600.0 | 600.0 | 600.0 | 0.009 | 600.0 | 0.010 | 0.010   | 0.010 | 0.010 | 0.011 | •  |       | いたなら        | J.司 井位 | 售力。式2- | 2             | 2     | 0                                                     |     |        |          | ≝ <b></b> . <b>.</b>                                                                        |
|                  | 資料(1)) 視窗(1    | 1 100%                                          |     | D  |      | 前應力 徑 | L- A) OV Ur= | Ţ     | 0.9   | 0.8   | 0.7   | 0.6               | 0.589 | 0.578 | 0.567 | 0.556 | 0.545 | 0.534 | 0.523   | 0.512 | 0.501 | 0.490 |    |       |             |        | 計算徑向原  | <b>温牛。</b> オ3 | シャートド | $P_s = n\Delta \lambda \left( \frac{K_n}{2G} \right)$ | 20, |        |          | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| য                | 0 UT           | Σ + <u>Δ</u> ↓                                  |     |    |      | 調査    | 0r=(1        | 0     | 1.(   | 12    | 5     | .4                |       | 2     | 33    | 4     | 55    | 90    | 17      | 8     | 6     | 0     |    |       |             |        | 4.7    | 1 图 9         | 十四十   | 度值為                                                   |     |        |          |                                                                                             |
| <b>隧道(师性).</b> × | (1) 格式(0)      | - N G                                           | Ŕ   | υ  |      | 重束損失出 | ч            |       | )     | )     | 7     | λ <sub>d</sub> (0 | 0.41  | 0.42  | 0.43  | 0.4   | 0.45  | 0.46  | 0.4     | 0.48  | 0.49  | 0.51  | •  |       |             |        |        | +             | . I.a | と支撑到                                                  | [   | • 0    |          |                                                                                             |
| 新外顕法-有支展         | 型 機械(型) 描入     | )   <b>()</b>   () () ()                        | •   | В  | 分析   |       |              |       |       | 支撑勁度  | Ps    | 0.000             | 0.049 | 0.098 | 0.147 | 0.196 | 0.245 | 0.294 | 0.343   | 0.392 | 0.441 | 0.490 |    |       |             |        |        |               |       | 2.各疊加之                                                |     | 疊加值1~1 | 定入計算過程人區 | ▼ / ・ ① 迷園                                                                                  |
| soft Excel -     | EE 編輯(         |                                                 | P33 | A  | 支撑隧道 |       |              |       |       | 加值    | п     | 0                 | -     | 0     | n     | 4     | S     | 9     | 2       | 00    | 0     | 10    | -  |       |             |        |        |               |       |                                                       |     | 1. 設立  | ■ \ 參數税  | • 💫   快取                                                                                    |
| Miero            | 響              |                                                 |     |    | 1 有  | 2     | 3            | 4     | ъ     | 9     | 7     | 00                | σ     | 10    | 11    | 12    | 13    | 14    | 15      | 16    | 17    | 18    | 19 | 85    | 3           | 23     | 24     | 55            | 27    | 28                                                    | 29  | 8      | ¥<br>₹   | :<br>繪圖 (R)<br>就緒                                                                           |

圖 3-25 新外顯法模擬彈性有支撐隧道開挖之計算過程



圖 3-26 新外顯法模擬彈性有支撐隧道開挖之地盤反應曲線圖

|                 | X<br>To        | 2.15               |     | <  |      |                   |                       |                               |                   |                       |                    |         |                      |          |             |                                     | m                   |                       |                         |              |            |                                 |                   |                                                                  |   |                                        | ľ                    |          | 1         |                        | >                          |                 |
|-----------------|----------------|--------------------|-----|----|------|-------------------|-----------------------|-------------------------------|-------------------|-----------------------|--------------------|---------|----------------------|----------|-------------|-------------------------------------|---------------------|-----------------------|-------------------------|--------------|------------|---------------------------------|-------------------|------------------------------------------------------------------|---|----------------------------------------|----------------------|----------|-----------|------------------------|----------------------------|-----------------|
|                 |                | • 🗞 • 🗛            |     | К  |      |                   |                       |                               |                   |                       |                    |         |                      |          |             | ,                                   | Yd进                 |                       |                         |              |            |                                 |                   |                                                                  |   |                                        |                      |          |           |                        |                            |                 |
|                 | 解答的問題          |                    |     | J  |      |                   |                       |                               |                   |                       |                    |         | 7                    |          | 10.00       | and the second                      | 揮假設                 | 0                     |                         |              |            |                                 |                   |                                                                  |   |                                        |                      |          |           |                        |                            | P               |
|                 | 輸入瑞费           | \$ *.0 .00         |     | I  |      |                   |                       |                               |                   |                       |                    | G(1-2.  |                      | 2GHK     |             |                                     | 1. 設立支              | 計算△λ                  |                         |              |            |                                 |                   |                                                                  |   |                                        |                      |          |           |                        |                            |                 |
|                 |                |                    |     | Н  |      | 0.7               | 10                    | 0.6                           | 0.01458           | 1073.43148            | 0.00548            |         | $\Delta \lambda = -$ |          | /           | /                                   |                     | 2012                  |                         |              | 1          |                                 | 1                 |                                                                  |   |                                        |                      |          |           |                        |                            |                 |
|                 |                | • 12 • B I U       |     | IJ | 支撑假設 | λ <sub>d</sub> =  | n=                    | σ <sub>R</sub> <sup>d</sup> = | UR <sup>d</sup> = | 總支撑勁度Kn=              | $\Delta \lambda =$ | /       | /                    |          |             |                                     |                     |                       |                         |              | 自入支撑条数並    | 其支撑勁度。                          |                   | -                                                                |   |                                        |                      |          |           |                        | -                          |                 |
|                 |                | 1.000              |     | н  |      |                   |                       |                               |                   |                       |                    |         |                      |          |             |                                     |                     | 2                     | -                       | 7            | 2.南        | 营                               |                   | 5                                                                |   |                                        |                      |          |           |                        |                            |                 |
|                 | Ð              | 二 新細明體             | 1   | ш  |      | 0.025             | 25000                 | 0.2                           | 0.2               | 1073.431              |                    |         |                      | 0        | 0           | 0                                   | 0                   | 0                     | 0                       | 0            |            |                                 |                   |                                                                  |   | $+\sigma, \overline{\mathbb{K}_{p-1}}$ | 2                    | -        |           |                        |                            | ↑↓↓<br>    <br> |
|                 | 資料(四) 視窗(例) 説明 | 1 🛄 100% 🔹 🛞       |     | D  | 噴凝土  | $r_{o}(MPa/m) =$  | E <sub>o</sub> (Mpa)= | ₽°A                           | t(m)=             | K <sub>o</sub> (MPa)= |                    |         | 岩栓                   | 岩栓長度(m)= | 岩栓直徑(m)=    | S <sub>o</sub> (m)=                 | S <sub>I</sub> (m)= | E <sub>b</sub> (MPa)= | 岩栓段面積(m <sup>2</sup> )= | Kb(MPa)=     | <u>(1)</u> | V <sup>P</sup>                  | ι, σ <sub>6</sub> | $\frac{1}{+1}$ N <sub>p</sub> -1 <sup>+</sup> $\frac{1}{\sigma}$ |   | 2 σ <sub>v</sub> (K, -1)-              | <u>K +1</u> $\sigma$ | o<br>0.  |           |                        | _                          | S S             |
| ).xls           | 日本             | -   Σ + <u>2</u> ↓ |     | υ  |      |                   |                       |                               |                   |                       |                    |         |                      |          |             |                                     |                     |                       |                         |              |            | 0 <sup>°</sup> – <sup>2</sup> 0 | ç                 | $\lambda_{\rm e} = K$                                            | 4 |                                        | R₀=R                 |          |           |                        |                            | ₩ <b>4</b>      |
| <b>部態道(病型性</b>  | 1人U 格式(0       | n) (m              | Ŕ   | В  |      | 1.000             | 5.000                 | 1.000                         | 300               | 0.25                  | 0.02               | 0.2     | 30                   | 30       | 240         | 3                                   |                     | 4                     | 3                       | 0.021        | 0.69282    | 0.67                            | 6.97025           | 0.0195517                                                        |   |                                        |                      | ++       |           |                        |                            |                 |
| xcel - 新外顕法-有支担 | 偏輔臣、檢視(公) 抽    | . 3 1 1 5 P        | •   | A  | 體參數  | $\sigma_v(MPa) =$ | 隧道半径(m)R=             | Ko=                           | E(MPa)=           | لا =                  | γ(MPa/m)=          | c(MPa)= | ø(覚)=                | ψ(度)=    | 2G=E/(1+n)= | $n(45^{\circ}+\frac{\phi}{2})^{2}=$ | 2                   | Kp+1=                 | Kp-1=                   | (m)=0v*R/2G= | ď ₀=       | λ <sub>e</sub> π                | <b>鲍</b> 姓半径Rp=   | $\lambda e^* \sigma v^* R/2G = 0$                                | - |                                        |                      | > 生調余姓 法 | 人名阿少数兰尔福尔 | 개 / 시 이 <del>가</del> 追 | 아 / 카(道:御)紀 / 圖 /          | ■××==×==×=×=×   |
| H E             | -              | 4                  | 331 |    | ΉÈ   |                   |                       |                               |                   |                       |                    |         |                      |          |             | = ta                                |                     |                       |                         | (mext)       |            |                                 |                   | E(XB                                                             |   |                                        | -                    | \$       | È ta      | *                      | 1<br>1<br>1<br>1<br>1<br>1 | 13              |

圖 3-27 新外顯法模擬彈性完全塑性有支撐隧道開挖之參數輸入表格

| ×                                         | ×<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ± 10                |     | < |        |                   | ľ    |       |       |       | 6     |       |       |          |                      |       | 1     | iir'  |       |       |       |       |       |       | ( in t | 1  |    |          |             |         |    |    |    | >      | Flag                                                                            |           |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----|---|--------|-------------------|------|-------|-------|-------|-------|-------|-------|----------|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|----|----|----------|-------------|---------|----|----|----|--------|---------------------------------------------------------------------------------|-----------|
|                                           | j -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |     | L | 2      |                   |      |       |       |       |       |       |       |          |                      |       |       |       |       |       |       |       |       |       |        |    |    | =0.7時之   |             | 過加。     |    |    |    |        |                                                                                 | MUM       |
|                                           | 八需要解答的問題                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ©   🗱 🗱   0°*       |     | K |        |                   |      |       |       |       | 差値    | 0.030 | 徑向位移比 | Ur2G/Rov | 0.730                | 0.737 | 0.743 | 0.749 | 0.756 | 0.762 | 0.769 | 0.775 | 0.782 | 0.788 | 0.794  | 1  |    | (血支撑心=   |             | 立移比差值   |    |    |    |        |                                                                                 | l         |
|                                           | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | iii \$ 100 €        |     | 1 |        | 徑向應力              | П    | 0.9   | 0.8   | 0.7   | 9.0   | 0.5   | 0.4   | 0.327    | 0.300                | 0.294 | 0.287 | 0.281 | 0.274 | 0.268 | 0.261 | 0.255 | 0.249 | 0.242 | 0.236  | ١  |    | 3.比照     | E E         | 從向1     |    |    |    |        |                                                                                 | <u>11</u> |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | z <u>u</u>  ≣ ≣     |     | Ι |        |                   |      |       |       |       |       | 塑性半徑  | Rp    | 5.000    |                      |       |       |       |       |       |       |       |       |       |        |    |    | 副夹损失     | 子<br>子<br>子 | 111。    |    |    |    |        |                                                                                 |           |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12 V B              |     | Н |        | 国束損失比<br>A        | 00.0 | 0.10  | 0.20  | 0.30  | 0.40  | 0.50  | 09.0  | 0.67     | λ <sub>d</sub> 0.700 | 0.706 | 0.713 | 0.719 | 0.726 | 0.732 | 0.739 | 0.745 | 0.751 | 0.758 | 0.764  |    |    | 豊加後之     | 車とはよ        | 馬川視大    |    |    |    | ~      | in fayor                                                                        |           |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |     | Ð | 道分析    |                   |      |       |       | 6     | e.    | 2     | 支撐勁度  | Ps       | 0.000                | 0.024 | 0.047 | 0.071 | 0.094 | 0.118 | 0.141 | 0.165 | 0.189 | 0.212 | 0.236  |    |    | 2. 依照,   | 資本・         | 1 H     |    |    |    |        |                                                                                 |           |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 新細明體                |     | н | 有支撑险   |                   |      |       |       |       |       |       | 疊加值   | n        | 0                    | ٣     | 2     | m     | 4     | Ŋ     | 9     | 2     | 00    | 6     | 10     |    |    | 朱        |             |         |    |    |    |        | ↑↓↓<br>                                                                         |           |
|                                           | [竈(州) 説明田)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 P                 |     | ш |        | 徑向位移比<br>Ur2G/Rov | 0    | 0.1   | 0.2   | 0.3   | 0.4   | 0.5   | 0.6   | 0.673    | 0.730                | 1.022 | 1.531 | 2.542 |       |       |       |       |       |       |        |    |    | 則圍東湄     |             | · 1/1 · |    |    |    |        |                                                                                 |           |
|                                           | 11 「「「「」」」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>2</u> 4   🌆 100% |     | D |        | <b>剄</b> 向位移      | 0000 | 0.002 | 0.003 | 0.005 | 0.007 | 600.0 | 0.010 | 0.012    | 0.012                | 0.017 | 0.026 | 0.043 |       |       |       |       |       |       |        |    |    | 投礼=0.7 , |             | A值述次量   |    |    |    |        | ()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>( |           |
| »(*)(*)(*)(*)(*)(*)(*)(*)(*)(*)(*)(*)(*)( | <ol> <li>1</li> <li>1</li></ol> | F(2) + (2) + [Σ +   | Ŕ   | υ |        | 徑向應力              | П    | 0.9   | 0.8   | 0.7   | 0.6   | 0.5   | 0.4   | 0.327    | 0.300                | 0.200 | 0.100 | 0.000 |       | -     |       |       |       |       |        |    |    | 1.億1     | <           | ₩<br>\[ |    |    |    |        |                                                                                 |           |
| 1四次 有少担                                   | 檢視(①) 插入                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | •   | В | ıĿ     |                   |      |       |       |       |       | 塑性半徑  | Rp    | 5.000    | 5.103                | 5.550 | 6.140 | 6.970 |       |       |       |       |       |       |        |    |    |          |             |         |    |    |    | 3周程/圖/ |                                                                                 |           |
| oft Fweel - 新存                            | (L) 編輯(E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | M31 | A | 支撑隧道分布 | 速損失比<br>A         | 0    | 0.1   | 0.2   | 0.3   | 0.4   | 0.5   | 0.6   | 19.0     | 0.7                  | 0.8   | 0.9   |       |       |       |       |       |       |       |        |    |    |          |             |         |    |    |    | 町吉へ橋参く | い一体取画案                                                                          |           |
| Miems                                     | 「「「「「「」」」                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                   |     |   | 1 無5   | 7<br>2<br>3       | 4    | ы     | 9     | 2     | ∞     | 6     | 10    | 11       | 12                   | 13    | 14    | 15    | 16    | 17    | 18    | 19    | 20    | 21    | 22     | 23 | 24 | 25       | 26          | 27      | 28 | 29 | 30 | × 31   | : 繪圖(R) •                                                                       | 就緒        |

圖 3-28 新外顯法模擬彈性完全塑性有支撐隧道開挖之計算過程



圖 3-29 新外顯法模擬彈性完全塑性有支撑隧道開挖之地盤反應曲線圖

# 第四章 無支撐隧道開挖之地盤反應行為模擬分析

# 4.1 前言

在隧道開挖之數值模擬分析中,通常可依照有支撐與無支撐隧道分析;而 有無支撐隧道開挖分析可區分為彈性(線性)分析與彈性完全塑性(非線性) 分析。本章節就以無支撐隧道開挖之有限元素法(Finite Element Method, FEM) 分析與新外顯法(New Explicit Method, NEM)分析,作兩種模擬分析結果作一 比較。

### 4.2 模擬分析之假設

在模擬隧道開挖岩體為彈性模式時,假設現地應力條件為等向性  $K_0=1.0$  與 垂直應力  $\sigma_v=1$  MPa;岩體材料為彈性模數 E=300 MPa、波松比 v=0.25、單位重  $\gamma=0.02$  MPa/m 且欲開挖之隧道半徑 R 為 5 m。

隨著圍束損失之遞增從 λ=0 至 1.0 之釋放情形,可算出岩體之徑向應力與徑 向位移量。接著將各疊加λ值之岩體徑向位移量對U<sup>e</sup><sub>R(max)</sub>正規化,即可繪出線彈 性時無支撐隧道開挖地盤反應曲線。

於岩體材料為彈性完全塑性模式下,假設岩體參數包含:凝聚力 c=0.2 MPa、內摩擦角 $\phi$ =30°,此時岩體將會產生塑性行為,由彈性極限之圍束損失公式(3-5),可計算出此類型岩體將會在 $\lambda_e$ =0.69時開始進入塑性行為階段,亦可由塑性半徑公式求得岩體因開挖擾動而產生的塑性半徑  $R_p$ ,且彈性極限之最大徑向位移量 $U^e_{R(max)}$ 。

關於隧道開挖之地盤反應曲線座標軸所表示之意涵為:(y 軸為 σ<sub>R</sub>/σ<sub>v</sub> 與 x 軸為 2GU<sub>R</sub>/Rσ<sub>v</sub>)。σ<sub>R</sub>/σ<sub>v</sub> 為隧道徑向應力與垂直應力之比值、2GU<sub>R</sub>/Rσ<sub>v</sub> 為隧道 徑向位移對最大彈性位移正規化之比值。U<sub>R</sub> 為隧道壁面上之徑向位移量、R 為 隧道半徑、G 為岩體材料之剪力模數、σ<sub>v</sub>為垂直應力值與 σ<sub>R</sub> 為隧道徑向應力。

### 4.3 新外顯法模擬結果

#### 4.3.1 彈性模式

如圖 4-1 所示,徑向位移量經過對最大位移正規化後曲線呈線性直線。在初始狀態(λ=0)其應力為初始應力,而岩體尚未受到開挖擾動其徑向位移量為零, 隨著疊代值λ由0至1的增加,徑向應力減少,而徑向位移量增加,其正規化 後之值為1,徑向位移量為0,所以地盤反應曲線呈一直線。

#### 4.3.2 彈性完全塑性模式

參照 3.3.3 節無支撐隧道開挖模擬步驟所述,岩體尚為線彈性狀態時  $(0 \leq \lambda \leq \lambda_e)$ ,可用彈性模式之公式做計算,但當岩體開始產生塑性行為時  $(\lambda_e \leq \lambda \leq 1)$ 可用新外顯法計算。

由圖 4-2, λ=λ。時,岩體開始產生塑性行為,曲線開始呈現非直線性走向, 而正規化後之最大徑向位移量比則為 2.542。並隨著凝聚力 c 與內摩擦力 φ之不 同,λ。值而有所不同。如表 4-1 與圖 4-3 所示,當凝聚力 c 值固定,則 φ值越大 λ。 值亦越大,岩體越晚產生塑性行為;同樣的,固定 φ值,隨著 c 值之增加,λ。值 也隨之增加。由圖 4-4 可看出,當 c 值固定,內摩擦角越大所產生的徑向位移越 小;當固定 φ值,所產生的徑向位移也隨著 c 值得增加而增大。但 c=0.1 時,相 較於其他討論範圍,卻產生較大而且明顯之位移。

### 4.4 有限元素法模擬結果

#### 4.4.1 彈性模式

經由實驗室研究開發之有限元素法程式執行模擬,由 3.2.3 節所述之步驟完成計算,輸出頂拱位置之各階疊代應力值與位移量,並經過後處理則可繪出地

盤反應曲線圖。

圖 4-5 表示隧道開挖之地盤反應曲線圖,在初始狀態(λ=0)其應力為初始 應力,岩體尚未受到開挖擾動其徑向位移量為零,並隨著隧道的開挖,應力亦 隨之釋放,當圍束損失遞增至1(λ=1),此時應力完全釋放,其徑向位移量則 為最終位移量,經過對U<sub>R(max)</sub>正規化後其值為1,徑向應力為零。

#### 4.4.2 彈性完全塑性模式

考慮岩體材料為彈塑性模式時,受到開挖擾動,圍岩應力逐漸釋放至彈性 極限範圍之圍束損失(λ=0→λ<sub>e</sub>),最後應力繼續釋放至λ=1.0時,產生一最終 位移量。如圖4-6所示,隨著徑向應力的減少,正規化後之徑向位移量值亦隨著 增加,但開挖初期,岩體尚處於彈性行為階段,當達彈性極限極限之圍束損失 時,則開始進入塑性行為模式,地盤反應曲線即由線性彈性轉為非線性且非彈 性之行為,並隨著材料性質之不同而有所不同。

依不同的凝聚力及內摩擦角,如表 4-1 與圖 4-7 而得到有限元素法程式模擬 計算得出之不同凝聚力對應各內摩擦角時之λ。值,由表可知λ。值隨著 c、φ值的 增加而增加。而由圖 4-8 亦可看出,其徑向位移量之趨勢與新外顯法所得結果相 符。

# 4.5 新外顯法與有限元素法之分析結果比較

兩者分析模式在無支撐隧道開挖之模擬中,所得出之結果皆有著相同的趨勢傾向。如圖 4-9 至圖 4-12 所示,彈性模式中,分別以新外顯法與有限元素法 模擬,岩體參數之波松比v分別假設0.1、0.25、0.3互相比較後,皆呈線性直線的 情況;且分別假設彈性模數 E 為 300 MPa、1000 MPa、4000 MPa 可看出,亦並 不影響隧道開挖後之地盤反應曲線。

由圖 4-13 至圖 4-32 可知,兩種模擬方式皆達λ。後開始產生非線性之塑性行為,表示周圍岩軆已經發生塑性破壞,岩體已有體積伸張的現象,進而產生較

大的徑向位移量,其有限元素法所模擬之岩體,於 λe之後所產生的徑向位移速 率大於新外顯法所模擬之結果,所以新外顯法模擬出之最終徑向位移量較高於 有限元素法所模擬的結果,如表 4-2 所示。

於彈性完全塑性模式中,考慮各別於不同之內摩擦角ф和凝聚力 c 之影響。 如圖 4-33 地盤反應曲線所示,在相同之內摩擦角情況下,當凝聚力越小,其所 產生之徑向位移量越大,隨著應力釋放,越早產生塑性行為。

若在相同之凝聚力下(如圖 4-34 所示),探討內摩擦角之影響時,在開挖 初期,不同內摩擦角之線段皆為直線且重疊,此時材料尚為彈性行為。隨著開 挖前進,開始產生塑性行為,而由直線變為曲線。當內摩擦角越小,塑性行為 也相同的越早發生。

由表 4-3 的整理可看出,在彈性完全塑性模式中, c、φ值影響著岩軆塑性範 圍(R<sub>p</sub>)的大小以及彈性極限之範圍。彈性極限之圍束損失會隨著凝聚力與內 摩擦角之增加而增加,岩體條件亦越接近彈性材料之理想行為。

於彈性模式下,有限元素法與新外顯法模擬分析無支撐隧道之結果顯示, 兩種分析方式可合理且相符合的模擬岩體收斂與應力釋放情形。但當岩體材料 為彈性完全塑性模式時,當凝聚力 c 值固定,內摩擦角越大,兩種模擬方式所 得出的最終徑向位移量差越大;且在相同岩體參數條件下,新外顯法將比有限 元素法產生較大之最終徑向位移量。

| 2              | c=    | 0.1   | c=    | 0.2   | c=    | 0.3   | c=    | 0.4   |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Λ <sub>e</sub> | NEM   | FEM   | NEM   | FEM   | NEM   | FEM   | NEM   | FEM   |
| φ=10°          | 0.272 | 0.280 | 0.371 | 0.440 | 0.469 | 0.510 | 0.568 | 0.580 |
| ф=20°          | 0.436 | 0.470 | 0.530 | 0.540 | 0.624 | 0.580 | 0.718 | 0.640 |
| φ=30°          | 0.587 | 0.550 | 0.673 | 0.580 | 0.760 | 0.650 | 0.846 | 0.740 |
| φ=40°          | 0.719 | 0.570 | 0.796 | 0.610 | 0.873 | 0.700 | 0.949 | 0.860 |
| φ=50°          | 0.830 | 0.650 | 0.895 | 0.680 | 0.959 | 0.850 | 1.000 | 1.000 |

表 4-1 新外顯法與有限元素法之圍束損失彈性極限值λe之比較

表 4-2 新外顯法與有限元素法模擬無支撐隧道開挖之徑向位移量之比較

| U <sub>R</sub> /                  | c=     | 0.1    | c=    | 0.2   | c=    | 0.3   | c=    | 0.4   |
|-----------------------------------|--------|--------|-------|-------|-------|-------|-------|-------|
| /U <sup>e</sup> <sub>R(max)</sub> | NEM    | FEM    | NEM   | FEM   | NEM   | FEM   | NEM   | FEM   |
| φ=10°                             | 31.608 | 32.102 | 4.708 | 5.340 | 2.241 | 2.392 | 1.550 | 1.564 |
| φ=20°                             | 11.393 | 11.69  | 3.230 | 3.124 | 1.872 | 1.732 | 1.400 | 1.270 |
| φ=30°                             | 6.728  | 6.169  | 2.543 | 2.184 | 1.625 | 1.396 | 1.263 | 1.100 |
| φ=40°                             | 4.728  | 3.883  | 2.083 | 1.634 | 1.402 | 1.147 | 1.111 | 1.011 |
| φ=50°                             | 3.518  | 2.631  | 1.690 | 1.280 | 1.168 | 1.021 | 1.000 | 0.994 |

| D                     | c=     | 0.1    | c=     | 0.2    | c=    | 0.3   | c=    | 0.4   |
|-----------------------|--------|--------|--------|--------|-------|-------|-------|-------|
| <b>K</b> <sub>p</sub> | NEM    | FEM    | NEM    | FEM    | NEM   | FEM   | NEM   | FEM   |
| φ=10°                 | 37.087 | 37.000 | 14.864 | 14.600 | 9.923 | 9.867 | 7.876 | 7.867 |
| φ=20°                 | 15.214 | 15.000 | 9.424  | 9.333  | 7.465 | 7.467 | 6.478 | 6.533 |
| φ=30°                 | 9.570  | 9.533  | 7.249  | 7.267  | 6.288 | 6.267 | 5.748 | 5.760 |
| φ=40°                 | 7.279  | 7.333  | 6.175  | 6.200  | 5.600 | 5.680 | 5.348 | 5.360 |
| φ=50°                 | 6.157  | 6.133  | 5.602  | 5.600  | 5.322 | 5.320 | 5.144 | 5.200 |

表 4-3 彈性完全塑性新外顯法與有限元素法之塑性半徑結果比較



圖 4-1 新外顯法模擬無支撐隧道開挖之地盤反應曲線圖 (彈性模式)



圖 4-2 新外顯法模擬無支撐隧道開挖之地盤反應曲線圖 (彈性完全塑性模式)



圖 4-3 新外顯法圍束損失彈性極限值λ<sub>e</sub>與凝聚力 c、內摩擦角φ之關係圖



圖 4-4 新外顯法模擬無支撐隧道開挖之最大徑向位移量比較圖



圖 4-5 有限元素法模擬無支撑隧道開挖之地盤反應曲線圖 (彈性模式)



圖 4-6 有限元素法模擬無支撐隧道開挖之地盤反應曲線圖 (彈性完全塑性模式)



圖 4-7 有限元素法損失彈性極限值  $\lambda_e$ 與凝聚力 c、內摩擦角 $\phi$ 之關係圖



圖 4-8 有限元素法模擬無支撐隧道開挖之最大徑向位移量比較圖



圖 4-9 新外顯法模擬無支撐隧道開挖之地盤反應曲線圖 (波松比v影響分析)



圖 4-10 有限元素法模擬隧道開挖無支撐地盤反應曲線圖 (波松比v影響分析)



圖 4-11 新外顯法模擬無支撑隧道開挖之地盤反應曲線圖 (彈性模數 E 影響分析)



圖 4-12 有限元素法模擬無支撐隧道開挖之地盤反應曲線圖 (彈性模數 E 影響分析)



圖 4-13 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖 (c=0.1, φ=10°)



圖 4-14 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖 (c=0.1, φ=20°)



圖 4-15 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖 (c=0.1, φ=30°)



圖 4-16 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖 (c=0.1, φ=40°)



圖 4-17 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖 (c=0.1, φ=50°)



圖 4-18 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖 (c=0.2, φ=10°)



圖 4-19 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖 (c=0.2, φ=20°)



圖 4-20 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖 (c=0.2, φ=30°)



圖 4-21 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖 (c=0.2, φ=40°)



圖 4-22 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖 (c=0.2, φ=50°)



圖 4-23 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖 (c=0.3, φ=10°)



圖 4-24 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖 (c=0.3, φ=20°)



圖 4-25 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖 (c=0.3, φ=30°)



圖 4-26 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖 (c=0.3, φ=40°)



圖 4-27 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖 (c=0.3, φ=50°)



圖 4-28 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖 (c=0.4, φ=10°)



圖 4-29 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖 (c=0.4, φ=20°)



圖 4-30 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖 (c=0.4, φ=30°)



圖 4-31 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖 (c=0.4, φ=40°)



圖 4-32 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖 (c=0.4, φ=50°)



圖 4-33 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖 (凝聚力 c 影響性分析)



圖 4-34 新外顯法與有限元素法模擬無支撐隧道開挖之地盤反應曲線比較圖 (內摩擦角¢影響性分析)

# 第五章 隧道開挖支撐之互制行為模擬分析

本章主要目的為利用新外顯法分析探討圓形深隧道開挖與支撐之影響,並 針對不同條件之支撐系統與支撐架設時機等情況做一分析。再經由實驗室研發 之有限元素法分析程式之數值計算與新外顯法分析之結果逐一比較。

## 5.1 圍束損失參數影響性探討

對於無支撐隧道距離與支撐系統架設距離之模擬,依收斂圍束法分析理論,假設支撐斷面處離隧道開挖前進面之距離 λ<sub>d</sub>,隧道繼續開挖前進。經由地 盤與支撐系統之反應互制關係,可瞭解支撐前後的岩體應力-位移關係。

架設支撐一直是為隧道開挖工程中,最為重要的一環,支撐的時機與勁度 也直接的影響到隧道開挖完成後的安全性,對於架設時機的討論卻也格外的重 要。

由於有限元素分析法與新外顯法之分析方式,並不討論依時性之問題,而 是以隧道開挖施工順序流程做分別,所以架設時機則改以開挖支撐流程與圍束 損失加以控制與模擬。而本研究支撐架設的時機是以彈性極限之圍束損失 ( $\lambda_e$ ) 作為區分,分別以(一)在 $\lambda_e$ 之前完成支撐架設與平衡( $\lambda_d < \lambda_s < \lambda_e$ )、(二)在  $\lambda_e$ 前架設支撐而 $\lambda_e$ 之後完成平衡( $\lambda_d < \lambda_e < \lambda_s$ )與(三)在 $\lambda_e$ 之後才完成支撐與平 衡( $\lambda_e < \lambda_d < \lambda_s$ ), $\lambda_d$ 、 $\lambda_s$ 分別為架設支撐之圍束損失與完成互制平衡後之圍束損 失,下面分別將此三種架設時機分析進而探討架設時機之早晚,對於地盤穩定 性的影響。

(一)當於 λ<sub>e</sub>之前完成架設狀況時,此時岩體尚皆處於線彈性狀態,並未產生
 塑性區,曲線皆為線性直線,如圖 5-1 所示。

(二)如圖 5-3,當支撐平衡在λ<sub>e</sub>之後完成,若為無支撐開挖時已產生塑性區而 地盤反應曲線已有非線性曲線的現象,但本研究假設支撐系統為線彈性剛體構 件,所以之後的支撐反力曲線與地盤反應曲線亦為線彈性狀態。

(三)如圖 5-5,當於 λ<sub>e</sub>之後開始架設支撐並平衡狀況時,從 λ<sub>e</sub>之後到架設支 撐 λ<sub>d</sub>之間的岩體已發生塑性變形,而產生非線性的地盤反應曲線。由以上結果 可知,狀況三較相符合於現實現地發生情況,較差的岩體材料,就需盡早架設 支撐,架設支撐之勁度也相對提高,進而提高了施工成本。

# 5.2 支撐構件使用參數與假設條件

隧道內所使用之支撐構件,以噴凝土、鋼支保與岩栓為主要支撐系統,為 了便於分析,依照 Hoek and Brown (1980)所提出之單一支撐結構可由彈性勁 度累加,所以將噴凝土與鋼支保之支撐勁度,換算成等值斷面噴凝土以簡化計 算分析之繁雜性。

有限元素法分析與新外顯法分析之支撐構件皆假設分別為等值斷面噴凝土 0.2cm與0.6cm時,如表5-1所示,並假設支撐為彈性完全塑性材料。而岩栓在 隧道開挖工程上之工程作用為支持隧道頂部岩盤崩落,並減少開挖後之塑性區 擴大,所以有限元素分析法另將岩栓設以桿件元素之模擬方式分析之;而新外 顯法分析則將岩栓參數視為等值斷面支撐的一部分,假設參數如表5-2。文中會 針對單一噴凝土時與同時復合岩栓支撐構件時做一討論。

### 5.3 新外顯法模擬結果

#### 5.3.1 彈性模式

於彈性無支撐開挖之模式,假設位於開挖面距離 d 處,開始架設支撐,此時之圍束損失為λ<sub>d</sub>,此時岩體已產生 U<sup>d</sup> 的初始位移量。於λ<sub>d</sub>時開始架設支撐, 隨著隧道繼續開挖前進,支撑系統開始受力並產生位移變化,當周圍岩體達到 最終之平衡點時,此時位移量為 U<sup>s</sup><sub>R</sub>,支撐應力為 P<sub>s</sub>。

使用新外顯法模擬分別施以不同噴凝土厚度(0.2m 與 0.6m)時,所產生之徑向位移量比分別為:0.2m 之噴凝土支撐時,徑向位移量比 U<sup>s</sup><sub>R</sub>/R=0.513、最終

支撑應力比為 P<sub>s</sub>=0.487;0.6m 之噴凝土支撑時,徑向位移量比 U<sup>s</sup><sub>R</sub>/R=0.441、 P<sub>s</sub>=0.559。由圖 5-7、圖 5-9 可看出,當支撐勁度越強時(噴凝土厚度越大), 支撐反力曲線的斜率越大,所能提供之支撐應力越大,達平衡時的徑向位移量 比則越小。

若支撐結構在縱向間距每1m且環向間距0.654m處安裝岩栓並配合0.2m 噴凝土之複合式支撐時,如圖 5-11 所示,其平衡點之徑向位移量比 U<sup>s</sup><sub>R</sub>/R=0.513 且最終支撐應力比 P<sub>s</sub>=0.487,而從公式所求得之岩栓支撐應力值 K<sub>b</sub>,相較於 0.2cm 厚噴凝土所能提供之支撐應力值 K<sub>c</sub> 來的低許多,依照 Hoek and Brown (1980)提出 K<sub>s</sub>=K<sub>s1</sub>+K<sub>s2</sub> 之單一支撐勁度可由累加而得之論點可知,岩栓所能 提供之支撐勁度相較於噴凝土明顯的低許多。

#### 5.3.2 彈性完全塑性模式

於彈性完全塑性岩體中開挖隧道時,考慮不同支撐時機 λ<sub>d</sub>=0.4 與 λ<sub>d</sub>=0.7 時 架設噴凝土。如圖 5-13 至圖 5-20 所示,當 λ<sub>d</sub>=0.4 時,此時岩體尚皆處於彈性, 由於支撐時機較早所產生之徑向位移量較小,而模擬不同噴凝土厚度所得出之 平衡點也如同上一節彈性模式開挖一樣,所以越強的支撐勁度,越能有效的產 生支撐作用。

當支撐時機延後為 $\lambda_d=0.7$ 時,由於岩體已產生塑性行為,從彈性極限之圍 束損失 $\lambda_e$ 到支撐架設完成之圍束損失 $\lambda_d$ ,這期間的岩體因尚無支撐系統的互制 作用,所以開挖岩體的地盤反應曲線,是沿著無支撐時之地盤反應曲線移動, 直到支撐架設完成( $\lambda=\lambda_d$ ),岩體受到支撐系統之互制影響,地盤反應曲線遂成 線彈性行為,因較晚支撐,所以岩體與支撐系統之最終徑向位移較大,其 0.2m 厚之噴凝土支撐所模擬出之平衡點徑向位移量比 U<sup>s</sup><sub>R</sub>/R=0.742、最終支撐應力比 為 P<sub>s</sub>=0.243;施以 0.6m 之噴凝土支撐時,平衡點徑向位移量比 U<sup>s</sup><sub>R</sub>/R=0.706 且 最終支撐應力比為 P<sub>s</sub>=0.280。

依照彈性完全塑性模式,於0.2m之噴凝土系統尚複合以岩栓支撐系統,模
擬並繪出地盤反應曲線,如圖 5-21。其平衡點之徑向位移量比 U<sup>s</sup><sub>R</sub>/R=0.487 與最 終支撐應力比 P<sub>s</sub>=0.487,由此可知複合岩栓的支撑,對於抑制岩體的收斂並無顯 著之影響。

## 5.4 有限元素法模擬結果

## 5.4.1 彈性模式

由圖 5-23 到圖 5-26 可得知,當施以 0.2m 與 0.6m 之噴凝土為支撐結構時, 並假設圍束損失 λ<sub>d</sub>=0.4 時開始支撐,此刻岩體收斂與支撐結構互制行為開始。 當岩體與支撐結構間到達平衡狀態,此時有限元素法分別計算出噴凝土厚度 0.2m 時,其平衡點徑向位移比 U<sup>s</sup><sub>R</sub>/R=0.515 且最終支撐應力 P<sub>s</sub>=0.479;若噴凝土 厚度為 0.6m 時平衡點徑向位移比 U<sup>s</sup><sub>R</sub>/R=0.452 且最終支撐應力 P<sub>s</sub>=0.542。由平 衡點可知,施以較高勁度之支撐系統,越能降低周圍岩體之收斂情況。

若支撐結構在縱向間距每 1m 處安裝岩栓並配合 0.2m 噴凝土之複合式支撐 時,如圖 5-27 所示,此時有限元素法計算出平衡點之徑向位移量 U<sup>s</sup><sub>R(0.2)</sub>/R=0.489 且最終支撐應力 P<sub>s(0.2)</sub>=0.503,與上述單一支撐系統時之 0.2m 噴凝土相比較後, 可知複合岩栓支撐系統並能如 0.6m 噴凝土之有效且明顯的減少開挖岩體之圍束 損失,而岩栓所額外提供之支撐應力相較於 0.6m 噴凝土為小許多,所以岩栓支 撐系統在於提供支撐應力與降低岩體徑向位移量的效果並不彰顯。

## 5.4.2 彈性完全塑性模式

由圖 5-29 至圖 5-36 可得知,當施以 0.2m 與 0.6m 之噴凝土為支撐結構時, 並假設圍束損失  $\lambda_d$ =0.4 與  $\lambda_d$ =0.7 時架設支撐,此刻岩體收斂與支撐結構互制行 為開始。當  $\lambda_d$ =0.4,岩體與支撐結構間到達平衡狀態,此時有限元素法計算出噴 凝土厚度為 0.2m 時,平衡點徑向位移量比  $U^s_R/R$ =0.515 且最終支撐應力比  $P_s$ =0.479;而當噴凝土厚度為 0.6m 時,平衡點徑向位移量比  $U^s_R/R$ =0.452 且最終

93

支撑應力比 P<sub>s</sub>=0.542,由此可知欲減少岩體產生之徑向位移量,須較大之支撐應 力。當 λ<sub>d</sub>=0.7,噴凝土厚度為 0.2m 時,其平衡點徑向位移量比 U<sup>s</sup><sub>R</sub>/R=0.765 且 最終支撐應力比 P<sub>s</sub>=0.252;當噴凝土厚度為 0.6m 時,其平衡點徑向位移量比 U<sup>s</sup><sub>R</sub>/R=0.789 且最終支撐應力比 P<sub>s</sub>=0.271,由以上結果可看出,支撐時機越晚, 岩體產生之徑向位移量越大。

如圖 5-37 表示,噴凝土和岩栓之複合構件,其平衡點之徑向位移量 U<sup>s</sup><sub>R</sub>/R=0.489 且最終支撐應力 P<sub>s</sub>=0.503,其控制徑向位移量之效果介於噴凝土厚 度 0.2m 及 0.6m 之間,當採用複合支撐構件時,可在不影響原設計隧道斷面大 小,即有支撐之效果。但岩栓在支撐系統上之主要力學行為為抗拉、承受軸向 應力,主要功用為防止塑性區之擴大。由此可知複合構件之支撐勁度幾乎都由 噴凝土提供,岩栓並未表現其支撐勁度於支撐系統上。

## 5.5 新外顯法與有限元素法之分析結果比較

圖 5-39 至圖 5-42 為彈性模式時,噴凝土厚度分別為 0.2m、0.6m,新外顯 法與有限元素法之地盤反應曲線圖,由表 5-3、圖 5-45 與圖 5-46 所整理出之平 衡點可看出,於彈性模式中兩種模擬方式所得出結果相近,其新外顯法之最終 支撐應力比較有限元素法為大,且徑向位移量比也偏低,但兩種分析模式皆可 證實越高的支撐勁度越能減少岩體之位移情形,由此可知,新外顯法之分析方 式於線彈性岩體中與有限元素法之模擬結果相符合。

圖 5-43 為 0.2m 厚之噴凝土複合岩栓支撐系統時,新外顯法與有限元素法分 析出之地盤反應曲線,並由表 5-3、圖 5-45 與圖 5-46 比較可看出,岩栓支撐系 統在新外顯法之模擬分析中,由於所能提供之支撐勁度過低,所以複合岩栓之 支撐系統並不能有效的提高支撐效果;但於有限元素法之模擬分析中,提供了 些許之支撐應力,並降低了徑向位移比,但較之於 0.6m 厚之噴凝土,效果卻不 甚佳。

由表 5-6 彈性模式時支撐曲線斜率 k 值之比較可知, 在單一支撐條件下, 有

94

限元素法分析所得之支撐曲線斜率 k 值較新外顯法微高,表示前者之分析模式 所提供之支撐應力較高。

圖 5-47 至圖 5-54 為彈性完全塑性模式下,不同支撐時機 ( $\lambda_d$ =0.4、0.7)時, 雨種分析方法之比較圖,當 $\lambda_d$ =0.4,互制平衡時,岩體尚處於線彈性狀態,其結 果與彈性模式時相同。當 $\lambda_d$ =0.7時,由於已產生了塑性位移,徑向位移比也較  $\lambda_d$ =0.4時大,而支撐前之塑性位移亦會延著無支撐塑性模式破壞,直到支撐架設 完成。由圖中可知,有限元素法所模擬出之最終徑向位移量會比新外顯法所模 擬出的結果大,此結果是因為,當產生塑性位移時,有限元素法之模擬方式會 產生較大之變形行為,所以架設支撐並平衡後之最終位移量相較於新外顯法之 模擬方法來的大。

當於彈性完全塑性模式中,模擬噴凝土複合岩栓的情況下(圖 5-55),由 於岩栓對支撐系統所提供之勁度相較於噴凝土並不明顯,所以於新外顯法的模 擬方計算式,複合岩栓之支撐系統並無太大的改變。但於有限元素法的模擬方 式,為桿件式之模擬,所以岩栓支撐系統對於岩體之徑向位移量有抑制的趨勢, 但相較於高厚度噴凝土之支撐效能,尚嫌不足,由此可知噴凝土為主要之支撐 系統結構,而岩栓其功用為補強主要支撐系統之不足。

圖 5-57 至圖 5-60 可看出,兩種模擬方式之最終支撐應力與最終位移皆和支 撐時機有關。愈早施以支撐愈能有效的抑止隧道收斂的位移量。

如表 5-7、表 5-8 所示,新外顯法之支撐曲線斜率 k 值,由於支撐曲線是以 彈性模式模擬,所以斜率不會因為支撐時機之不同而有所改變,而有限元素法 分析卻會因支撐時機改變。

95

| 噴凝土         | 標準組       | 參考組               |  |
|-------------|-----------|-------------------|--|
| 彈性模數 E(MPa) | 25000     | 24000 \cdot 20000 |  |
| 單位重γ(MPa/m) | 0.025     |                   |  |
| 波松比v        | 0.2       |                   |  |
| 噴凝土厚度 (m)   | 0.2 \ 0.6 |                   |  |

表 5-1 噴凝土支撐構件參數輸入值

表 5-2 岩栓支撐構件參數輸入值

| 岩栓                    | 參數值                  |
|-----------------------|----------------------|
| 斷面積 (m <sup>2</sup> ) | 0.4×10 <sup>-3</sup> |
| 長度 (m)                | 5                    |
| 彈性模數 E(MPa)           | 2×10 <sup>5</sup>    |
| 縱向間距 $S_l(m)$         | 1                    |
| 環向間距 $S_c(m)$         | 0.654                |

| 線彈性              | 新外顯法                           |                      | 有限元素法                          |                      |
|------------------|--------------------------------|----------------------|--------------------------------|----------------------|
|                  | U <sup>s</sup> <sub>R</sub> /R | P <sub>s</sub> (MPa) | U <sup>s</sup> <sub>R</sub> /R | P <sub>s</sub> (MPa) |
| 噴凝土 0.2 m        | 0.513                          | 0.487                | 0.515                          | 0.479                |
| 噴凝土 0.6 m        | 0.441                          | 0.559                | 0.452                          | 0.542                |
| 噴凝土 0.2 m<br>+岩栓 | 0.513                          | 0.487                | 0.511                          | 0.508                |

表 5-3 彈性模式下新外顯法與有限元素法計算之平衡點

表 5-4 彈性完全塑性模式下新外顯法與有限元素法計算之平衡點(λd=0.4)

| 彈塑性              | 新外顯法                           |                      | 有限元素法                          |                      |
|------------------|--------------------------------|----------------------|--------------------------------|----------------------|
|                  | U <sup>s</sup> <sub>R</sub> /R | P <sub>s</sub> (MPa) | U <sup>s</sup> <sub>R</sub> /R | P <sub>s</sub> (MPa) |
| 噴凝土 0.2 m        | 0.487                          | 0.487                | 0.515                          | 0.479                |
| 噴凝土 0.6 m        | 0.415                          | 0.559                | 0.487                          | 0.542                |
| 噴凝土 0.2 m<br>+岩栓 | 0.487                          | 0.487                | 0.489                          | 0.503                |

表 5-5 彈性完全塑性模式下時新外顯法與有限元素法計算之平衡點(λd=0.7)

| 彈塑性       | 新外顯法                           |                      | 有限元素法                          |                      |
|-----------|--------------------------------|----------------------|--------------------------------|----------------------|
|           | U <sup>s</sup> <sub>R</sub> /R | P <sub>s</sub> (MPa) | U <sup>s</sup> <sub>R</sub> /R | P <sub>s</sub> (MPa) |
| 噴凝土 0.2 m | 0.742                          | 0.243                | 0.765                          | 0.252                |
| 噴凝土 0.6 m | 0.706                          | 0.280                | 0.789                          | 0.271                |

表 5-6 彈性模式下支撐勁度斜率 k 值比較表

| 支撐勁度斜率 k (KN) | 新外顯法  | 有限元素法 |
|---------------|-------|-------|
| 噴凝土 0.2m      | 0.233 | 0.240 |
| 噴凝土 0.6m      | 0.073 | 0.096 |
| 噴凝土 0.2m +岩栓  | 0.233 | 0.219 |

表 5-7 彈性完全塑性模式下支撐勁度斜率 k 值比較表 (λd=0.4)

| 支撐勁度斜率 k (KN) | 新外顯法  | 有限元素法 |
|---------------|-------|-------|
| 噴凝土 0.2m      | 0.233 | 0.246 |
| 噴凝土 0.6m      | 0.073 | 0.165 |
| 噴凝土 0.2m + 岩栓 | 0.233 | 0.223 |

表 5-8 彈性完全塑性模式下支撐勁度斜率 k 值比較表 (λd=0.7)

| 支撐勁度斜率 k (KN) | 新外顯法  | 有限元素法 |
|---------------|-------|-------|
| 噴凝土 0.2m      | 0.233 | 0.264 |
| 噴凝土 0.6m      | 0.073 | 0.334 |



圖 5-1 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,λ<sub>d</sub><λ<sub>s</sub><λ<sub>e</sub>)



圖 5-2 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖 (λ<sub>d</sub><λ<sub>s</sub><λ<sub>e</sub>)



圖 5-3 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,λ<sub>d</sub><λ<sub>e</sub><λ<sub>s</sub>)



圖 5-4 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖 (λ<sub>d</sub><λ<sub>e</sub><λ<sub>s</sub>)



圖 5-5 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC, $\lambda_e < \lambda_d < \lambda_s$ )



圖 5-6 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖  $(\lambda_e < \lambda_d < \lambda_s)$ 



圖 5-7 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈性模式,t=20)



圖 5-8 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖 (彈性模式,t=20)



圖 5-9 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈性模 式,t=60)



圖 5-10 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖 (彈性模式,t=60)



圖 5-11 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈性模式,t=20+rb)



圖 5-12 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖 (彈性模式,t=20+rb)



圖 5-13 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈塑性 模式,t=20)



圖 5-14 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖 (彈塑性模式,t=20)



圖 5-15 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈塑性 模式,t=60)



圖 5-16 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖 (彈塑性模式, t=60)



圖 5-17 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈塑性 模式,t=20)



圖 5-18 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖 (彈塑性模式,t=20)



圖 5-19 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈塑性 模式,t=60)



圖 5-20 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖 (彈塑性模式,t=60)



圖 5-21 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈塑性 模式,t=20+rb)



圖 5-22 新外顯法模擬隧道開挖支撐之收斂圍束曲線圖 (彈塑性模式,t=20+rb)



圖 5-23 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈性 模式,t=20)



圖 5-24 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖 (彈性模式,t=20)



圖 5-25 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈性 模式,t=60)



圖 5-26 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖 (彈性模式,t=60)



圖 5-27 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈性 模式,t=20+rb)



圖 5-28 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖 (彈性模式,t=20+rb)



圖 5-29 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈性 模式,t=20)



圖 5-30 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖 (彈性模式,t=20)



圖 5-31 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈性 模式,t=60)



圖 5-32 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖 (彈性模式,t=60)



圖 5-33 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈性 模式,t=20)



圖 5-34 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖 (彈性模式,t=20)



圖 5-35 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈性 模式,t=60)



圖 5-36 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖 (彈性模式,t=60)



圖 5-37 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖(含無支撐 GRC,彈性 模式,t=20+rb)



圖 5-38 有限元素法模擬隧道開挖支撐之收斂圍束曲線圖(彈性模式,t=20+rb)



圖 5-39 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(含無支撐 GRC,彈 性模式,t=20)



圖 5-40 新外顯法與有限元素法模擬隧道開挖支撐之比較圖 (彈性模式,t=20)



圖 5-41 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(含無支撐 GRC,彈 性模式,t=60)



圖 5-42 新外顯法與有限元素法模擬隧道開挖支撐之比較圖 (彈性模式,t=60)



圖 5-43 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(含無支撐 GRC,彈 性模式,t=20+rb)



圖 5-44 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(彈性模式,t=20+rb)



圖 5-46 外顯法與有限元素法之最終支撐應力比較圖 (彈性模式)



圖 5-47 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(含無支撐 GRC,彈 塑性模式,t=20)



圖 5-48 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(彈塑性模式,t=20)



圖 5-49 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(含無支撐 GRC,彈 塑性模式,t=60)



圖 5-50 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(彈塑性模式,t=60)



圖 5-51 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(含無支撐 GRC,彈 塑性模式,t=20)



圖 5-52 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(彈塑性模式,t=20)



圖 5-53 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(含無支撐 GRC,彈 塑性模式,t=60)



圖 5-54 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(彈塑性模式,t=60)



圖 5-55 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(含無支撐 GRC,彈 塑性模式,t=20+rb)



圖 5-56 新外顯法與有限元素法模擬隧道開挖支撐之比較圖(彈塑性模式, t=20+rb)







圖 5-58 外顯法與有限元素法之最終支撐應力比較圖 (λd=0.4)



圖 5-60 外顯法與有限元素法之最終支撐應力比較圖(λ<sub>d</sub>=0.7)
# 第六章 視窗程式架構建立與運算流程

本章將介紹視窗程式之架構,以及各視窗程序之建立方式,並對各程序表 單之執行步驟做一說明。

# 6.1 視窗程式發展架構說明

本研究之視窗程式乃延續李文元(2006)所發展之隧道斷面收方程式並加以 增補,採用模組化與結構化之方式撰寫,與傳統副程式架構方式相類似,整個 程式可區分成數各執行階段,由前處理程序中輸入工程參數,經由主運算程序 執行運算,計算完成之結果由後處理程序完成輸出動作,每個程序之表單模組 可獨立撰寫與獨立運作。程式發展流程(如圖 6.1 所示)。

### 6.2 資料庫建立之說明

微軟 Access 2000 資料庫軟體包含資料表、查詢、表單、報表、巨集及模組 等(如圖 6.2 所示)。資料表是 Access 2000 資料庫中實際進行使用者資料儲存的 地方,也是資料庫其他延伸物件的資料來源基礎,使用者可用資料表精靈新增 資料表資料。

資料庫在視窗程式中所佔的角色為提供資料進行放置,在隧道斷面收方計 算過程中,經由斷面測量所獲得原始資料以外部檔案開啟載入,而設計斷面資 料建立在資料庫之資料表(如圖 6.3 所示),視窗程式可直接存取進行運算。

## 6.3 視窗程式之運算流程

視窗程式由三大程序所組成,即前處理程序、主運算程序以及後處理程序, 各程序皆有獨立的表單模組,可獨立撰寫與運作。其運算流程如圖 6.6 所示,並 詳述如下。

### 6.3.1 前處理程序

前處理程序即為輸入程序,是由四個獨立之表單模組所建立,包含工程基 本資料輸入表單、控制樁點資料輸入表單、隧道中線資料輸入表單以及斷面測 量資料輸入表單。本程序主要工作為讀、寫檔案,根據使用者不同之需求,可 直接於視窗表單輸入資料或讀取資料檔案。

### 6.3.2 主運算程序

主運算程序設有前置處理表單,於表單設計時將各基本資料分別設定一個 框架,於前處理程序各表單所輸入之資料,皆個別傳值至前置處理表單中相對 應之資料框架位置。如輸入程序中工程基本資料即傳至資訊視窗框架,當前置 處理表單中基本資料框架內之資料皆正確,便進入核心計算程序。

核心計算程序主要由三個副程式建構,先由副程式 C1 輸入斷面測量資料並 計算距離與高差,再由副程式 C2 根據控制樁點資料計算各測點之縱座標 N 值與 橫座標 E 值,最後由副程式 C3 配合中線資料得出斷面收方圖形展繪各點之值, 計算之結果依序傳至後處理程序,程式核心計算流程如圖 6.5 所示。

### 6.3.3 後處理程序

後處理程序即為輸出程序,由三個表單所組成,包含測量斷面圖形展繪表單、開挖斷面資料表單以及資料報表表單。

為了將計算與繪圖有所區隔並獨立,因此繪圖程序寫於測量斷面圖形展繪 表單,由主運算程序計算之各測點縱座標N值與橫座標E值、距離與高差,即 可輸出並繪圖。

開挖斷面資料表單包含開挖線定義圖與開挖土方數量。程序執行流程圖如 6.6 所示,測量斷面點之水平 x 與垂直 y 資料以及設計斷面點水平 x 與垂直 y 資 料依序輸入程序,經由依據 3.5 小節之斷面面積計算方法撰寫之計算程序執行運 算,分別得出設計面面積與開挖面面積,經由計算面積差值可得知單位開挖土 方量,分別經由表單展示,而所有之數據與資料可由報表方式輸出。

## 6.4 視窗程式表單內容說明

視窗程式執行流程,首先將隧道收方測量所需之資料(如工程基本資料、控制 樁資料、隧道中線資料以及斷面測量資料)獨立分割,建立於資料輸入表單,視 為輸入程序。再經過主運算程序表單計算,由輸出表單之圖形與報表等輸出程 序做輸出之動作,讓程式架構清晰明瞭,便於程式開發者之管理及使用者能快 速熟悉與應用,執行流程圖如圖 6.4 所示。詳細之表單內容敘述如下:

130

# 6.4.1 資料輸入表單

資料輸入表單分為四項:工程基本資料、控制樁資料、隧道中線資料與斷 面測量資料,進入程式主視窗後可分別點選(如圖 6.7 所示)。

(一) 工程基本資料

主要輸入資料有:(1)工程名稱、(2)測量日期、(3)設計斷面高程、(4)設計斷面形 式、(5)承包商與(6)專業廠商(如圖 6.8 所示)。

使用者可以直接輸入資料,輸入的資料可以純文字文件的形式儲存,儲存的檔案也可開啟,方便日後使用或修改。資料輸入結束或是檔案開啟後點選確定即 完成。

(二) 控制樁資料

表單分為兩部分以框架作區隔,分為「控制樁點」與「輸入兩控制樁資料」, 讓使用者可依現有之資料類型做不同之輸入動作,可由檔案開啟控制樁資料或 是直接手動輸入(如圖 6.9 所示)。

(三) 隧道中線資料

如同控制樁資料表單,隧道中線資料表單分為兩個框架,「中線資料」與 「輸入中線資料」。使用者可依現有之資料類型選擇由檔案輸入或以手動輸入(如 圖 6.10 所示)。

(四) 斷面測量資料

如圖 6.11 所示,表單以資料匯入之形式,將收方測量儀器測量所得之資料 檔案匯入表單,點選完成鈕即完成輸入

四項基本資料輸入完成後,回到程式主視窗點選資料預覽與確認即可進入 主運算程序。

## 6.4.2 主運算程序表單

首先主運算視窗將主運算程序獨立成資料預覽與確認表單,表單中完整的 展示出工程資訊、控制樁資料、中線資料與斷面測量資料(如圖 6.12 所示)。

131

在此表單讓使用者做最後之資料確認,若發現工程資料、控制樁資料或是 中線資料輸入錯誤,可以手動輸入修改,減少因資料輸入不正確導致程式輸出 錯誤之運算結果,增加使用效率。

當所有資料皆確認無誤,點選確認鈕開始運算程序且程式回到主視窗,進入輸出程序。

# 6.4.3 資料輸出表單

輸出表單分為三部分,分別介紹如下:

(一) 測量斷面圖形展繪表單

此表單內容即為一完整之斷面收方成果資料,包含斷面測量點之縱座標 N 值與 橫座標 E 值與高程 Z 值,橫斷面區域水平半徑與垂直高程,隧道斷面測量圖展 繪並與設計斷面圖形比較等資料(如圖 6.13 所示)。表單右上方更增設圖形儲存按 鈕,將繪得之斷面圖獨立存成圖片檔。

(二)斷面面積計算表單

如圖 6.14 所示,此表單為程式新增設之功能,主要為快速了解隧道開挖斷面之 開挖量,相較於以往以區域偏差量資料控制,若以斷面開挖面積作為控制,則 施工廠商便能快速了解開挖數量,作為後續成本控制之根據。

(三)資料報表表單

將圖形展繪表單內之各項數據與資料,以及開挖斷面面積數量等資料以報表方式列出,讓使用者可快速使用純數據資料。

詳盡之使用說明將列於附錄中,供使用者更快速了解且熟悉程式之操作。

# 6.5 計算驗證

程式經由表單重整以及模組獨立,為確保斷面收方圖形展繪成果之正確 性,與李文元(2006)程式所輸出之結果相比較。圖 6.15 為修改後程式之斷面收方 圖,圖 6.16 為李文元(2006)之輸出結果,可以得知兩者之輸出成果相同,視窗程 式之收方圖形展繪無誤。



圖 6.1 隧道斷面收方視窗程式研發過程說明

| 🗊 ou | vd:資料庫                            |   |                    |  |  |  |  |
|------|-----------------------------------|---|--------------------|--|--|--|--|
| ᢡ開   | 📽 開啓(O) 🕍 設計(D) 🚈 新増(U) 🗙 🕒 📭 📰 🏢 |   |                    |  |  |  |  |
|      | 物件                                |   | center             |  |  |  |  |
|      | 資料表                               |   | controlpile        |  |  |  |  |
|      | 查詢                                |   | data               |  |  |  |  |
| =8   | 表單                                |   | design_xy<br>desil |  |  |  |  |
|      | 報表                                |   | test               |  |  |  |  |
| 1    | 資料頁                               | - |                    |  |  |  |  |
| 2    | 巨集                                |   |                    |  |  |  |  |
| -45  | 模組                                |   |                    |  |  |  |  |
|      | 群組                                |   |                    |  |  |  |  |
| *    | 我的最愛                              |   |                    |  |  |  |  |

圖 6.2 資料庫內容

| III design_xy : 資料 | 表       |           |           | × |
|--------------------|---------|-----------|-----------|---|
| 調用時間               | mode    | x         | V         |   |
| 46                 | 1       | 3 6113    | -2 1883   |   |
| 40                 | 1       | 4 0341    | -2.1382   |   |
| 48                 | 1       | 4 4561    | -2.0826   |   |
| 49                 | 1       | 4 8775    | -2.0214   |   |
| 50                 | 1       | 5 3104    | -1 9527   |   |
| 51                 | 1       | 5,8887    | -1.8113   |   |
| 52                 | 1       | 6 4022    | -1 4721   |   |
| 53                 | 1       | 6 7614    | -0.9574   |   |
| 54                 | 1       | 6.8998    | -0.451    |   |
| 55                 | 1       | 6.9573    | 0.0146    |   |
| 56                 | 1       | 6.9803    | 0.4803    |   |
| 57                 | 1       | 6 9694    | 0.9438    |   |
| 58                 | 1       | 6 9251    | 1 4029    |   |
| 59                 | 1       | 6.8481    | 1.8554    |   |
| 60                 | 1       | 6 7 3 9 3 | 2 2993    |   |
| 61                 | 1       | 6 5996    | 2 7 3 2 7 |   |
| 62                 | 1       | 6 4298    | 3 1 5 3 5 |   |
| 63                 | 1       | 6 2311    | 3 5601    |   |
| 64                 | 1       | 6.0046    | 3 9508    |   |
| 65                 | 1       | 5 7514    | 4 3238    |   |
| 66                 | 1       | 5 4727    | 4 6777    |   |
| 67                 | 1       | 5 2987    | 4 8748    |   |
| 68                 | 1       | 4 8535    | 5 3182    |   |
| 69                 | 1       | 4 1626    | 5 8747    |   |
| 70                 | 1       | 3 4086    | 6 3421    |   |
| 71                 | 1       | 2.6028    | 6 71 31   |   |
| 72                 | 1       | 1 7574    | 6 9822    |   |
| 73                 | 1       | 0.8854    | 7.1453    |   |
| 74                 | 1       | 0         | 72        |   |
| 75                 | 2       | 0         | 68        |   |
| 76                 | 2       | -0.8362   | 6.7484    |   |
| 77                 | 2       | -1.6598   | 6.5943    |   |
| 78                 | 2       | -2.4582   | 6.3401    |   |
| 79                 | 2       | -3.2192   | 5.9897    |   |
| 80                 | 2       | -3.9314   | 5.5484    |   |
| 81                 | 2       | -4.5839   | 5.0228    |   |
| 82                 | 2       | -5.0043   | 4.604     |   |
| 83                 | 2       | -5.1659   | 4.4202    |   |
| 84                 | 2       | -5.4226   | 4.0889    |   |
| 85                 | 2       | -5.6527   | 3.7387    |   |
| 86                 | 2       | -5,8549   | 3.3716    |   |
| 87                 | 2       | -6.0279   | 2.9899    |   |
| 88                 | 2       | -6.1707   | 2.5959    |   |
| 89                 | 2       | -6,2824   | 2,192     |   |
| 90                 | 2       | -6.3623   | 1.7806    | - |
| 記錄: 🛛 🖌            | 476 🕨 🕅 | ** 之 476  |           | _ |

圖 6.3 資料庫中之設計斷面資料表



圖 6.4 視窗程式執行流程圖



圖 6.5 核心計算流程圖



圖 6.6 斷面面積計算流程圖



# 圖 6.7 程式主視窗



# 圖 6.8 工程資訊表單

| ■ 控制指點資料                                                                     |      |
|------------------------------------------------------------------------------|------|
| - 控制格點                                                                       |      |
| 清除                                                                           | 開啟檔案 |
| 「輸入兩控制樁資料                                                                    |      |
| 點號     縱座標N     橫座標E     高程Z       1     Text2     Text3     Text4     Text5 |      |
| 點號 縱座標N 橫座標E 高程Z<br>2 Text6 Text7 Text8 Text9 加入                             | 取消   |
|                                                                              | 完成   |

圖 6.9 控制樁資料表單

| 中線資料             |       |         |                 |    |
|------------------|-------|---------|-----------------|----|
| - 中線資料           |       |         |                 |    |
|                  |       | 清除      | 開啟              | 檔案 |
| 「輸入中線資料―         |       |         |                 |    |
| 里程     中線N     中 | 線E 高程 | 法線N 法線E | <u>加入</u><br>加入 | 取消 |

圖 6.10 中線資料表單

| <b>日 新面</b> | 測量資料                            |      |      |      |      |      |       |    |    |                   |  |
|-------------|---------------------------------|------|------|------|------|------|-------|----|----|-------------------|--|
| ┌ 斷         | <b>〕 測 量 資 料 ─</b><br>則椿點到水平角 度 | 水平角分 | 水平角秒 | 垂直角度 | 垂直角分 | 重直角秒 | 斜距 mm | 高度 | ]  |                   |  |
|             |                                 |      |      |      |      |      | ž     | 青除 | 開启 | 女檔案     「完成     」 |  |

圖 6.11 斷面測量資料表單

| ▶ #+2#+₩■0##3                                                                                                    |                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>基本計劃低換前部</li> <li>資訊視窗</li> <li>工程名稱</li> <li>测量日期</li> <li>設計斷面高</li> <li>承包商</li> <li>專業廠商</li> </ul> | 控制格資料       中線資料         1 Text2       Text3       Text4       Text5         點號       縦座標N       横座標E       高程Z         2 Text6       Text7       Text8       Text9         Text70       Text71       Text72       Text64         Text64       Text65       Text66       Text67         Text70       Text79       Text73       Text79 |
| 「斷面測量資料」 控制格點形水平角                                                                                                | 度 水平角分 垂直角度 垂直角分 垂直角秒 斜距mm 高度 取消<br>取消<br>確定                                                                                                                                                                                                                                                                                          |

圖 6.12 資料預覽與確認表單

| 送道斯面收方親宿程式                 |            |                                                                                                        | X  |  |  |  |  |
|----------------------------|------------|--------------------------------------------------------------------------------------------------------|----|--|--|--|--|
| 植案(P) 脱進)時面收方資料總理(D) 説明(E) |            |                                                                                                        |    |  |  |  |  |
| 編號 縱座標 橫座標 高程Z             |            | 编號存錄                                                                                                   | 副檔 |  |  |  |  |
| 1                          |            |                                                                                                        | _  |  |  |  |  |
| 2                          |            |                                                                                                        | —  |  |  |  |  |
| 交會誤差                       | 半徑         | 川東口明 上程石磚                                                                                              |    |  |  |  |  |
| 儀器                         | 區域半徑 區域偏移量 | 测量绷觉 御去保绝验 承白声                                                                                         | —  |  |  |  |  |
| 中心                         | 橫斷面資料      | · · · · · · · · · · · · · · · · · · ·                                                                  | —  |  |  |  |  |
| 法绿                         | 水平X 垂直Y    | 設計斷面形式 0                                                                                               | —  |  |  |  |  |
|                            |            | 設計斷面說明 選擇斷面形式(1~6)                                                                                     | —  |  |  |  |  |
|                            |            |                                                                                                        | _  |  |  |  |  |
|                            |            | ●<br>●<br>野田酒理<br>一<br>一<br>●<br>野田酒理<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一<br>一 |    |  |  |  |  |

圖 6.13 測量斷面圖形展繪表單



圖 6.14 斷面面積計算表單

| ▶ 接接新闻收方测管程式                                                         |              |                                         |      |  |  |  |  |  |
|----------------------------------------------------------------------|--------------|-----------------------------------------|------|--|--|--|--|--|
| 福寨(1) 脱道断面吃方資料處理(1) 說明(1)                                            |              |                                         |      |  |  |  |  |  |
| 编號 縱座標 橫座標 高程Z                                                       |              | 编號 存圖構                                  |      |  |  |  |  |  |
| A-2 2573903, 288382,4 375, 3350                                      |              |                                         | =    |  |  |  |  |  |
| LC9190 2573949, 288214, 3 380,0000                                   |              | 隆迫斷面重測                                  |      |  |  |  |  |  |
| 交 会 誤 差 2,000000 -0,01099 -9,00000                                   |              | 测量日期 94/05/28 工程名稱 玉長公路隧道新建工程           |      |  |  |  |  |  |
| 儀哭 2573949 288214 3 105 231                                          | 千徑           | 測量編號                                    |      |  |  |  |  |  |
| 中心 2573949 288214 3 378 32                                           | 區域半徑 區域偏移重   | 測量斷面里程 鋼支保編號 承包商 工信工程股份有                | 歷    |  |  |  |  |  |
| 法線 2573968 288219 10                                                 | 横断面資料        | 設計斷面高 378.32 測量斷面說明 專業廠商智元營造有限公         | - 5) |  |  |  |  |  |
| 12 WK 1575700. 200213.10                                             | 水平X 亚直Y      | 設計斷面形式 1 🔶 斷面方向                         | _    |  |  |  |  |  |
| 1 2573956.283 288216.056 378.826                                     | 7 3 378 83   | 設計斷面說明 混凝土面                             | _    |  |  |  |  |  |
| 2 2573956.28 288216.056 379.36                                       | 7.3 379.36   |                                         | -    |  |  |  |  |  |
| 4 2573955.905 288215.963 381.363                                     | 7.11 380.36  | ◎22回回州重回:                               |      |  |  |  |  |  |
| 5 2573955.586 288215.884 382.123                                     | 6.91 381.36  | 1 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 |      |  |  |  |  |  |
| 6 2573955.134 288215.772 382.828<br>7 3573054 435 389315 509 393.661 | 6.58 382.12  | ● 試育山の紙                                 |      |  |  |  |  |  |
| 8 2573953 333 288215 328 384 529                                     | 6.12 382.83  |                                         |      |  |  |  |  |  |
| 9 2573952.471 288215.115 385.011                                     | 5.39 383.66  |                                         | -    |  |  |  |  |  |
| 10 2573951.752 288214.937 385.307                                    | 4.26 384.53  |                                         |      |  |  |  |  |  |
| 11 2573951.111 288214.778 385.512                                    | 3.38 385.01  |                                         |      |  |  |  |  |  |
| 12 2573950.373 288214.596 385.631                                    | 2.63 385.31  |                                         |      |  |  |  |  |  |
| 13 2573949.639 288214.414 385.74                                     | 1 97 385 51  |                                         |      |  |  |  |  |  |
| 14 2573948.859 288214.221 385.707                                    | 1.21 385.63  |                                         |      |  |  |  |  |  |
| 15 2573948.043 288214.019 385.624                                    | 0.46 385.74  | ······································  |      |  |  |  |  |  |
| 17 2573046.404 288213.636 385.225                                    | 0.25 205.74  |                                         |      |  |  |  |  |  |
| 18 2573945,637 288213,424 384,859                                    | 1.10 295.60  |                                         |      |  |  |  |  |  |
| 19 2573945.012 288213.269 384.402                                    | -1.19 303.02 |                                         |      |  |  |  |  |  |
| 20 2573944.134 288213.052 383.747                                    | -1.92 365.49 |                                         |      |  |  |  |  |  |
| 21 2573943.464 288212.886 382.966                                    | -2.18 385.22 |                                         |      |  |  |  |  |  |
| 22 2573942.775 288212.716 381.911                                    | -3.06 384.86 |                                         |      |  |  |  |  |  |
| 23 2573942.372 288212.616 380.919                                    | -4.31 384.4  |                                         |      |  |  |  |  |  |
| 24 2575942.195 288212.572 579.992                                    | -5.21 383.75 |                                         |      |  |  |  |  |  |
| 25 2515542.001 200212.550 570.762                                    | -5.9 382.97  |                                         |      |  |  |  |  |  |
|                                                                      | -6.61 381.91 |                                         |      |  |  |  |  |  |
|                                                                      | -7.03 380.92 | ↓↓↓↓↓↓↓↓↓↓↓                             |      |  |  |  |  |  |
|                                                                      | -7.21 379.99 |                                         |      |  |  |  |  |  |
| ·                                                                    | 7 25 278 76  | ·ttttttt                                | !    |  |  |  |  |  |

圖 6.15 修改後程式之收方斷面圖形展繪成果



圖 6.16 李文元(2006)收方圖形展繪輸出成果

# 第七章 結論與建議

# 7.1 結論

近年來隧道開挖與支撐設計多以新奧工法施作,而分析方式亦常以有限元 素法為主要分析模式,但若能以方便且容易理解之新外顯法應用收斂圍束法理 論之分析方式,模擬隧道於岩體材料為彈性完全塑性時之開挖支撐模擬,並更 直接且明瞭的確立圍束損失之判定,將能對隧道開挖支撐之分析方面提供更為 簡便之分析方法。隧道開挖是否能符合設計,受限於開炸因素與施工廠商對超 挖量多寡之控制,而國內廠商在施工管理尚有不足,多以擴大開挖斷面以求符 合設計斷面之要求。以下就綜合新外顯法與有限元素法之分析研究結果,歸納 出下列結論:

- (1)對於收斂圍束曲線的模擬,新外顯法與有限元素法之模擬結果相近。前者 較之後者模擬方式簡單且迅速,亦能有效的模擬支撐前後之收斂情況。
- (2)有限元素法分析模式,可依網格愈密集,而得出愈高之精度,分析時所花費時間也相對延長;新外顯法分析則可大幅減少所需之分析時間,並可清 楚表現出各階應力釋放與位移情況。
- (3)由兩種方式模擬結果可看出,以噴凝土為主要支撐時,在抑制隧道之徑向 位移量效果最好,且所能提供之支撐勁度與支撐應力也最佳。
- (4)當周圍岩體達塑性破壞行為時,新外顯法與有限元素法模擬無支撐隧道之 最終徑向位移量誤差值為 0.01%左右。
- (5)複合岩栓支撐系統時,其岩栓之力學行為主要為抑制塑性區範圍擴大,所 以在提供支撐勁度上較之噴凝土支撐並無明顯之成效。
- (6)視窗程式採用模組化與結構化之方式撰寫,程式模組分成三大程序:資料 輸入程序、主運算程序以及輸出程序。而將表單獨立建構後,程式更加簡 單明瞭,使用者能夠更快速的上手。

(7)視窗程式新增設斷面資料表單,主要為快速掌握隧道開挖斷面之開挖量, 相較於以往以區域偏差量資料控制,若以開挖面積作為控制,根據計算結果,施工廠商可以馬上了解開挖數量,作為後續施工管理與成本控制之根據。

# 7.2 建議

- (1)本研究之支撐曲線是以彈性模式模擬,所以為彈性模式,但實際工程上之 支撐互制卻是非線性的狀態,關於支撐非線性的模擬,值得再做進一步之 研究。
- (2)因地層地質的多變化,所以隧道開挖之影響因素眾多,如地下水、大地之 初始應力異向性、地熱、不連續性及節理等等之影響行為列入考慮,可使 隧道開挖與支撐之模擬更符合現地情況更具完整性。
- (3)目前程式以顯示單一斷面圖形及資料為主,是為 2D 之成果展示,後續可 嚐試以 3D 圖形展示全段之隧道測量斷面,並將多次測量成果同步展示, 找出隧道收斂之向量位移,進一步了解隧道收斂變形之實際情形。
- (4)接續之研究方向,可將目標設在與收方儀器做整合,進行自動化資料摘取,讓視窗程式能及時進行資料之分析與處理,在斷面測量完成後即得出收方成果,更進一步朝向經濟且快速達成開挖符合設計斷面之目標。

# 參考文獻

- 1. Amberg, AMT Profiler 2000, <u>http://www.amberg.ch/at/index.php?id=22&L=2</u>
- Asef, M. R., Reddish, D. J. and Llotd, P. W., "Rock-Support Interaction Analysis Based on Numerical Modeling," *Geotechnical and Geological Engineering*, Vol.18, pp.23-37. (2000)
- Carranza-Torres, C. and Fairhurst, C., "The Elasto-Plastic Response of Underground Excavation in Rock Masses That Satisfy the Hoek-Brown Failure Criterion," *International Journal of Rock Mechanics and Mining Sciences*, Vol.36, pp777-809. (1999)
- Carranza-Torres, C. and Fairhurst, C., "Application of the Convergence-Confinement Method of Tunnel Design to Rock Masses that Satisfy the Hoek-Brown Failure Criterion," *Tunnelling and Underground Space Technology*, Vol.16, No.2, pp.187-213. (2000)
- Chester Amphitheatre Project, <u>http://www.chester.gov.uk/amphitheatre/survey.htm</u>
- Chittendn, N. J., Müller, H.P., "New developments in automated tunnel surveying systems", Tunneling and Underground Space Technology, Vol.19, pp.519 (2004).
- Clarke, T. A. & Lindsey, N. E., "A Triangulation Based Cross Sectional Profiler", ISPRS Int. Conf. on Close Range Photogrammetry and Machine Vision, SPIE Vol. 1395, pp. 940-947 (1990).
- Clarke. T.A. & Lindsey. N.E., "Profiling methods reviewed", Tunnels and Tunneling, June. pp. 29-31 (1992).
- 9. Clarke, T.A., "The development of an optical triangulation pipe profiling instrument", Optical 3-D Measurement Techniques III, pp 331-340 (1995).
- 10. Clark, T. A., "Review of tunnel profiling methods", http://www.optical-metrology-centre.com/research\_papers.htm (1996).
- 11. Clarke, T.A., "Non-contact measurement provides six of the best", Quality

Today, July, pp s46-s48 (1998).

- Clarke, T.A. & Williams, M.R. "Buyers guide to six non-contact distance measuring techniques". Quality Today, Buyers Guide, pp. 145-149 (1999).
- Collett, D. E., "Laser Scanners and Reflectorless Total Stations for Tunnel Profiling", A dissertation submitted for the degree of Bachelor of Surveying with Honours University of Otago, Dunedin New Zealand (2005).
- Eisenstein, Z. and Branco, P., "Convergence-Confinemet Method in Shallow Tunnels," *Tunnelling and Underground Space Technology*, Vol.6, No.3, pp.343-346. (1991)
- 15. Freeman, T. J., "The Behaviour of Fully- Bonded Rock Bolts in the Kielder Experimental Tunnel," *Tunnels & Tunnelling*, Vol.10, No.5, pp.37-40 (1978)
- 16. Hoek, E., and Brown, E. T., Underground Excavation in Rock, Underground Excavation in Rock, *The Institution of Mining and Metallurgy London*, England (1980)
- 17. Lee, Y. L., "Prise en compte des non-linearite de comportement des sols et roches dans la modelisation du creusement d'un tunnel," *Ph.D. Dissertation, Departement de Genie Civil, Ecole Nationale des Ponts et Chaussees, Paris,* France (1994)
- Oreste, P. P., "Analysis of Structural Interaction in Tunnels Using the Covergence-Confinement Approach," *Tunnelling and Underground Space Technology*, Vol.18, No.4, pp.347-363 (2003)
- Oreste, P. P., "A Procedure for Determining the Reaction Curve of Shotcrete Lining Considering Transient Conditions," *Rock Mechanics and Rock Engineering*, Vol.36, pp.209-236, (2003)
- 20. Oreste, P.P. and Peila, D., "Radial Passive Rockbolting in Tunneling design with a new Convergence-Confinement Model," *International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts*, Vol.33, No.5, pp.443-454 (1996)
- 21. Oreste, P.P. and Peila, D., "Modelling Progressive Hardening of Shotcrete in

Convergence-Confinement Approach to Tunnel Design," *Tunnelling and Underground Space Technology*, Vol.12, No.3, pp.425-431 (1997)

- 22. Panet, M., Calcul des Tunnels par la methode de Convergence-Confinement, *Press de l'ecole Nationale des Ponts et Chaussees*, Paris. (1995)
- 23. Panet, M., "Recommendations on The Convergence-Confinement Method," *AFTES*, (2001)
- 24. Panet, M., "Analysis de la Stabilité dun Tunnel Creusé dans un Massif Rocheux en tenant compte dun Comprtement aprés la Ruputre," *Rock Mechanics*, Vol.3, No.4, pp,209-223 (1979)
- 25. Peila, D., Oreste, P.P., Rabajoli, G. and Trabucco, E, "Pretunel method, a new Italian technology for full-face tunnel excavation: a numerical approach to design," *Tunnelling and Underground Space Technology*, Vol.10, No.3, pp.367-374 (1995)
- 26. Pen Y. W., and Dong J. J., "Time-dependent tunnel convergence: Part I formulation of the model," *International Journal of Rock Mechanics & Mining Sciences & Geomech. Absts*, Vol.28, pp.469-475 (1991)
- 27. Pen Y. W., and Dong J. J., "Time-dependent tunnel convergence: Part II advance rate and tunnel support interaction," *International Journal of Rock Mechanics & Mining Sciences & Geomech. Absts*, Vol.28, pp.477-488 (1991)
- Sulem, J., Panet, M. and Guenot, A., "Closure Analysis in Deep Tunnels," *International Journal of Rock Mechanics & Mining Sciences & Geomech. Absts*, Vol. 24, No. 3, pp.145-154 (1987)
- 29. Wong Henry, Subrin Didier, and Dias Daniel, "Convergence-confinement analysis of a bolt-supported tunnel using the homogenization method," *Canadian Geotechnical Journal*, Vol.43, No.5, pp.462-483 (2006)
- 30. 李煜舲,「收斂圍束法在三維隧道開挖支撐之分析與應用」,海峽兩岸岩土 工程與地工技術交流研討會論文集-城市地下工程與環境保護,上海,台灣 卷第261-272頁。(2002)

- 31. 李煜舲,「收斂圍束法在新奧隧道工法之分析與應用」,地工技術雜誌,第 九十五期,pp.95-106(2003)。
- 32. 李煜舲,「隧道開挖前進效應與岩體力學行為關係之探討」,第三屆海峽兩 岸隧道與地下工程學術與技術研討會,四川成都,pp.359-365 (2002)。
- 33. 吳耀焜、張宏德、羅國峰,「八卦山隧道工程施工計測管理與回饋分析」, 台灣公路工程,第三十卷,第五期,pp.30-46 (2003)。
- 34. 陳堯中、陳希舜、陳志南、謝玉山,「岩石隧道施工技術研究-岩石隧道開 挖行為數值分析之研究」,交通部台灣地區國道新建工程局(1995)。
- 35. 陳羿安,「卵礫石層隧道計測資料之分析與應用」,碩士論文,中華大學土 木工程研究所(2004)。
- 36. 廖信朗,「隧道前期變形量之預測探討」,博士論文,國立台灣科技大學營 建技術研究所(2003)。
- 37. 劉弘志,「外顯式收斂圍束法在隧道開挖支撐互制行為之研究」,碩士論文, 中華大學土木與工程資訊學系(2005)。
- 38. 趙華誠,「以雙曲線模式探討隧道開挖之地盤反應曲線」,碩士論文,中華 大學土木工程研究所(1998)。
- 39. 蔡逸智,「三維隧道開挖縱剖面力學行為之研究」,碩士論文,中華大學土 木工程研究所(2001)。

# 以隧道变形量测资料分析掘进效应与约束损失

# 李煜般<sup>1</sup>, 许文贵<sup>2</sup>, 林铭益<sup>2</sup>

(1. 中华大学 土木与工程资讯系, 台湾 新竹 30067; 2. 铁路改建工程局, 台湾 台北 22041)

**摘要:** 收敛 - 约束法理论为应用于隧道工程支撑设计的简化分析方法,所采用之约束损失更是此分析模式的关键 因子。针对约束损失的计算与影响性分析,以隧道工程广泛使用的变形量测收敛资料为依据,以掘进效应函数探 讨隧道因前进开挖引致工作面围岩变形与应力变化,并以反计算方法评估约束损失分布情况,进而应用于台湾八 卦山公路隧道工程案例分析,以了解实际掘进效应的影响。研究分析结果包含: (1) 提出掘进效应函数描述隧道 收敛资料与约束损失的关系; (2) 说明掘进效应函数的参数适用范围及其物理意义; (3) 提出约束损失方程用 以预估隧道开挖引致前期与掘进距离的收敛值; (4) 反计算方法可以预估约束损失可能的重新分布趋势与前期 收敛; (5) 掘进效应函数分析结果与三维有限元计算结果相近。

关键词:隧道工程;变形量测;收敛-约束法;约束损失;掘进效应;前期收敛;反计算
 中图分类号:U45
 文献标识码:A
 文章编号:1000-6915(2009)01-0039-08

# ANALYSIS OF ADVANCING EFFECT AND CONFINEMENT LOSS BY USING DEFORMATION MEASUREMENTS IN TUNNEL

LEE Yulin<sup>1</sup>, HSU Wenkuei<sup>2</sup>, LIN Mingyi<sup>2</sup>

(1. Department of Civil Engineering and Engineering Informatics, Chung Hua University, Hsinchu, Taiwan 30067, China;
 2. Railway Reconstruction Bureau, Taipei, Taiwan 22041, China)

**Abstract:** For the design of support system of tunnel, the convergence-confinement method is a simplified analysis theory. Obviously, the confinement loss used by the theory is an important influence factor. For analyzing the influence of the confinement loss, the deformation measurements widely used in tunneling engineering are investigated; and the advancing effect function is particularly proposed to examine the alterations of deformation and stresses of rock mass around tunnel. The back calculation procedure is a technique proposed to assess the redistribution of the confinement loss. The case study of Baguashan tunnel in Taiwan is taken account of the advancing effect during construction. According to the obtained results and the comparison between numerical calculation and theoretical analysis, it is shown that: (1) the relationship between deformation measurements and confinement loss can be described by the proposed advancing effect function; (2) the parametric study of advancing effect function is examined; (3) the equations proposed for the confinement loss can be used to estimate the pre-convergence due to excavation; (4) the back calculation procedure is also proposed to understand the redistribution trend of confinement loss; and (5) the results obtained by the three-dimensional finite element analysis and the advancing effect function respectively are approximately coincident.

**Key words:** tunnelling engineering; deformation measurements; convergence-confinement method; confinement loss; advancing effect; pre-convergence; back calculation

收稿日期: 2008 - 07 - 12; 修回日期: 2008 - 10 - 11

**作者简介:** 李煜舲(1959-), 男, 1994年于法国国立桥梁与道路工程学院土木工程专业获博士学位,现任副教授、图书馆馆长,主要从事隧道工程、 岩石力学与工程及数值分析方面的教学与研究工作。E-mail: rosalee@chu.edu.tw

# 1 引 言

目前,隧道工程开挖与支撑多半采用新奥法 (NATM),此种工法的基本原理是利用岩体本身具有 的自持能力特性,以钢丝网、喷混凝土、岩栓与钢 结构等支撑构件,配合周围岩体形成一支撑拱圈, 达到隧道开挖后应力平衡的目的<sup>[1]</sup>。此施工法在施 工中,必需利用监测或计测仪器,记录隧道开挖时岩 体所产生的位移变化,以作为反分析的基本资料<sup>[2~4]</sup>。 然而,计测仪器在读取岩体相对位移数据时,通常 是在隧道工作面掘进一段距离后才开始架设,此时 隧道由于开挖导致在工作面上已产生一前期位移或 称前期收敛<sup>[5.6]</sup>。

收敛 - 约束法理论<sup>[7, 8]</sup>为目前广泛应用于隧道 支撑设计的简化分析方法,其主要目的是以二维平面 应变分析方式及采用计测相对位移的收敛资料作为 基本依据,在考虑隧道工作面掘进效应条件下<sup>[9, 10]</sup>, 模拟分析实际三维隧道开挖所引起的岩体应力 - 位 移变化和支撑结构受力等互制行为问题<sup>[11~22]</sup>。

由于隧道工作面的掘进造成围岩失去平衡,而 导致开挖面附近应力重新分布与变形产生。此时隧 道围岩之应力与位移状态的描述,可选用一约束 损失<sup>[7.8]</sup>加以描述与计算分析,此数值即为运用收 敛-约束法理论分析的主要关键因子。基于对约束 损失的假设、计算与应用,本文采用隧道开挖变形 量测的收敛资料,在考虑计测资料归一化方法与掘 进效应条件下,利用回归分析方式,提出反计算方 法与隧道掘进效应函数,藉以获得约束损失分布趋 势与预估前期收敛等<sup>[23~25]</sup>。

# 2 隧道收敛 - 约束法理论分析

由于隧道围岩受开挖而扰动,产生变形和应力 重新分布,为了解隧道开挖后岩体收敛与结构支撑 的互制关系,以及有效地估算岩体与支撑系统的各 项应力与位移,并依据现场隧道变形量测资料,设 计出最佳化支撑构件系统,这就是隧道收敛-约束 法理论分析的主要目的。其分析重点与应用项目包 括地层反应曲线(ground response curve, GRC)、支 撑反力曲线(support reaction curve, SRC)、纵剖面变 形曲线(longitudinal deformation curve, LDC)、约束 损失(confinement loss, CL)和平衡点(equilibrium point, EP)等<sup>[26~30]</sup>。 若假设一圆形(半径 **R**)隧道开挖于线弹性材料时,则隧道径向位移U<sub>r</sub><sup>[6,7]</sup>可表示为

$$U_{r} = \lambda \frac{\sigma_{v} R^{2}}{4Gr} \left\{ 1 + K_{0} + (1 - K_{0}) \left[ 4(1 - \nu) - \frac{R^{2}}{r^{2}} \right] \cos(2\theta) \right\}$$
(1)

式中: $\lambda$ 为约束损失;G为材料剪力模量; $\sigma_{v}$ 为垂 直岩上覆压力; $K_{0}$ 为侧向压力比; $r, \theta$ 均为隧道 极坐标。

当
$$K_0 = 1$$
时,在开挖面( $r = R$ )的径向位移 $U_R$ 为

$$U_R = \lambda \frac{\sigma_v R}{2G} \tag{2}$$

对于式(2)约束损失 $\lambda$ 对于隧道开挖支撑行为的影响,在距离工作面前方处,因岩体未受到隧道 开挖所产生的扰动影响,其径向应力 $\sigma_{,}$ 和切向应力  $\sigma_{\theta}$ 均等于初始应力 $\sigma_{0}$ ,则此时的约束损失 $\lambda=0$ 。 然而随着隧道继续向前掘进开挖,地层受到扰动影 响而持续卸荷,其约束损失为 $0 < \lambda < 1$ 。最后,当 工作面距离为无穷远时,在开挖面上地层因完全解 压而达到最终状态,则约束损失 $\lambda=1$ 。关于约束损 失与应力、位移的相关方程<sup>[6-7]</sup>可分别表示如下:

$$\begin{array}{l}
\sigma_r = \sigma_0 \\
\sigma_\theta = \sigma_0 \\
U_r = 0
\end{array}$$
(3)

(2) 当 
$$0 < \lambda < 1$$
 时,有  
 $\sigma_R = \left[ 1 - \lambda \left( \frac{R}{r} \right)^2 \right] \sigma_0$   
 $\sigma_\theta = \left[ 1 + \lambda \left( \frac{R}{r} \right)^2 \right] \sigma_0$   
 $U_R = \lambda \frac{\sigma_0 R^2}{2Gr}$ 
(4)

$$\begin{array}{ccc}
(3) \equiv \lambda = 1 & \text{P}, & \text{P} \\
& \sigma_r = 0 \\
& \sigma_\theta = 2\sigma_0 \\
& U_r = \sigma_0 R/(2G)
\end{array}$$
(5)

当隧道开挖后导致岩体产生变形,其后架上支 撑结构彼此相互作用,直到收敛变化结束时,亦即 地层反应曲线和支撑反力曲线相交于一点时,此即 为平衡点。隧道开挖支撑的相互关系可由下式的地 层反应曲线和支撑反力曲线来表示,即

$$\sigma_r + 2G\frac{U_r}{R} - \sigma_0 = 0 \tag{6}$$

$$\sigma_r - K_s \frac{U_R^s - U_r^d}{R} = 0 \tag{7}$$

式中: $U_r^a$ , $U_r^s$ 分别为距离开挖面和平衡点处的径向位移; $K_s$ 为支撑结构刚度。当到达平衡状态时,此时岩体径向应力 $\sigma_r$ 等于平衡点结构支撑压力 $P_s$ ,且径向位移 $U_s^s$ 可表示为

$$P_s = \frac{K_s}{2G + K_s} \left( \sigma_0 - 2G \frac{U_r^d}{R} \right) \tag{8}$$

$$\frac{U_r^s}{R} = \frac{1}{2G + K_s} \left( K_s \frac{U_r^d}{R} + \sigma_0 \right)$$
(9)

若考虑架设支撑,当隧道掘进开挖的距离为 *d* 时,则所对应的约束损失为 λ<sub>d</sub> 值,此时的径向位移 量表示为

$$\frac{U_r^d}{R} = \lambda_d \frac{\sigma_0}{2G} \tag{10}$$

由式(10)可计算求得平衡点结构支撑压力 P<sub>s</sub>与 径向位移量 U<sup>s</sup><sub>r</sub>,即

$$P_s = \frac{K_s}{2G + K_s} (1 - \lambda_d) \sigma_0 \tag{11}$$

$$\frac{U_r^s}{R} = \frac{2G + \lambda_d K_s}{2G + K_s} \frac{\sigma_0}{2G}$$
(12)

由上述对于收敛 - 约束法理论分析可知,结构 支撑压力与径向位移量分别为覆岩应力、地层弹性 参数、约束损失、支撑结构刚度和隧道几何尺寸等 的关系因子。

# 3 约束损失与掘进效应函数

### 3.1 约束损失与收敛的关系

关于隧道开挖导致地层收敛变形,目前主要是 以隧道收敛值 *C* 为考察对象,且有如下关系<sup>[6-7]</sup>:

$$C = f(z(t), t, d_0, K_s, \sigma_v, K_0)$$
(13)

式中: *z*(*t*)为隧道开挖轴线 *z* 在某一特定时间的变形 量测断面至工作面距离(或称为掘进距离 *d*), *t* 为开 挖停留时间, *d*<sub>0</sub>为无支撑距离。

若假设隧道开挖岩体收敛的本构模式与时间无 关时,并在某一特定时间下实施相对位移测量,则 变形量测断面 L1 收敛值与掘进距离的关系如图 1 所示。



图 1 变形量测断面 L1 收敛值与掘进距离关系图 Fig.1 Relationship between convergence and advancing distance in section L1 of deformation measurements

在不同掘进距离情况下,隧道收敛值与径向位 移的关系可表示为

$$C_{z} = 2(U_{r}^{z} - U_{r}^{d})$$
(14)

式中: $U_r^z$ 为掘进距离 d 处的径向位移。

已知离工作面 z 距离时,其径向位移可表示为

$$U_r^z = \lambda_z U_r^\infty \tag{15}$$

式中: *U<sub>r</sub>* 为径向位移最大值。将式(15)代入式(14), 则收敛值为

$$C_z = 2(\lambda_z - \lambda_d)U_r^{\infty}$$
(16)

式中: $\lambda_z$ , $\lambda_d$ 分别为掘进距离 z = d处的约束损失。 当  $z \rightarrow \infty$ 时, $\lambda_{\infty} = 1$ ,则收敛值为

$$C_{\infty} = 2(1 - \lambda_d) U_r^{\infty} \tag{17}$$

若考虑一隧道掘进效应函数 f(z) 为

$$f(z) = \frac{C_z}{C_{\infty}} \tag{18}$$

将式(16),(17)代入式(18)时,则可得到约束损 失与掘进效应函数的关系为

$$\lambda_z = \lambda_d + (1 - \lambda_d) f(z) \tag{19}$$

若d=0时,则式(19)可改写为

$$\lambda_z = \lambda_0 + (1 - \lambda_0) f(z) \tag{20}$$

式中: λ<sub>0</sub>为工作面前期约束损失。

式(20)为二维平面应变分析模式模拟三维隧道 开挖掘进效应的主要方程。图 2 给出了隧道开挖掘 进距离比 *z*/*R* 与围岩约束损失 *λ*.的关系。





Fig.2 Relationship between confinement loss and advancing effect function

### 3.2 隧道掘进效应函数与其参数研究

在应用地层反应曲线和支撑反力曲线关系作为 隧道支撑设计的方法时,约束损失与隧道工作面掘 进效应有其密切的关系。其主要考察对象为隧道掘 进工作面到变形量测断面的距离 *d* 及其相对应的约 束损失λ<sub>d</sub> 值。

关于隧道掘进效应函数的假设,可借助于隧道 变形量测的收敛资料,也就是隧道开挖纵剖面变形 曲线(LDC)的分布情况获得。因此,隧道掘进效应 函数 *f*(*z*)可假设如下:

(1) 双曲线函数:

$$f(z) = 1 - \left(\frac{m}{m + z/R}\right)^n \tag{21}$$

(2) 正切双曲线函数:

$$f(z) = a_1 \left[ 1 - \tanh\left(a_2 - a_3 \frac{z}{R}\right) \right]$$
(22)

式(21), (22)中: m, n,  $a_1$ ,  $a_2$ ,  $a_3$ 均为回归参数。

掘进效应双曲线函数的参数影响分析结果显示,当*z*≥8*R*时,惟有 *n*≥2的掘进效应函数收敛至 1,因此建议采用参数 *n* = 2,以符合实际收敛状况。 另外,参数 *m* 值越小则函数斜率越大,表示收敛趋 势越快(见图 3)。

对于掘进效应正切双曲线函数的参数影响分析 结果显示,参数 $a_1$ 表示掘进函数的最终收敛状态(见 图 4),其合理数值应为 1/2。而参数 $a_2$ 的物理意义为 隧道工作面上(z = 0)的收敛情形,其数值范围为 1/6~2/3(见图 5)。至于参数 $a_3$ 则表示掘进函数斜率 变化,数值越大则函数斜率越大,表示收敛趋势 越快,其数值范围为 0.1~1.0(见图 6)。



图 3 双曲线函数参数 m 影响分析图





图 4 正切双曲线函数参数 a1 影响分析图

Fig.4 Influence of parameter  $a_1$  for tangential hyperbolic function



图 5 正切双曲线函数的参数 a2 影响分析图



### 3.3 约束损失与掘进距离的关系探讨

当隧道开挖位于工作面(z=0),若隧道掘进效 应函数采用式(21)时,则式(20)可表示为

$$\lambda_z = \lambda_0 + (1 - \lambda_0) \left[ 1 - \left(\frac{m}{m + z/R}\right)^n \right]$$
(23)

针对前期收敛的探讨,本研究采用式(21)的参数 n = 1, z = d,并提出一掘进距离参数 $\alpha$ ,以描述



图 6 正切双曲线函数的参数 a3 影响分析图

Fig.6 Influence of parameter  $a_3$  for tangential hyperbolic function

掘进距离 d 对于工作面的影响, α可表示为

$$\alpha = 1 - \frac{m}{m + d/R} \tag{24}$$

前期约束损失λ<sub>0</sub>与参数α的关系,经由式(23)的 对应关系可表示为

$$\lambda_0 = \alpha + (1 - \alpha)\alpha \tag{25}$$

或

$$\lambda_0 = 1 - \left(\frac{m}{m + d/R}\right)^2 \tag{26}$$

将式(26)代入式(23),则可获得当隧道开挖位于 掘进距离处(z = d)时的约束损失  $\lambda_d$  值为

$$\lambda_d = 1 - \left(\frac{m}{m + d/R}\right)^4 \tag{27}$$

对于上述关系方程的探讨,可假设一隧道开挖 半径 R = 6.3 m、掘进距离 d = 8.4 m、隧道掘进效 应函数采用式(21),以及其回归参数 m = 5。则经由 式(26),(27)的计算,即可获得约束损失  $\lambda_0 与 \lambda_d$  分 别为 0.377 与 0.612。因此,经由已知的掘进距离 d, 可以估算工作面上之前期约束损失值,其约束损失 与掘进效应函数的关系如图 2 所示。

### 3.4 反计算方法应用于约束损失探讨

由于隧道收敛岩钉或收敛仪一般均安装在离隧 道掘进工作面后一定距离处(即掘进距离 *d* 处),如 此方能施做相对位移的量测。因此所量测收敛值并 非前期收敛值,而是距离 *d* 处之收敛值 *C<sub>d</sub>*。为处 理变形量测的收敛资料及考察前期收敛值的影响, 本研究提出一反计算方法,并由下式计算可获得在 任意一掘进距离 *z* 之径向位移*U<sup>\*</sup>*,或约束损失λ.:

$$U_r^z = \lambda_z U_r^\infty - (1 - \lambda_z) U_r^d \tag{28}$$

依据图 1 的隧道开挖现地变形量测的收敛资料,并采用式(28)的反计算方法,即可获得约束损失分布图(见图 7),而反计算的前期约束损失值为0.379,与式(27)所计算的值0.377 接近。



# 4 隧道前期收敛与约束损失分析

# 4.1 三维有限元分析隧道开挖结果比较

由图 8 可知,关于隧道工作面(z = 0)的前期收 敛方面,前期径向位移量 $U_r^0$ 与最终位移量 $U_r^\infty$ 的比 值为 32.79%;而采用式(20),(21)合并计算的结果为 32.79%(式中参数为n = 2,m = 0.775和d/R = 0.17); 若采用式(20),(22)的合并计算的结果则为 33.92% (式(22)中参数 $a_1 = 1/2$ , $a_2 = 1/3$ , $a_3 = 1.379$ )。





由此分析结果比较与验证可知,本研究所采用 隧道掘进函数的分析结果与三维有限元分析计算结 果相当近似,且掘进效应的正切双曲线函数式(22) 可考查工作面前后的收敛分布趋势,而双曲线函数 式(21)仅能查工作面之后的收敛分布。

### 4.2 隧道变形量测资料的處理与分析

关于隧道计测收敛资料的实际案例探讨,采用 台湾中部东西向快速公路汉宝草屯线八卦山卵砾石 层隧道工程的计测断面数据。八卦山隧道工程西起 彰化县员林镇贯穿八卦山台地至南投县顶寮附近, 全长约5km为台湾第二长公路隧道。左线(西行)全 长4928m、右线(东行)全长4935m,双孔双车道 设计,其隧道断面形状为六心圆,隧道半径为6.3m。 由于八卦山隧道为双口双向,兹定义4种方向编 号:东口右侧(ER)、东口左侧(EL)、西口右侧(WR) 和西口左侧(WL)。

研究所采用的变形量测断面为 EL036,其基本 资料包含:地质情况(覆土厚度 129 m,地层分类为 DII 类)、开挖面情况(为中细粒砾石层砂充填及砂 砾层,砾石粒径为 2~15 cm,砾石含量为 50%~ 70%)、上半开挖时间(1998 年 6 月 11 日)、上半断 面初始值测读时间(1998 年 6 月 12 日)以及安装里程 (K31+546.8)等。

在隧道计测断面布置方面,收敛岩钉计测依位 置不同分为顶拱(*L*1)、上半测点(*D*1, *D*2 和 *H*1)、 下半测点(*D*3, *D*4 和 *H*2)等位置,本研究仅讨论上 半开挖,并采用上半处收敛岩栓(*L*1 和 *H*1)作为探 讨计测点(见图 9)。由计测资料可知,隧道计测断 面到工作面距离 *d* = 8.4 m, *L*1 与 *H*1 的最大收敛值 分别为 14.0, 10.1 mm,其收敛值与掘进距离关系 如图 9 所示。



图 9 台湾八卦山隧道工程变形量测断面 EL036 收敛资料 Fig.9 Convergent data of monitoring section EL036 of Baguashan tunnel in Taiwan

计测断面之顶拱(*L*1)与上半测点(*H*1)的收敛资 料处理与分析步骤为: (1) 隧道掘进效应函数参数 的回归分析(*m*;  $a_1$ ,  $a_2$ 和 $a_3$ ); (2) 约束损失计算( $\lambda_0$ ,  $\lambda_a$ 和 $\lambda_a$ ); (3) 反计算; (4) 隧道掘进函数模拟分析 等。

对于式(21)掘进效应双曲线函数而言,利用回 归分析软件 SPSS 作回归分析计算,可以获得顶拱 (*L*1)与上半测点(*H*1)的参数*m*值分别为5.00与8.56。 在以式(21)绘制约束损失与掘进距离的关系图,其 结果如图 10,11 所示,可得掘进效应双曲线函数计 算值与收敛值的相关趋势。



图 10 量测断面 EL036(L1)收敛值与回归值的比较







Fig.11 Comparison between convergence and regression data of monitoring section EL036(*H*1)

在考虑约束损失的比较方面,反计算所获得顶 拱(L1)与上半测点(H1)之前期约束损失分别为 37.95%和30.54%。至于掘进效应函数的计算结果, 双曲线函数式(21),(20)合并计算结果分别为37.68% 和25.14%,而正切双曲线函数式(22),(20)的计算结 果均为33.92%。

其次,在反计算后的约束损失分布图方面(见 图 12,13),本文提出的隧道掘进效应函数,即双 曲线函数与正切双曲线函数,均能符合反计算约束 损失的分布趋势,尤其以双曲线函数式(21)更能描 述因开挖所引致约束损失的掘进效应。



图 12 量测断面 EL036(H1)反计算约束损失与掘进效应 函数比较

Fig.12 Comparison between confinement loss obtained by back calculation and advancing effect function of monitoring section EL036(*H*1)



- 图 13 量测断面 EL036(L1)反计算约束损失与掘进效应 函数比较
- Fig.13 Comparison between confinement loss obtained by back calculation and advancing effect function of monitoring section EL036(*L*1)

由上述分析结果可知,以反计算方式处理的收 敛数据可以估计前期约束损失值,也就是能估计前 期收敛值。而本文所提出的隧道掘进效应函数亦能 计算前期约束损失值,并能正确地描述隧道因开挖 引致岩体收敛或约束损失的分布情况,进而能提供 收敛 - 约束法理论应用在隧道支撑设计分析上的关 键因子 - 约束损失。

# 5 结 论

本研究针对常用于隧道支撑设计分析之收敛-约束法,介绍其基本理论与分析模式,并提出隧道 掘进效应函数探讨隧道因前进开挖引致岩体收敛与 约束损失,并建议以反计算方法评估隧道约束损失 分布趋势,进而应用于隧道实际案例之计算分析。 经由计算与分析比较,获得研究结果如下:

(1) 以隧道收敛 - 约束法为理论分析基础,提 出隧道掘进效应函数,确立隧道开挖收敛资料与约 束损失的函数关系。

(2) 确立隧道掘进效应函数参数数值的适用范 围与其物理意义。

(3) 提出前期(z = 0)与掘进距离(z = d)的约束损 失方程式(式(26),(27)),以预估隧道开挖引致的前 期与掘进距离收敛情形。

(4) 提出反计算方法(式(28)),用以分析计算原 位收敛资料,重新呈现并预估可能的约束损失分布 趋势与前期收敛值。

(5) 隧道掘进效应函数的分析结果与三维有限 元分析计算结果相当近似。

(6) 实际案例分析结果显示,隧道掘进效应函数亦能计算前期约束损失值,并能正确地描述隧道 开挖引致岩体收敛或约束损失的分布情况,进而了 解隧道工作面收敛变化与掘进效应的影响。

#### 参考文献(References):

- KOLYMBAS D. Tunnelling and tunnel mechanics a rational approach to tunnelling[M]. Heidelberg: Springer-Verlag, 2005.
- [2] SAKURAI S, AKUTAGAWA S, TAKEUCHI K, et al. Back analysis for tunnel engineering as a modern observational method[J]. Tunnelling and Underground Space Technology, 2003, 18(2): 185 - 196.
- [3] SAKURAI S. Lessons learned from filed measurements in tunnelling[J]. Tunnelling and Underground Space Technology, 1997, 12(4): 453 – 460.
- [4] ORESTE P P. Back-analysis techniques for the improvement of the understanding of rock in underground constructions[J]. Tunnelling and Underground Space Technology, 2005, 20(1): 7 - 21.
- [5] KITAGAWA T, KUMETA T, ICHIZYO T, et al. Application of convergence-confinement analysis to the study of preceding displacement of a squeezing rock tunnel[J]. Rock Mechanics and Rock Engineering, 1991, 24(1): 31 – 51.
- [6] LEE Y L. Prise en compte des non-linéarité de comportement des sols et roches dans la modélisation du creusement d'un tunnel[Ph. D. Thesis][D]. Paris: Département de Génie Civil, Ecole Nationale des Ponts et Chaussées, 1994.
- [7] PANET M. Calcul des tunnels par la méthode de convergenceconfinement[M]. Paris: Press de l'école Nationale des Ponts et Chaussées, 1995.
- [8] PANET M. Recommendation on the convergence-confinement

method[R]. Paris: Association Française des Tunnels et de l'Espace Souterrain(AFTES), 2001.

- [9] NGUYEN M D, GUO C. A ground support interaction principle for constant rate advancing tunnels[C]// Proceedings of the Eurock'93. Lisbon: Balkema Rotterdam, 1993: 171 - 177.
- [10] NGUYEN M G, CORBETTE F. New calculation methods for lined tunnels including the effect of the front face[C]// Proceedings of the International Congress on Rock Mechanics. Aachen: [s.n.], 1991: 1 335 - 1 338.
- [11] BERNAUD D, BROSSET G La nouvelle méthode implicite pour l'étude du dimensionnement des tunnels[J]. Revue Française de Géotechnique, 1992, 60(2): 5 - 26.
- [12] BERNAUD D, BROSSET G. The "new implicit method" for tunnel analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1996, 20(9): 673 - 690.
- [13] BROWN E T, BRAY J W, LADANYI B, et al. Ground response curves for rock tunnels[J]. Journal of Soil Mechanics and Geotechnical Engineering, ASCE, 1983, 109(1): 15 - 39.
- [14] CORBETTE F, BERNAUD D, NGUYEN MINH D. Contribution à la methode convergence-confinement par le principe de la similitude[J].
   Revue Française de Geotechnique, 1991, 54(4): 5 - 12.
- [15] DEFFAYET M, ROBERT A. Dimensionnment et réalisation d'un tunnel à partir de mesures de convergence[C]// Proceedings of the Colloque Organisé à Paris, Tunnels et Micro-tunnels en Terrain Meuble-du Chantier à La Théorie. Paris: [s.n.], 1989: 316 - 324.
- [16] EISENSTEIN Z, BRANCO P. Convergence-confinement method in shallow tunnels[J]. Tunnelling and Underground Space Technology, 1991, 6(3): 343 - 346.
- [17] GAUDIN B, POLACCI J P, PANET M, et al. Souténement d'une galerie dans les marnes du Cenomanien[C]// Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering. Rotterdam: A. A. Balkema, 1981: 293 - 296.
- [18] GUENOT A, PANET M, SULEM J. New aspects in tunnel closure interpretation[C]// Proceedings of the 26th US Symposium on Rock Mechanics, Research and Engineering Applications in Rock Masses. [S.l.]: [s.n.], 1985: 455 - 460.
- [19] SULEM J, PANET M, GUENOT A. Closure analysis in deep tunnels[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1987, 24(3): 145 - 154.
- [20] SULEM J, PANET M, GUENOT A. An analytical solution for time dependent displacements in a circular tunnel[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,

1987, 24(3): 155 - 164.

- [21] PANET M. Time-dependent deformations in underground works[C]// Proceeding of the 4th Congress of ISRM. [S. l.]: [s. n.], 1979: 279 - 289.
- [22] PANET M. Understanding deformations in tunnels[C]// HUDSON J A ed. Comprehensive Rock Engineering Principles-practice and Projects. New York: Pergamon Press, 1993: 663 - 690.
- [23] 李煜舲. 收敛 约束法在新奥隧道工法的分析与应用[J]. 地工技术, 2003, 95(1): 95 106.(LEE Yulin. Analysis and application of the convergence-confinement method to NATM[J]. Sino-geotechnics, 2003, 95(1): 95 106.(in Chinese))
- [24] 李煜舲,林铭益. 台湾东部变质岩隧道开挖支撑互制行为的探讨[J]. 岩石力学与工程学报, 2004, 23(增 2): 4 823 - 4 832.(LEE Yulin, LIN Mingyi. Analysis of interaction between rock mass and support system of monorail tunnel in east Taiwan[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(Supp.2): 4 823 - 4 832.(in Chinese))
- [25] 李煜舲,林铭益,许文贵. 三维有限元分析隧道开挖收敛损失与纵 剖面变形曲线关系研究[J]. 岩石力学与工程学报,2008,27(2):
  258 - 265.(LEE Yulin, LIN Mingyi, HSU Wenkuei. Study of relationship between the convergence loss and the longitudinal deformation curve by using three-dimensional finite element analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(2): 258 - 265.(in Chinese))
- [26] CARRANZA-TORRES C, FAIRHURST C. The elastoplastic response of underground excavation in rock masses that satisfy the Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(6): 777 - 809.
- [27] CARRANZA-TORRES C, FAIRHURST C. Application of the convergence-confinement method of tunnel design to rock masses that satisfy the Hoek-Brown failure criterion[J]. Tunnelling and Underground Space Technology, 2000, 15(2): 187 – 213.
- [28] ORESTE P P. Analysis of structural interaction in tunnels using convergence-confinement approach[J]. Tunnelling and Underground Space Technology, 2003, 18(4): 347 - 363.
- [29] ORESTE P P, PEILA D. Modelling progressive hardening of shotcrete in convergence-confinement approach to tunnel design[J]. Tunnelling and Underground Space Technology, 1997, 12(3): 425 - 431.
- [30] ORESTE P P, PEILA D. Radial passive rockbolting in tunneling design with a new convergence-confinement model[J]. International Journal of Rock Mechanics Mining Sciences and Geomechanics Abstracts, 1996, 33(5): 443 – 454.