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Abstract

The objective of this study is to establish a monthly water quality predicting model using a grammatical
evolution (GE) programming system for Feitsui Reservoir in Northern Taiwan. Grammatical evolution (GE)
has an ability to find out significant input variables and combine them to form mathematical equations
automatically. In this study, GE model was fed with fifteen input variables to determine a reasonable
nonlinear mathematical equation for predicting the total phosphorous (TP) concentration in reservoir. Three
significant input variables, including two TP sources and maximum rainfall were chosen through GE process.
Because the obtained GE model can effectively simulate the dynamics of reservoir water quality, a
Macro-Genetic Algorithm (MGA) was then used as an optimization model mixed with this GE predicting
model to control the nutrient loads from the watershed and maintain the in-reservoir TP concentration

efficiently.

Keywords : grammatical evolution (GE), water quality predicting model, genetic algorithm (GA), total

phosphorous (TP)
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1. Introduction

Taiwan is located in a transition zone between the tropical and subtropical climates and is characterized
by high temperature and ample rainfall. In the present time, the reservoirs provide about 70% of drinking
water for a population of nearly 23 millions and industrial water use in Taiwan. According to Kao et al.
(2006), various types of anthropogenic disturbance are affecting Taiwan watersheds. Nutrient loads from
excessive watershed development continue to increase, resulting in accelerated eutrophication in many
reservoirs (Kuo et al., 2007). Therefore, we developed a nutrient model to simulate the behavior of nutrient
loads in an important reservoir located in Northern Taiwan. In this study, the model is based on data from
nutrient loads of a main creek and two tributaries to forecast the total phosphorous (TP) concentration in
Feitsui Reservoir.

Evolutionary computation techniques are based on a powerful principle of evolution i.e. survival of the
fittest. They are considered to be very efficient optimization methods. Among these methods, genetic
algorithm (GA) is one of the most popular search algorithms. But there are some kinds of difficulties of GA
related to the fixed-length encoding and premature convergence. Indeed; researchers have successfully used
evolutionary algorithms for automatically generating programs or equations among the inputs and outputs.
The lately developed grammatical evolution (GE) technique is a biologically plausible approach that performs
the evolutionary processes on simple variable-length binary strings. This new data structure is flexible and it
allows researchers to exploit benefits of genetic algorithms. Chen et al. (2008) applied it to improve the

remote monitoring on water quality in a subtropical reservoir with satellite imagery successfully.

2. Grammatical Evolution

Grammatical evolution (GE) is an evolutionary automatic programming type system that combines a
variable length binary string genome and Backus-Naur Form (BNF) grammar to evolve interesting structures.
Variable length binary string genomes are used with each codon representing an integer value where codons
are consecutive groups of 8 bits. The integer values are used in a mapping function to select an appropriate
production rule from the BNF definition; the numbers generated always represent one of the rules that can be
used at that time (Elseth and Baumgardner, 1995). The details of this procedure are described as the

following:

2.1 Backus-Naur form

BNF is a notation for expressing the grammar of a language in the form of production rules (Naur, 1963).
BNF grammars consist of so called terminals representing the items that can appear in the language, e.g., +, -,
etc., and nonterminals, which can be expanded into one or more terminals and nonterminals. A grammar can
be represented by the tuple {N, T, P, S}, in which N is the set of nonterminals, T the set of terminals, P is a set
of production rules that maps the elements of N to T, and S is a start symbol that is a member of N. When
there are a number of productions that can be applied to one particular N, the choices are delimited with the
‘|” symbol.

Below is a BNF example, where

N = {expr, op, pre_op}

T = {Sin, Cos, Log, +, -, *, /, Variable X, Constant 1.0}

S = <expr>



And P can be represented as:

(1) <expr>:: = <expr><op><eXpPr>....................... rule 0
| (<expr><op><exXpr>).........ccc......... rule 1

|<pre-op> (EXPIr>)...evueiniinereieannnnne rule 2

VA, rule 3

(2) <OP> ii=t i rule 0
| = e rule 1

|/ e rule 2
e rule 3

(3) <pre-op>::=SiN ...ooeiiiininiiiiiiiieeeeeen, rule 0
| COS wniiiiie rule 1

| LOg e rule 2

(4) <var> i = X e rule 0
| 1.0 rule 1

2.2 Mapping Process

The genotype is used to map the start symbol onto terminals by reading codons of 8 bits to generate a
corresponding integer value from which an appropriate production rule is selected by using the following
mapping function:

Rule = (codon integer value) MOD (number of rules for the current nonterminal)....... (1)

Considering the following rule, i.e., given the nonterminal op, there are four production rules to select

from:
SOP> i =F rule 0
[ = rule 1
L rule 2
I rule 3

If we assume the codon being read produces the integer 6, then

6 MOD 4 =2

would select <op> as rule 2: /. Each time a production rule has to be selected to map from a
nonterminal, another codon is read. In this way, the system traverses the genome.

For example, considering the individual in Table 1, there are fourteen 8-bit binary codons in one string.

The decoding process is described as follows:

(1) First, concentrating on the start symbol <expr>, four possible productions to be chosen are distinguished.
To make this choice, we read the first codon from the chromosome “11001000” and use it to generate a
number “200”. Because the standard decode of the binary 11001000 equals to 200. This number will
then be used to decide which production rule to use according to Eq. (1) in BNF. Thus, we have 200
MOD 4 = 0, meaning we must take the zero™ production, rule (0), so that <expr> is now replace with

<exXpr=><op><expr>.

(2) Continuing with the first <expr>, i.e., always starting from the leftmost nonterminal, a similar choice must
be made by reading the next codon value 160 and again using the given formula we get 160 MOD 4 =

0 - i.e., rule 0. The leftmost <expr> will now be replaced with <expr><op><expr> to give
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<EXPr=><op><expr=><op><expr>.
(3) Again, we have the same choice for the first <expr> by reading the next codon value 206, the result being
the application of rule 2 to give
<pre-op>(<expr>)<op><expr><op><expr>.
(4) Now, the leftmost <pre-op> will be determined by the codon value 96 that gives us rule 0, which is
<pre-op> becomes Sin. We have the following:

Sin(<expr>)<op><expr><op><expr>

(14) The mapping continues until eventually we are left with the following expression:
Sin(X)*Cos(X)+1.0

Notice that if there had been any extra codons, they would have been simply ignored during the
genotype-to-phenotype mapping process. It is possible for individuals to run out of codons and in this case,
we wrap the individual and reuse the codons. This technique of wrapping the individual draws inspiration
from the gene-overlapping phenomenon, which has been observed in many organisms (Elseth and
Baumgardner, 1995). It is possible that an incomplete mapping could occur even after several wrapping
events and in this case, the individual in question is given the lowest possible fitness value.

Because there is a problem that only integers can be presented by using the binary coding scheme
mentioned above, we revised it as a real-coded representation. The real numbers which imply that, each
chromosome is a real-valued vector, as opposed to binary-coded GA, where chromosomes are 0-1 vectors. It
is very useful and efficient to generate the real-number constants and coefficients shown in these output
equations. When a codon is decoded as a constant, the value of real-coded genome can be generated directly.
Whereas mapping a codon to the BNF rule, just need to round it off as a non-negative integer within the
range between 0~255 then choose one corresponding BNF rule.

Fig. 1 shows a combination of GE and GA, called GEGA, to generate the optimal relationship among
inputs and outputs automatically. First, a GE was employed to transfer the real-coded string through BNF
grammars to mathematical function. The data from several bands of remotely sensed imagery were used in
the GE as inputs to predict the water quality in the reservoir. Further, a GA was incorporated with this GE to
optimize the objective value of those functions. In other words, the GA was used to determine the most

proper relationship among the input and output data pairs.

2.3 Fitness Function

The correlation coefficient (CC) between predicted and actual values is adopted as the fitness function of
GE. Through several experiments, it is observed that this fitness function can accelerate the speed of search
procedure compared with using the root mean squared error (RMSE) directly. It is able to achieve both “high
linear correlation” and “small RMSE”simultaneous in most cases, so we chose the former as the objective
function. This study therefore employed single linear regression analysis to decrease the RMSE of estimation
(Yeh et al., 2010).

y=a+pg-f )

where
f = output value of data predicted bythe GE;



y = actual output value of data in the dataset;
a and f = the intercept and slope, respectively.

3. The Case Study

3.1 Feitsui Reservoir

Feitsui Reservoir at 25°27° N and 121%33” E is the most important reservoir of Northern Taiwan,
supplying drinking water for more than five million people in the Taipei City. The main dam is located at the
downstream of Peishih Creek, a tributary of Hsintien Creek (Fig. 2). The reservoir construction started in
mid-1979 and completed in 1987 with an initial storage of 406 x 10°m”. It has a surface area of 10.24 km? (at
EL.170m), and its catchments area is 30 times the total reservoir area. With about 20 km in length, the
mainstream is of meandering morphology. The effective storage capacity near the dam was 359 million m”,
39.68 m and 113.5 m for the mean depth and maximum depth, respectively. The average bed slope is 0.3%.
The main landscape in the reservoir watersheds is terrace and hardwood montane. Most banks of this reservoir
are the previous agricultural farms, primarily tea farms, which were flooded after the reservoir operation. The
average annual precipitation is around 2,500 mm or more. The main geological substrates are interstratified
with sandstone and shale formed after the Oligocene. The primary soils are Entisol and Inceptisol according to
Soil Taxonomy. Agricultural activities are surrounded the catchment area, while there are no industrial
activities over the catchments, and accordingly the reservoir is isolated from any industrial pollution sources.
The atmospheric influx and domestic sewage as well as agricultural fertilizers would be the primary sources for
most anthropogenic chemicals. Feitsui reservoir is one of the most extensively monitored reservoirs in Taiwan.
Although water quality in Feitsui Reservoir is among the best in Taiwan, the reservoir still receives much
attention because of significant watershed nutrient loads. The nutrient loads are mainly from non-point
agricultural and tourist activities. Under the Carlson trophic state index, water quality of the reservoir is listed

as mesotrophic most of the time and eutrophic for only a few months in recent years.

3.2 TP Data Set

All the nutrient loads in Feitsui Reservoir were considered the summation of three sources of the main
flow Peishih Creek and two tributaries, Diyu Creek and Kingkwa Creek in this case study (Fig. 2). The monthly
monitoring data records of 1996-2005 were obtained from the Feitsui Reservoir Administration Bureau and the
Research Center for Environmental Change, Academia Sinica. The first 6-year records were used for model
training (calibration) and the following 4-year records for model testing (verification) The input variables
includes the phosphorus loads (which indicates the main inflow Peishih Creek, the tributaries Diyu Creek, and
Kingkwa Creek), two meteorological variables (including average and maximum rainfall inthe watershed), and
two hydrological variables (including inflow and outflow). These seven input variables are chosen as the main
factors to predict the TP in reservoir. Study done by Kuo et al. (2006) used similar data sets in reservoir water
quality prediction. However, the TP concentrations in Feitsui Reservoir become increasingly high in recent
years. Under such circumstance, by employing only the seven input variables early mentioned cannot achieve a
satisfied accuracy of prediction in this study. Therefore, total fifteen input variables contain seven input
variables described above at time step t and the other seven input variables: their values one step ahead (time
step t-1), as well as one input variable: the TP in reservoir at time step t-1. This system identification problem
may be viewed as a searching for a proper function (and its parameters) which maps fifteen input values onto an
output value (average TP in reservoir at time step t). Table 2 presents the statistical parameters of the data set
used in this study in order to prescreen the data characteristics. In the Table 2, the Xmean, Sx, Cv, Xmax and Xmin
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denote the data mean, standard deviation, variation coefficient, maximum and minimum, respectively.

3.3 Models Performances Evaluation
The root mean square errors (RMSE) and mean absolute errors (MAE) denoted below are used as the

comparison criteria to evaluate the models performances in these applications.

N
RMSE = \/ L > (Y.observed- Y,predicted)’
N 3)

MAE = % i |Yi0bserved - Yipredicted|
i=l1

where N is the number of data, Y; is the TP concentration for the time step 1.

3.4 Results
The function library types in BNF include several general mathematical operators such as {+, -, *, /, LN,
EXP, POWER}. The IGE model was carried out for three times (runs). Results of these three mathematical

formulas are listed as follows:

Y, =19.5+0.00000011* (X, - X,, +199.94)*(181.81* X, *X;) ....... (5)

Where
X is the TP concentration (pg/L) of tributary Diyu Creek at time step t.
X3 is the TP concentration (pg/L) of main inflow Peishih Creek at time step t.
X, is the maximum rainfall (mm ) in the watershed at time step t-1.

Y is the average TP concentration (pg/L) in the reservoir at time step t

Only three input variables, square of X, X3 and X, were chosen automatically from the total fifteen input
variables by GE to form the equation shown as Eq. (5). From the statistical results, the RMSE value found is

equals to 9.96 at the training. The scatter plots was shown in Fig. 3.

3.5 Optimization of the Water Quality Control

3.5.1 MacroGA (MGA)

A macro genetic algorithm (MGA) was adopted to optimize the control of nutrient loads of phosphorus
from the watershed. A flow diagram of this combined method is shown in Fig. 4. In this study, the IGE model is
used to forecast average TP in reservoir. Then, the MGA is used as a search strategy to quantify the phosphorus
reduction rates of the inflows so that the trophic state can be improved to reach different lower levels
representing by the Scenarios 1 and 2. The proposed approach has the advantage of coupling the nonlinear

function generator of the IGE with the global solution exploration of the MGA.

The genetic algorithm (GA) is an iterative procedure, which includes a population of individuals that are
candidate solutions to specific domain. During each generation, the individuals in the current population are
related to their effective evaluations, and a new population of candidate solutions is formed by specific genetic
operators like reproduction, crossover, and mutation. These steps are repeated until the convergence criterion is
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satisfied or a predetermined number of generations are achieved. According to a couple of our previous works,
real-coded GAs has advantages over binary coded GAs (Chang and Chen, 1998; Chen, 2003a; Chang et al.,
2005). Hence, in this study, we only considered real-coded GAs. Blend crossover (BLX-a) uniformly picks
values that lie between two points contain the two parents, but may extend equally on either side determined by

a user specified GA-parameter o (Chen and Chang, 2007).

In standard GA, the selection operator chooses individuals with a probability proportional to their relative
fitness, but this can lead to “premature convergence”. Therefore, a macro-evolutionary algorithm (MA) is
presented as a selection scheme to improve the capability of searching global optimum solutions in GA, which
is called MGA. Unlike population-level evolution, which is employed in standard evolutionary algorithms;
MGA is evolution at the higher level. The model exploits the presence of links between “species” that represent
candidate solutions to the optimization problem (Chen, 2003 b). In addition, MGA has many advantages when
compared with GA using a traditional selection operator. First, MGA can reach higher fitness values than
traditional GAs for equal population sizes. Second, the probability of success in reaching a good fitness value
in a typical run is higher in MGA than in GA. Finally, the time needed to reach the optimum using the same
population size is lower in MGA (Marin and Sole, 1999). This method has been applied successfully to water
resources optimization problems that can be formulated in terms of an optimization function even if the

function is highly multimodal or highly multidimensional (Chen et al., 2007), .

3.5.2 Objective Function

The objective function of optimization model can be written as:
Minimizez W+
subject to:

The in-reservoir TP concentration achieves the expected water quality which is considered as two
scenarios: the first scenario is set to be 20 (ug/L) and the second scenario is set to be 30 (ug/L).

Here uy is the phosphorus reduction rate of the tributary Diyu Creek; and us is the phosphorus reduction
rate of the main flow Peishih Creek. The range of the two phosphorus reduction rates is set to the same
interval 0—1. Applying real-coded GA to the optimization problems, chromosomes may be generated that fail

to meet constraints. Therefore, each generated chromosome must be checked against such constraints.

The optimum values of the phosphorus reduction rate of the two sources, U; and U3, obtained by using the
MGA for scenario 1 to control Feitsui Reservoir water quality are presented in Fig.5. The average phosphorus
reduction rate (U;) of scenario 1 (TP in reservoir under 20 (ug/L) is 0.024(2.4%) for the tributary Diyu Creek;
and average U3=0.298 (29.8%) for the main flow Peishih Creek. It indicates that the reduction rate of main flow
is larger than that of the tributary at most time periods. In the scenario 2, the optimum values of u; and u3 are
also presented in Fig.5. Based on the calculation, the average u; and Uz are equals to 0.016 (1.6%) and 0.022
(2.2%), respectively. The result shows that these two reduction rates are close to each other for scenario 2 (TP
in reservoir under 30 (pg/L). Fig. 6 reveals the TP concentration in Feitsui Reservoir through reducing the
phosphorus loads from the watershed for scenarios 1 and 2, respectively. In addition, the average reduction rate

of TP in reservoir equals 81% for scenario 1; while it reaches 95% for scenario 2.



4. Summary and Conclusions

This paper provides a grammatical evolution (GE) method combining with macro-evolutionary genetic
algorithm (MGA) to potentially predict and control the total phosphorous (TP) concentration of a reservoir in
Taiwan. Statistically, the result shows that the GE is not as simple as basic formula; but it provides an
appropriate model to simulate TP concentration. From the results of GE, three input variables were found
available. These three inputs include the TP concentration of tributary Diyu Creek at time step t (X;), the TP
concentration of main inflow Peishih Creek at time step t (X3) and the maximum rainfall in the watershed at
time step t-1 (X;2), to predict the TP concentration in reservoir at time step t (Y ).

It is seen from the results that the MGA is able to identify control schemes that reduce the in-reservoir
TP concentration and water quality in the reservoir can be expected to achieve a lower level. For scenario 1,
if the watershed loads are reduced by average 16%, the TP in reservoir will stay below 20 (pg/L). In the
scenario 2, if the watershed loads are reduced by average 1.9%, the TP in reservoir can be under 30 (ug/L).
Finally, it is concluded that the mixture of GE with MGA has a potential ability to optimally control nutrient

loads from the watershed.
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Table1.Example of each codon converted into corresponding BNF grammar

No.| 8-bit binary codon | Integer value | Mapping function BNF grammars
1 11001000 200 200 MOD 4 =0 <expr><op><expr>
2 10100000 160 160 MOD 4 =0 <expr><op><expr><op><expr>
3 11001110 206 206MOD4=2 | <pre-op>(<expr>)<op><expr><op><expr>
4 01100000 96 96 MOD 3 =0 Sin(<expr>)<op><expr><op><expr>
5 00011011 2] 2TMOD 4 =3 Sin(<var>)<op><expr><op><expr>
6 01001000 72 72MOD 2=0 Sin(X)<op><expr><op><expr>
7 01101011 107 107MOD 4 =3 Sin(X)*<expr><op><expr>
8 00111110 62 62MOD 4 =2 Sin(X)*<pre-op>(<expr>)<op><expr>
9 00010110 2 2MOD3=1 Sin(X)*Cos(<expr>)<op><expr>
10 00110111 55 SSMOD 4 =3 Sin(X)*Cos(<var>)<op><expr>
11 01011000 88 88 MOD 2=0 Sin(X)*Cos(X)<op><expr>
12 01100100 100 100MOD 4=0 Sin(X)*Cos(X)+<expr>
13 11001011 203 203MOD 4=3 Sin(X)*Cos(X)+<var>
14 00101001 41 41MOD2=1 Sin(X)*Cos(X)+1.0




Table 2. The statistical parameters of data set

Variables
Diyu Kingkwa Peishih Average Maximum
Inflow Outflow TP
o Creek Creek Creek rainfall rainfall
Statistical (X6,,X13,,) (X7,,X14, ) (Y,,X15.,)
(Xlt’XStfl) (thﬂxgtfl) (X3t7X10171) (X4t’X11t71) (X519X12t71)
parameters
Units CMSD CMSD CMSD mm mm CMSD CMSD ug/L
t 31.78 36.83 35.92 11.05 89.37 1000.51 1013.26 23.13
e t—1| 31.85 36.88 36.06 11.09 89.84 1005.18 1017.00 23.04
S t 22.39 36.32 30.33 9.62 86.03 906.43 1037.20 12.82
" t-1 22.47 36.47 30.42 9.65 86.24 908.81 1040.77 12.84
t 0.7 0.99 0.84 0.87 0.96 0.91 1.02 0.55
CV (SX / Xmean)
-1 0.71 0.99 0.84 0.87 0.96 0.90 1.02 0.56
t
X ax (1 100 255 120.72 70.54 468.8 6937.24 7287.83 98.57
t
Xin 4.9 6.25 6.2 1.18 8.9 98.86 161.65 5.26
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Fig. 5. ul and u3 for scenarios 1 and 2
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Fig. 6. The in-reservoir total phosphorus (TP) concentration before and after reduction of phosphorus loads

from the watershed (Scenarios 1 and 2)
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