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This study presents the ground surface displacements,
effective stresses and excess pore water pressures
induced by periodic groundwater withdrawal, non-point
groundwater withdrawal, and transient groundwater
withdrawal, etc., 1n a homogeneous isotropic/cross-
anisotropic poroelastic half space. The formulation
of the mathematical model is based on Biot’ s three-
dimensional consolidation theory of porous media.
Using symbolic computation with Mathematica and
integral transforms, the closed-form solutions of the
transient and long-term responses of the stratum
subjected to some typical pumping rates are derived.
The consolidation affected by the critical
consolidation parameters are illustrated and
discussed. Appropriate figures are constructed for
the engineering applications.
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ABSTRACT

This study presents the ground surface displacements, effective stresses and excess pore water pressures
induced by periodic groundwater withdrawal, non-point groundwater withdrawal, and transient groundwater
withdrawal, etc., in a homogeneous isotropic/cross-anisotropic poroelastic half space. The formulation of
the mathematical model is based on Biot’s three-dimensional consolidation theory of porous media. Using
symbolic computation with Mathematica and integral transforms, the closed-form solutions of the transient
and long-term responses of the stratum subjected to some typical pumping rates are derived. The
consolidation affected by the critical consolidation parameters are illustrated and discussed. Appropriate

figures are constructed for the engineering applications.

Keywords: Groundwater Withdrawal, Poroelasticity, Integral Transform, Half Space, Closed-form Solution.
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GOLDEN RATIO IN THE GREEN’S FUNCTIONS OF
POROMECHANICS AND THERMOMECHANICS

John C.-C. Lu” and Feng-Tsai Lin~

Abstract

This paper presents the transient responses of a point fluid sink or a point heat source in the strata. Green’s
functions of the elastic displacements and excess pore fluid pressure or temperature increment of strata are
derived by using Laplace-Hankel integral transforms. The strata are modeled as a poroelastic or
thermoelastic half space in the mathematical modelling. Poroelasticity and thermoelasticity are applied
on the formulation of basic governing equations, and analogy is drawn between poroelasticity and
thermoelasticity. Attention is focused on the golden ratio which appears in the magnitude of maximum
ground surface horizontal displacement and corresponding vertical displacement of the half space Green’s
functions. The study concludes that golden ratio exists in these phenomena, and the horizontal
displacement should be properly considered in the prediction of displacements induced by groundwater

withdrawal or buried heat source.

Key Words

Golden ratio, Green’s function, point fluid sink, point heat source, poromechanics, thermomechanics

1. Introduction

The golden ratio ¢ [1, 2] is an irrational algebraic number 1.6180339887498948482... which is well

known in mathematics, science, biology, art, architecture, nature and beyond [3]. It is interesting to

* Department of Civil Engineering, Chung Hua University, Taiwan, R.O.C.; email: cclu@chu.edu.tw
** Department of Naval Architecture, National Kaohsiung Marine University, Taiwan, R.O.C.; email: ftlin@mail.nkmu.edu.tw
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discover that the golden ratio exists in the point fluid sink and point heat source induced elastic
displacements of a homogeneous isotropic half space. Examples of the golden ratio in engineering
include the shear flow in porous half space [4], classical mechanics of coupled-oscillator problem [5], and
magnetic compound [6], etc. This study is focused on the transient responses of a point fluid sink or a
point heat source in the strata. The derived closed-form solutions are defined as Green’s functions of

poromechanics and thermomechanics.

The three-dimensional consolidation theory introduced by Biot [7, 8] is generally regarded as the
fundamental theory for modelling land subsidence. The approach is followed by Rice and Cleary [9] who
provided an elegant formulation of Biot’s theory by using easily identifiable quantities and material
constants. Bear and Corapcioglu [10, 11] presented the modified Biot’s equations when the pore fluid is
treated as compressible and the solid skeleton is assumed as incompressible. Based on Biot’s theory
modified by Bear and Corapcioglu [10, 11], Booker and Carter [12-15], Tarn and Lu [16] presented
solutions of subsidence by a point fluid sink embedded in the saturated elastic half space at a constant rate.
Chen [17, 18], Kanok-Nukulchai and Chau [19] presented analytic solutions for the steady-state responses
of displacements and stresses in a half space subject to a fluid point sink. Lu and Lin [20, 21] displayed
transient displacements of the pervious half space due to steady pumping rate [20] and impulsive pumping
[21]. The results presented by Hou et al. [22] shown that ground horizontal displacement occurred during

groundwater withdrawal from an aquifer.

Nuclear wastes are usually deposited at a great depth, such as 200 to 700 meters below ground surface
to be isolated from the living environment of human beings. Hueckel and Peano [23] indicated that
European guidelines require that temperature increments in the soil close to the heat source should not
exceed 80°C while the temperature increments at the ground surface is limited to less than 1°C. It

suggested that linear theory was adequate for a repository design based on technical conservatism [23].

0 7



Given these modest temperature increments, Hollister, Anderson and Health [24] observed that any
significant non-linear behaviour and/or plastic deformation of the soil would be confined to a relatively
small volume of soil around the waste canister itself. In this case, a linear model can provide reasonable
approximation to the assessment of a proposed design [25]. The responses of the strata were satisfactorily
modeled by assuming it as a thermoelastic continuum [26]. Booker and Savvidou [26, 27], Savvidou and
Booker [28] derived an extended Biot’s theory including the thermal effects and presented solutions of
thermo-consolidation around the spherical and point heat sources. The analogy between thermoelasticity
and poroelasticity was drawn by Lu and Lin [20], Norris [29], Manolis and Beskos [30], Cheng et al. [31],

etc.

Based on the axially symmetric poromechanics and thermomechanics, the Green’s functions of the
transient elastic deformations in half spaces due to a point fluid sink and a point heat source are presented
in this paper. The transient closed-form solutions are derived through Laplace-Hankel integral transforms.
The homogeneous isotropic stratum is modeled as either poroelastic or thermoelastic half space in the
mathematical model. The golden ratio, known as ¢ ~ 1.618, appears in the maximum ground surface
horizontal displacement and corresponding vertical displacement. The study concludes that golden ratio
exists in these phenomena, and the horizontal displacement should be properly considered in the

prediction of displacements induced by groundwater withdrawal or buried heat source.

2. The Golden Ratio

The golden ratio ¢, approximately 1.6180339887498948482..., is an irrational mathematical constant.
The symbol ¢ is also known as golden section, golden mean, divine proportion, divine section, golden
proportion, golden cut, golden number, etc. The golden ratio ¢ can be derived from a geometrical line

segment and ratio as shown in Figure 1, where the ratio of the full length 1 to the length of x is equal to the

8



ratio of longer section x to shorter section 1—x:

1 X
X Tox @
Assuming x =1/¢, hence, ¢ satisfies
¢ —¢-1=0 )
The golden ratio is the positive solution of equation (2) as shown below:
$=(1++5)/2 3)

x | | —x —
F 1 :
Figure 1. Dividing a segment into the golden ratio.

|
Figure 2. The golden rectangle.

Figure 2 displayed another geometric description of golden ratio through the golden rectangle. Giving
a rectangle with sides’ ratio a:b, the removing of square section leaves remaining rectangle with the same

ratio as original rectangle, i.e.,

b a
—=_ 4
a-b b @)
Thus, this solution is the golden ratio ¢:
g2 Lt35 ©)
b 2

The golden ratio is a remarkable number that arises in various areas of mathematics, nature, and arts,
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etc. There are many interesting mathematical properties of ¢. For example, ¢ can be expressed as a

continuous fraction with the single number 1 [1]:

¢p=1+ L

1
1
1

1+---

1+
1+
1+

Also, the golden ratio ¢ can be expressed as a continuous square root of the number 1:

¢=\/1+\/1+\/1+JF

(6)

(7)

However, the most interesting is that ¢ is within Fibonacci series [1, 2]. The Fibonacci series is a set of

numbers that begins with two 1s, and each following term is the sum of the prior two terms, i.e., 1,1, 2, 3,

5,8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, -.- .

numbers of Fibonacci series tends to approach ¢.

The relationship between two successive

Based on the theory of poromechanics and thermomechanics, the strata are modeled as homogeneous

isotropic half spaces. This paper presents the Green’s functions of the transient and long-term ground

surface elastic deformations of the strata due to a point fluid sink or a point heat source. It is interesting to

find that the golden ratio ¢ appears in this study for the maximum ground surface horizontal displacement

and corresponding vertical displacement.

3. Poroelastic Modelling

3.1 Governing Equations

The formulation of Biot’s equations follows that of Rice and Cleary [9] with easily identifiable quantities

and material constants. Four basic material constants are selected in the constitutive equations including

the shear modulus G, the drained Poisson’s ratio v, the undrained Poisson’s ratio v, and Skempton’s



pore pressure coefficient B [32]. The physical ranges of B and v, are obviously 0<B<1 and
0<v<vy, <% [9], respectively. For the situation of incompressible constituents, the poroelastic
coefficients B=1 and v, =4. According to Rice and Cleary [9], the reformulated constitutive relations

can be expressed as [33]:

2Gv 3(1/ —v)
- =2Ge¢g.. O — u . 8
T A T T B (L) (L) ®)
2GB(1+ 2GB2(1-2v)(1+v. )
oo (1+v,) (1-2v)(1+v,) . ©)

3-2v,) ° T 9(v, —v)(1-2v,)

in which o,

p and &; are the total stress components, excess pore fluid pressure and solid strain
components of the poroelastic media, respectively. The fluid pressure p is positive for compression. The

parameter ¢ is the variation of fluid content per unit reference volume. The volumetric strain of the
skeletal material is denoted by & and ¢ =¢,, +&,, +&5,. The symbol ¢; is the Kronecker delta. The

inversions of equations (8) and (9) are shown as the form:

& _i£0' LA j+ 30, —v)
26U 14w ) 2GB(L+v)(1+v,)
(v, —v)(1-2v,) 3(v,—v)

T2 (1 2v)(1e,) | BO-2v)(Ley,) &)

pJ; (8%)

The solid strain components &; and displacement components u; are governed by the linear kinematic

equation:

& :%(u. +u) (10)

1]
The total stress components o;; must satisfy the equilibrium equation:
o, +b =0 (11)

where b. denotes the body force components. The mass balance for the fluid phase is denoted by:
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23
+V, = 12
ot ii V4 ( )

in which v, is the specific discharge velocity components, and y is the rate of injected fluid source into

the saturated porous aquifer per unit volume. Assuming that the pore fluid flow is governed by Darcy’s
law, we have

=<, (13

Vi

in which k denotes the permeability of the porous media and y, is the unit weight of pore fluid.

The governing equations (8) to (13) are combined to yield the field equations for solutions of the
boundary value problems. Substituting (8) and (10) into (11), (9*) and (13) into (12), then the equilibrium

equation (11) and mass balance equation (12) are expressed in terms of displacement components u, and

excess pore fluid pressure p as below:

GV, +i6_g_a@+bi =0 (142)
1-2vox  ox
Kgrp, Swv)-n) o (14b)
7 2GB*(1-2v)(1+v,) ot o

where « is known as Biot’s coefficient of effective stress which is defined as

3(v,—v)
“TB-2v)(1+n) 15)

The above mathematical model is known as coupled model of poroelasticity where the flow field is

dependent on the displacement field. The coupling term d¢/dt in equation (14b) is neglected in this

study.
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Permeable Surface
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Figure 3. Mechanics of poroelastic point fluid sink problem.

Figure 3 presents a point fluid sink buried in a saturated porous half space at a depth h. The constant
sink strength is denoted as Q at the location (0, h). Applying the equilibrium equations to axisymmetric
poromechanics problem with a vertical axis of symmetry and neglecting the effects of body forces b, , then

equation (14a) is transformed to equations (16a) and (16b). Moreover, assuming the flow field is

independent of the displacement field, thus the mass balance equation (14b) is expressed as (16c).

Therefore, the uncoupled governing equations in axially symmetric coordinates (r,z) are derived in

terms of displacements u, (i =r,z) and excess pore fluid pressure p as following:

Gva, +— 2 % gl P _g (162)
1-2v or r or

Gvau +—C % P _y (16b)

1-2v oz 0z

9(v, —v)(1-2

Ky SUATVR=20) 0 Q sy nyu(t)—0 (16¢)

2 2GB?(1-2v)(1+v,)’ ot  2zr

2 2
where V2 :a—2+1i+a—2 and ¢ = o, +i+auz X 5(x) and u(t) are the Dirac delta function and
or ror oz or r oz

Heaviside unit step function, respectively. Equations (16a) to (16c) are the uncoupled basic field

equations with a point fluid sink at constant rate, in which the fluid and solid are treated as compressible

8



constituents.

3.2 Boundary Conditions and Initial Conditions

The half space ground surface is treated as pervious traction-free boundary for all times t>0. The

mathematical statements of the ground surface boundary z =0 in axisymmetric coordinates (r, z) are:

o,(r,0t)=0, o,(r,0,t)=0,and p(r,0,t)=0 (17a)
The displacements and excess pore fluid pressure at the remote boundary due to the effect of a point fluid

sink must be nil at any time. These conditions are written as

lim{u, (r.z,t),u,(r,zt), p(r,zt)} ={0,0,0} (17b)

Assuming no initial displacements and seepage of the strata, the initial conditions at time t=0" of the

mathematical model due to a point fluid sink are treated as
u,(r,2,0)=0, u,(r,2,0')=0 and p(r,z,0")=0 (18)
The mathematical model in this study is based on the governing equations (16a)-(16c¢), the corresponding

boundary conditions (17a)-(17b) and initial conditions (18).

4. Thermoelastic Modelling
4.1 Governing Equations

The constitutive behavior of the isotropic body with a point heat source buried in an isotropic
thermoelastic half space at depth h as shown in Figure 4 is expressed as

2Gv 2G (1+ v)a

Gij=268ij+1 5 &6~ 15 >80, (19)
—ZV —ZV
2G (1
(. 6@v)a ¢ g 20)
1-2v T,

Here, o and ¢; are the thermal stress components and strain components of the thermoelastic medium,

14



respectively.  The symbol & denotes the volumetric strain of the thermoelastic medium and
& =g, +&,+&,. Thetemperature increment & is measured from the reference state. The entropy s is
the function for internal state of the thermoelastic system. The average temperature in the natural state
corresponding with &; =0 is denoted by T,. The material constants v, G, «, and c, are the Poisson’s
ratio, shear modulus, linear thermal expansion coefficient and specific heat at constant strain of the

thermoelastic medium, respectively. The coefficient c, = pc, where the constants p and c define the

density and specific heat of the thermoelastic medium, respectively.

The conservation of energy in the form of the entropy flow is as:

0S
T,—=+q. =W 21
0 8t ql,l ( )

where g; is the heat flux, and W is the quantity of heat generated in a unit volume and unit time. The

thermal flow is assumed to follow the Fourier law for heat conduction. In the case of an isotropic body, the
Fourier heat conduction law has the form
q =—A4Y (22)

in which 4, is the coefficient of heat conduction.

The thermal stresses o;; should satisfy the equilibrium relations in equation (11). Substituting the

linear kinematic equation (10) and constitutive equation (19) into the equilibrium equation (11), and the
entropy equation (20) and Fourier heat conduction law (22) into the conservation of energy (21),

respectively. Then the equations (11) and (21) are expressed in terms of thermal displacements u, and
temperature increment ¢ of the thermoelastic medium as follows:

GV + G de 2G (1+v)e, 9 _

| Z 0 (23a)
1-2vox,  1-2v o
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2G(1+ T
—,w219+cg@+—( LAY

23b
ot 1-2v ot (230)

Figure 4 presents a point heat source buried in a thermoelastic half space at a depth h. The constant
heat generating rate is denoted as H at the location (0,h) in axisymmetric coordinates system (r,z).

The equilibrium equations are applied to axisymmetric thermomechanics problem with a vertical axis of

symmetry and neglecting the effects of body forces b,. Moreover, assuming the thermal flow field is

independent from the displacement field in the conservation of energy. Therefore, the uncoupled

governing equations in axially symmetric coordinates (r,z) are derived in terms of thermal
displacements u, (i =r,z) and temperature increment 9 as following:

G oe u_ZG(1+v)aS@:0

ova, +——2 gl (24a)
1-2v or r 1-2v or
2G(1
oviu, +—S 98 (L+v)es 29 (24b)
1-2v oz 1-2v 0z
av2are, 22 P sr)s(z-hyu(t)=0 (24c)
‘ot 2mr

Equations (24a) to (24c) constitute the fundamental equations of transient responses for a thermoelastic

medium subjected to a point heat source.

Isothermal Surface

: Point Heat
* Source of
; Strength H

Thermoelastic Half Space
Figure 4. Mechanics of thermoelastic point heat source problem.
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4.2 Boundary Conditions and Initial Conditions

The half space ground surface, z = 0, is considered as traction-free, and it remains the same temperature at
all times t >0. Therefore, the boundary conditions on surface z = 0 in axisymmetric coordinates (r, z)
are given by

o,(r,0t)=0, 0,(r,0,t)=0,and 9(r,0,t)=0 (25a)
The remote boundary conditions due to the effect of a point heat source must be nil at any time as below:

lim{u, (r,z,t),u,(r,zt),9(r,z,t)} ={0,0,0} (25b)

71—

Assuming there are no initial change of thermal displacements and temperature increment for the
thermoelastic medium, the initial conditions at time t =0" due to a point heat source are treated as
u,(r,2,0)=0, u,(r,2,0')=0,and 9(r,z,0")=0 (26)
From these basic governing equations, the corresponding quantities of poroelasticity and thermoelasticity

are shown in Table 1.

Table 1
Analogy of Poroelastic and Thermoelastic Quantities
Poromechanics Thermomechanics
p 9
u(i=r,z) u(i=r,z)
3(v,—v) 2G(1+v)e,
B(1-2v)(1+v,) 1-2v
(v, —v)(1-2v,) c,
2GB? (1-2v)(1+v, )’ Ty
LS A
yw TO
y W
TO
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5. Green’s Functions

5.1 Green’s Functions for a Poroelastic Half Space

Applying Laplace-Hankel integral transformations [34, 35], the transient ground surface horizontal

displacement, ground surface vertical displacement and excess pore fluid pressure of the stratum due to a

point fluid sink in axially symmetric coordinates (r,z) are obtained as follows:

Qyy (1-2v) ctr a(ct—z)hr -2 r2 r2
u,(r,0,t)= f27er _(h2+r2)3/2+'|.°( 162'3) e & |1, = ~1, & dry (27a)

1 2 2 2
0 (r,0,0) = Qr;(1-2v)|  2cth et N
472Gk (h2+r2) 24Jct
h?+r?
_2—h C_t Tac erfc [Vh +r ]} 27b)
h +r +h +r2
2 _h 2
IO(r,z,t)=—Q]/f . erfe| V- +(z-h)
47k \/r2+(z—h)2 2\Jct
2 h 2
- ! erfc ' +(Z+ ) (27¢)
\/r2+(z+h)2 2\Jet

(v, ~v)(1-2v,) ZL; erf (x) and erfc(x) are error function and
2GB*(1-2v)(1+v,) 7

where the parameter c=

complementary error function, respectively; and 1, (x) is the modified Bessel function of the first kind of

order « . The magnitude of long-term ground surface horizontal displacement and vertical displacement

are obtained when t —» oo ;

Qr (1-2v) hr
,0,00)=— 28
Ui (1.0:c0) 472Gk Jh?+r*(Wh?+r% +h) (26
Qr;(1-2v) n
U, (r0,) ==~ - (28b)

Equations (27a)-(27c) and (28a)-(28b) are known as the Green’s functions for a poroelastic half space.
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5.2 Green’s Functions for a Thermoelastic Half Space

Using the equivalence between thermomechanics and poromechanics as shown in Table 1, the transient

ground surface horizontal displacement, ground surface vertical displacement, and temperature increment

of the stratum due to a point heat source in axisymmetric coordinates (r, z) are obtained as below:

ur(r,O,t):—Has(lJrv) ot +_[Ct(Ct_T)hrerzEjh['oier—H(;—zﬂdT (209)

o | (her) T 167 o
22
“z(rvovt):‘Has(1+V) zeth Tz erf Jh?+r?
2 ()L 2
_h*4r? > 5
i Z\Ee ¢ e A (290)
h"+r* V= Jh? +r? 2.Jct
2 —h 2
4(r,z,t)= H 1 erfc r’*+(z-h)
472']1 \/r2+(2—h)2 2\/&
r2 h 2
_ 1 e o (29c)
r’+(z+h) 2/ct

where the parameter c is defined as ¢ = 4, /c, .

Similarly, the magnitude of long-term ground surface horizontal displacement and vertical

displacement are derived when t — o :

Ha, (1+v) hr
,0,00) = 30
U, (1:0,2) 22 n?+r2(Jh?+r? +h) 0
0, (r,0,00) = — 1% (+v) b (30b)

27k, \Ih?+r?

Equations (29a)-(29c¢) and (30a)-(30b) are known as the Green’s functions for a thermoelastic half space.

6. Golden Ratio in the Long-Term Ground Surface Displacements
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The maximum long-term ground surface horizontal displacement and vertical displacement of the half

space due to a point fluid sink and a point heat source are derived from equations (28a)-(28b) and

(30a)-(30b) by letting r = \/Zh ~1.272h and r =0, respectively.

For the point fluid sink problem, the maximum horizontal displacement u'") and vertical displacement

r max

u'")_  of the ground surface derived from equations (28a)-(28b) are

Z max

Qr,(1-2v) 1 Qr, (1-2v)
_n(fH _ w ~ cowA — J
U, (\/#h,0,00) = up,, = - inGn g~ 03008 (31a)
u,(0,0,00) =ul}), _Qn(1-2v) (31b)
477Gk

For the point heat source problem, the maximum horizontal displacement u™_and vertical displacement

r max

u™_ of the ground surface derived from equations (30a)-(30b) are

Z max

U ( /¢h,0,oo):u(“) _ Ha, (1+v) 1 z()3()()3M (32a)
' e 27A, $*° 274,
u,(0,0,00) =ul) = _Ha,(+y) (32b)
27ch,

Here, ¢:(1+\/§)/2z1.618 is known as the golden ratio. The exact solutions of maximum ground

surface horizontal displacement and vertical displacement are derived as shown in equations (31a)-(31b)
and (32a)-(32b), and the maximum ground surface horizontal displacement is approximately 30% of the

maximum ground surface vertical displacement, i.e.,

(f)
urma\x|_
N

Z max

(h)
urmax _ 1 ~
ny |~ 25~
uzmax

0.3003 at r =/gh (33)

The value r = \/Eh is derived when du, (r,O,oo)/dr is equal to zero. For the point fluid sink problem, the

derivative is
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du, (r.0,2)  Qy,(1-2v)hR(h*—r?)+h*

= —=0 (34a)
dr 4Gk R°(R+h)
For the point heat source problem, the similar derivative is
d ,0, Hea. (1 hR(h*—r?)+h*
U, (r.0.0) _Ha,(L+v) MR(M—r*)+h® (@)

dr 27, R*(R+h)’
Here R=+/h*+r?. Equations (34a)-(34b) leads to four possible solutions of r :J_r«/(1+«/§)/2h and
r=+(@-+/5)/2h. However, only r =4/(1++/5)/2h is realistic for the radial variable r € [0,).

It is interesting to discover that the golden ratio ¢ appears not only in the fluid sink and heat source
induced maximum ground surface horizontal displacements, but also on the corresponding vertical

displacements by letting r = \/Eh in equations (28b) and (30b), respectively.

For the point fluid sink problem, the vertical displacement at r = \/Eh is

1-2
u, (#h,0,) _ (=21 10 g 6180 uth, (352)
4zGk ¢ ¢
For the point heat source problem, the vertical displacement at r = \/Zh IS
He, (1
u, (\/Eh, o,oo) = —%% = %ui“nlax ~0.6180 u{" (35h)
TT.

This shows that the ground surface vertical displacement is around 61.8% of the maximum ground
surface vertical displacement at radial variable r = \/Zh , Where the maximum ground surface horizontal

displacement occurred. Besides, the equations (31a)-(31b) and (32a)-(32b) show that the maximum
ground surface horizontal displacement and vertical displacement are not directly dependent on the depth

h for both point fluid sink and point heat source induced poroelastic and thermoelastic problems.

The profiles of normalized vertical and horizontal displacements at the ground surface z=0 for
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different dimensionless time factor /ct/h? are shown in Figures 5(a) and 5(b), respectively. Figure 5(a)
shows the relationship between normalized radius r/h=./¢ and normalized maximum horizontal

u u = ® . Figure 5(b) shows the corresponding vertical displacement when
rmax/ zmax‘ ]7/\/; g p g p

displacement

horizontal displacement is at its maximum. The ground surface reveals significant horizontal
displacement. For example, Figure 5(a) shows that the maximum ground surface horizontal displacement

is around 30% of the maximum ground surface vertical displacement at r/h = \/Z ~1.272, which can also

be found from equations (35a) and (35b).

Normalized Horizontal Displacement,
|a.r,.(J',O,r)!.fr__(U,U,:c)|

Normalized Radius, r/h

(@)
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|u_.(r,0,r}/zr_.{0,0,:c)|

Normalized Vertical Displacement,

0 1 N 2 3 4 5 6 7

Normalized Radius, r/h

(b)

Figure 5. Normalized displacement profiles at the ground surface z = 0 for pervious poroelastic half space
or isothermal thermoelastic half space.

The discovery of golden ratio exists in these mechanical phenomena reveals the originality and
uniqueness of this study. The major practical contributions of this research also include the confirmation
of mechanics display the science of art. The experimental verification related to the theoretical derivation
is not supplied in the research for the purpose of the study is concentrate on the golden ratio in the Green’s
functions of poroelasticity and thermelasticity. The derived Green’s functions can be applied to the
numerical simulation of fluid sink or heat source buried in the strata induced mechanical problems by

boundary element method.

7. Conclusions

The closed-form Green’s functions of transient and long-term displacements due to a point fluid sink and
a point heat source of an elastic half space were obtained by using Laplace-Hankel transformations. The

results show:

18



1. The maximum ground surface horizontal displacement is approximately 30% of the maximum ground
surface vertical displacement at r = \/Zh ~1.272h, where ¢=(1+ JE)/z ~1.618 is known as the

golden ratio. It indicates that the horizontal displacement should be properly considered in the

prediction of displacements induced by fluid extraction or buried heat source.

2. The golden ratio ¢ also appears in the corresponding vertical displacement of the elastic half space
caused by point fluid extraction or point heat source. The results reveal the ground surface vertical

displacement at r = \/Zh is around 61.8% of the maximum ground surface vertical displacement.

3. The maximum ground surface horizontal and vertical displacements are independent of the buried
depth h for both point fluid sink and point heat source induced poroelastic and thermoelastic

problems.
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1
Uy

rmax? =z max

u®

r max?

u®

Z max

Body forces (Pa/m)
Skempton’s pore pressure coefficient (Dimensionless)

2GB?(1-2v)(1+v,)’
(-2v)(t+n) k. (m?fs) or ¢ =4 /c, (m%s); Specific heat of the
I(v,—v)(1-2v,) 7
thermoelastic medium (J/kg°C)
Specific heat at constant strain of the thermoelastic medium, c, = pc (J/m**C)

Parameter, ¢ =

Error function (Dimensionless)

Complementary error function (Dimensionless)

Shear modulus of the poroelastic/thermoelastic medium (Pa)
Depth of point fluid sink (m); Buried depth of point heat source (m)
Constant strength of the point heat source (J/s)

Modified Bessel function of the first kind of order & (Dimensionless)

Permeability of the isotropic poroelastic medium (m/s)
Excess pore fluid pressure (Pa)

Heat flux (J/sm?)
Constant strength of the point fluid sink rate (m*/s)
Cylindrical coordinates system (m, radian, m)

Entropy of the internal state function of the thermoelastic system (J/°Cm®)
Time (S)
Average temperature in the natural state corresponding with &; =0 (°C)

Heaviside step function (Dimensionless)

Displacement components of the poroelastic/thermoelastic medium (m)

Maximum ground surface horizontal displacement and vertical displacement of the
poroelastic medium (m)

Maximum ground surface horizontal displacement and vertical displacement of the
thermoelastic medium (m)
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Biographies

Specific discharge velocity components (m/s)

Quantity of heat generated in a unit volume and unit time (J/sm®)

Linear thermal expansion coefficient of the thermoelastic medium (°C™)

Rate of injected fluid source into the saturated porous medium per unit volume (s™")
Unit weight of pore fluid (N/m?®)

Dirac delta function (m™)

Kronecker delta (Dimensionless)

\Volumetric strain of the poroelastic/thermoelastic medium (Dimensionless)
Strain components of the poroelastic/thermoelastic medium (Dimensionless)
Variation of fluid content per unit reference volume (Dimensionless)
Temperature increment of the thermoelastic medium (°C)

Thermal conductivity of the thermoelastic medium (J/sm°C)

Poisson’s ratio of the poroelastic/thermoelastic medium (Dimensionless)
Undrained Poisson’s ratio of the poroelastic medium (Dimensionless)

Density of the thermoelastic medium (kg/m®)

Total stress components of the poroelastic medium (Pa); Thermal stress components of
the thermoelastic medium (Pa)

Golden ratio, ¢ ~1.6180339887498948482... (Dimensionless)

Laplacian operator, V? = 82/ar? +1/r 8/or +8*/6z* (m™)
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SUMMARY

This work presents the closed-form solutions of the long-term thermal stresses, displacements and temperature increment
of the cross-anisotropic strata subjected to a point heat source at great depth. The medium is initially modeled with
cross-anisotropic mechanical and thermal properties. Under this assumption, the properties of the materials are different
between the planes on and normal to the isotropic plane. Using Hankel and Fourier transforms, this paper presents the
analytic solutions to soils or rocks affected by the point heat source, such as the repositories of nuclear wastes. The
general solutions are further simplified to cases of materials with isotropic mechanical properties, and they are finally
extended to fully isotropic in each property of the strata. Based on numerical results, the thermal stresses, displacements
and temperature change of the thermoelastic half space are significantly affected by the anisotropy of mechanical and
thermal properties of the strata.

KEY WORDS: closed-form solution; point heat source; cross-anisotropic strata; full space; integral transform
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1. INTRODUCTION

The thermal mechanical responses of strata due to heat generated by the radioactive waste in deep underground are
important environmental engineering issues. For their impact on environment and human safety, many studies
were conducted to understand the mechanical, thermal and hydraulic behaviour of deep repository radioactive waste.
Nuclear wastes are usually deposited at a great depth, such as 200 to 700 meters below ground; therefore, they can
be isolated from the living environment of human beings. Excessive thermal difference usually results in a volume
change of water and solid skeleton. This change can increase excess pore water pressure and lead to decrease in
effective stress, which can result in a thermal failure in the strata due to loss of shear resistance of solid skeleton.
The simulation of these physical features is a complex task, and its validation is a major concern for the safety
improvement of the repository.

The disposal in stable deep geological formations has been proven as a technically viable solution in disposing
the high level radioactive wastes [1]. Based on the theory of mixtures applied to the multiphysics of porous media,
Tong et al. [2] presented a numerical method for modeling coupled thermo-hydro-mechanical processes of
geomaterials with multiphase fluid flow. Analytical solutions of the thermal consolidation for a saturated elastic
porous media around a point heat source were presented by Booker and Savvidou [3,4], Savvidou and Booker [5].
In their solutions, the flow was considered isotropic [3,4] or cross-anisotropic [5], whereas the mechanical and
thermal properties of the strata were only treated as isotropic. However, it was identified that the anisotropic
property in the permeability of the strata has significant effects on the excess pore water pressure generated by a heat
source [5]. Lu and Lin [6] displayed transient ground surface displacements produced by a point heat source or
fluid sink through analog quantities between thermoelasticity and poroelasticity. Based on three-dimensional
thermoelastic theory of homogeneous isotropic media, the golden ratio appears in the maximum ground surface
horizontal displacement and corresponding vertical displacement of a half space were presented by Lin and Lu [7].
Wang and Sudak [8] derived the three-dimensional temperature field induced by a steady point heat source
interacting with a homogeneous imperfect interface by using the image method. Hudson et al. [9] gave advices on
how to incorporate thermo-hydro-mechanical coupled processes into performance, safety assessments and design
studies for disposal of radioactive waste in geological formations. Within the framework of linear theory of
thermoelasticity, Chao, Chen and Shen [10] discussed the situation of circularly cylindrical layered media subjected
to an arbitrary point heat source.

In general, soils are deposited through a geologic process of sedimentation over a long period of time. Under
the accumulative overburden pressure, strata display significant anisotropy on mechanical, seepage and thermal
properties. Both stratified soil and rock masses show the phenomenon of anisotropy. For this reason, theoretical
and numerical models should be able to simulate the layered soils and rocks as cross-anisotropic media [11-15].

The present investigation is focused on the closed-form solutions of a cross-anisotropic thermoelastic medium
due to a deep point heat source which still have not been derived in previous studies. In this paper, the soil or rock
mass is modelled as a linearly elastic medium with cross-anisotropic properties. Both thermal flow and mechanical
properties are assumed to be cross-anisotropic. By using the Hankel and Fourier transforms, closed-form solutions
of the long-term displacements, temperature changes and thermal stresses of the strata due to a point heat source at
large depth are obtained. The results are reduced to an isotropic case to provide better understanding of the thermal
induced responses of the strata.

2. MATHEMATICAL MODEL

2.1. Basic Equations

Figure 1 shows a point heat source buried in the strata at a great depth. The property of soil or rock is considered
as cross-anisotropic homogeneous layer. To simplify the model, the plane of symmetry of the strata is set in the

horizontal direction. The cylindrical coordinate system (r,6,z) is applied to the layer of solid where the plane of
isotropy coincides with the horizontal (7 —6) plane. The symbols u, and u, are the displacements in radial

and vertical directions, respectively. The constitutive law for an elastic medium with linear axisymmetric
deformation can thus be expressed as
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ou u ou
0. =A—L+(A-2N)—~+F—=-89, la
3 67" ( ) r aZ ﬁ' ( )
oy =(A-2N) e gt p O _p g, (1b)
r r 0z
o, =Fd 0O g (lc)
r r 0z
o, =12 O (1d)
0z Or

where o, are the thermal stress components, and § is the temperature change of the strata. The coefficients

A, C, F, L, N are the material constants of a cross-anisotropic medium defined by Love [16]. For axially
symmetric problem, the shear stresses o©,,, 0,,, and circumferential displacement u, can vanish as the vertical

z-axis positioned through the point heat source. In these equations, S, and S, represent the thermal expansion

factors along and normal to the symmetric plane, respectively. The expression for the thermal expansion factors
are:

B.=2(4-N)a, +Fa,, (2a)
le y 2Fasr + Casz ’ (2b)

where «, and « are the linear thermal expansion coefficients of the strata in horizontal and vertical directions,
respectively.

1720
Deep Point @ --------------- T
1
Heat Source of
Constant Strength O

1
1
1
i
1
1
1
!
Z

| — Thermoelastic Full Space
Figure 1. Point heat source buried deep in the cross-anisotropic strata.
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Equations (1a) to (1d) can be converted to

o 1 v v
5 -a,d E E E
I r r r
1 o,
u_r_a-,g _VrH . _Vrz 0 "
r _sr Er E/ Er 0-199
ou - v v 1 o ®)
-z _ aszlg — ZI — Zr - 0 zz
2z E, E, E, o,
ou, N Ou, 1
oz oOr 0 0 0 _

Here, the Young’s moduli £, and E, are defined as directions lying in and perpendicular to the plane of isotropy,
respectively; v, , is the Poisson’s ratio for strain in the horizontal direction due to horizontal direct stress; v_ is
the Poisson’s ratio for strain in the vertical direction due to horizontal direct stress; v, is the Poisson’s ratio for

strain in the horizontal direction due to a vertical direct stress; and G, is shear modulus for planes normal to the

plane of isotropy. The mechanical constants 4, C, F, L, N are employed in equations (1a) to (1d) and (3)
through the following equations:

A Er (l_vrzvzr) (4 )
= > a
(I+v,)(1-v,,—2v,.v.)
E_(1-
c=ZdlVn) (4b)
1- VrH Y | 2Vrzvzr
— Ezvrz 4 Eerr (40)
1- VVH - 2Verzr s Vr9 y 2Vrzvzr
L=G,, (4d)
E
N=——tr 4
2(1+v,,) (4e)

For the cases of isotropic thermoelastic medium, the mechanical and thermal elastic constants 4, C, F, L,
N, B. and B. can be simplified as

A=C=1+2G, (5a)
F=21, (5b)
L=N=aG, (5¢)

B, =B.=(2G+32)e, (5d)

The constants A and G are the Lame moduli of the isotropic thermoelastic medium, and ¢, is the linear thermal

expansion coefficient of the isotropic solid skeleton.
These axially symmetric thermal stresses in equations (1a) to (1d) must satisfy the equilibrium equations:

oo o, -0 oo
60 +

oy Z4f =0, 6a

or r Oz / (62)

99 92 ,9% ;s _y, (6b)
or r 10/4

where f, (i = r,z) denotes the body force components. A straightforward substitution of constitutive law (1a) to
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(1d) into the equilibrium equations with body forces neglected, the equilibrium equations are expressed in terms of
displacements u, (i =r, z) and temperature change of the strata 9 as follows:

u 16u  wu &u 0%u 09
A —L+—"—-—"L |+ L—+(F+L)—-p.—=0, Ta
[arz r or rzj oz° ( )araz P or (72)

(F+L) Tu, LU ) Ou, R e o, -B 9 _y (7b)
oroz r Oz o’ r or oz° : '

oz
Let h be the heat flux vector and ¢, be the heat sources, the law of conservation of energy is then listed as:

~V-h+q,=0. 8)

The constants A, and A_ are used to describe the behavior of the heat flow in a cross-anisotropic medium, in
which 4, denotes the horizontal thermal conductivity of heat flow in the planes of isotropy and A, is the

corresponding vertical thermal conductivity in the plane perpendicular to isotropic plane. Assuming that the heat
flow follows Fourier’s law, then

09 09
h=-1 —i -4, —1i_, 9
r ar r 1z aZ z ( )
in which i and i are unit vectors parallel to the radial and vertical directions, respectively. The point heat
source of constant strength Q is considered at great depth of point (0,0). Substituting (9) into (8) yields the
third governing equation of temperature change 9 as below:

—t—— |+ 4
or: ror

+ £ 5(r)5()=0. (10)

0’93 108 0% 9
ﬂ'tr 1z 2
S Oz 2xr

where &(r) and &(z) are the Dirac delta functions.

For a linearly elastic medium with cross-anisotropic properties, the differential equations (7a), (7b) and (10)
govern the steady state responses of the medium subjected to axisymmetric and thermoelastic disturbance.
2.2. Boundary Conditions

The point heat source at great depth is assumed no impact on the ground surface. This implies that the ground
surface can be treated as a remote boundary, and the strata can be modeled as an infinite space as shown in Figure 1.
Thus, the effect of the deep thermally disturbance vanishes at the remote boundaries, z — tco. In other words,
the displacements and the temperature change of the strata at remote boundaries should be vanished. Therefore,
the remote boundary conditions are expressed as

u,(r,z) >0, u,(r,z)>0,and 9(r,z) >0 as z—>tow. (11)

The thermoelastic responses are derived in this study by Hankel and Fourier transforms from the differential
equations (7a), (7b) and (10) corresponding with the remote boundary conditions at z — oo

3. ANALYTIC SOLUTIONS

3.1. Hankel-Fourier Transform Solutions

The governing partial differential equations (7a), (7b) and (10) are simplified to ordinary differential equations by
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performing appropriate Hankel transforms [17] with respect to the radial coordinate r» of first, zeroth and zeroth

orders in each equation, respectively. These equations then become:

2

-E24U, +deU* —é(F+L)%+§ﬁr@:0,

2
A

., dU

F+L)—=-&LU_+C £

é( ) dz d : dz*
e 0

—E4,0+2, 2 =—25(2),

g I 1z de 271_ (Z)

de
-B===0,
B~

where

©

J.O ru, (r,z) J, (cfr)dr R

G

—_

N

SN—
Il

U.(z8)= [ "ru(rz)Jy(&r)dr,
@(z;f) = J.:rB(r,z) J, (fr)dr .

In these equations, J,

14

the temperature change of the strata are obtained by inverting the equations (13a) to (13c) as shown below:

ur(r,z):J.:éUr(z;cf)Jl(.fr)df,
u.(r.2)=["EU.(£) 4y (ér)de.
Q(r,z):I:ﬁ@(z;f)JO@r)dé.

(12a)

(12b)

(12¢)

(13a)
(13b)

(13¢)

(x) represents the Bessel’s function of the first kind of order v. The displacements and

(14a)
(14b)

(14c)

The Fourier transformations [17] are performed with respect to the axial coordinate z on equations (12a) to

(12c). The results are expressed as

~(£4+0’L) U, +iwé(F+L) U. +£4,6=0,
~iw&(F+L) U, -(£L+a’C) U, +i0p.0 =0,

(£, +0'2.) 6 =22,

where

- U, (Z;f) e dz ,

-0

0.(60)=[
0.(&0)=[ U.(z£) e d,

-0

6(¢.0)=" O(z)e d:.

(15a)
(15b)

(15¢)

(16a)
(16b)

(16¢)

The closed-form solutions of the long-term thermoelastic deformations and temperature change of the
cross-anisotropic medium subjected to a deep point heat source are easily obtained in the Hankel-Fourier integral
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transformed domain (.f,a)) by solving the simultaneous algebraic equations of (15a) to (15¢). The results are

shown as follows:

0. w)zgf{szﬂ,.—[(F“)ﬂz—Cﬂr]wz} 17
T 2 (§zﬂ[r+a)2&tz)(2(§,a)) ’

0. w)_giw{szﬂz—[(F+L)ﬁr—Aﬁz](:z} (17b)
2 on (§zﬂlr+a)2/1,z)§2(§,a)) ’

~ _2 1
6(¢.0)=-5 X (17¢)

where Q(&,w) is defined as
Q(¢é,0)=CLo* +[ AC-F (F+2L) | &0 + ALE* . (18)

These solutions are also expressed in the domain (z;£) by applying the following inverse Fourier transforms to
equations (17a) to (17c):

U, (z:&)= %J”; 0, (é.0) e do, (19)
U.(z&) :i]’i 0. (&.0)e ™ do, (19b)
@(z;f)zi :@N(cf,a)) e do . (19¢)
Then, we have
U (2:£)= - i ( % ol % ot ? emzj, (20a)
U (5:6)-7 ,?/1 ( ;3_12 ekl % ol % e/aﬂj’ (20b)
O(z:8)= e (200)

The upper and lower signs in equation (20b) are for the conditions of z>0 and z <0, respectively. Here, the
constants a, (i=1,2,3) and b, (i=1,2,3) are defined as

. :Lﬁr+[(F+L)ﬂz—Cﬂ,]ﬂ12 ’ (21a)
CLu (117 =15 ) (44 = 18

.o LB +[(F+L)B.-CB |13 ’ (21b)
CLuty (13— 117 ) (28 = 1)

aS:L,B}+[(F+L)ﬂZ—Cﬂy]ﬂ32’ @1c)
CLus (12 - 187) (12— 12
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- Lp.u +(F+L)p —AB. (21d)

CL(1t' =43 ) (14 =155 )
_ LB +(F+L)B, —AB,
CL(25 45 ) (15 =155
LB +(F+L)B, — AP,

b, = . 216)
YL - ) (1 - ) (

5 (216)

In addition, the characteristic roots £, and g, must satisfy the following characteristic equation

CLu' ~[AC-F(F+2L) |y’ + AL =0, (22)

and g, =4, /4, .
Furthermore, using the inversions of Hankel transform formula [17-19] and the constitutive equations (1a) to (1d),

the closed-form solutions of thermoelastic deformation, temperature increment and thermal stresses of the strata in
real domain (r,z) are obtained from the solutions of (20a) to (20c) in Hankel transformed domain (&;z) as

below:
u =20 Lo, Lra L], (23a)
4mi 'R R R
u, =—2 [ b sinh A% 4 b, sinh 227 4 b, sinh ' A7 | (23b)
47, r r r
Y (23¢)
47k, 1R,
o =2 alatratra L] -on|atra a2 e Fp Aan i ol g 1| (230)
47, R, R, R, R, R, R, R, R, R, MR,
Oy = 9 A ali+azi+a3i —2N| q, M'Z* +a, ,uz|z* +a, 'U3|Z*
47A, R R, 'R RRRR,  RR
H Hy Hy 1
+F| b = +b, 22+ b, 2 |- , 23e
[1Rl 2R2 3R3] ﬂyy3R3:| (23¢)
o =2 [F{alimzi+a3ij+c(blﬂ+b2&+b3i]—ﬂz L } (23f)
47, R, R, 3 R, R, R, R,
z z z
2 ) D L. W*blﬂ1| |+b2 ] |+b3”3| m (23g)
) 4rA, R R, R,R, " RR, IR rR, rR,

The upper and lower signs in equation (23g) are for conditions of z>0 and z <0, respectively. In equations

(23a)to (23g), R =+r*+u’z* and R =R +ulz (i=1,23).

3.2. Cases of Isotropic Mechanical Behaviour and Cross-anisotropic Thermal Properties

The displacements, temperature change and thermal stresses for the strata with cross-anisotropic properties in
mechanical and heat flows are analytically solved and expressed in equations (23a) to (23g) for the disturbance of a
deep point heat source. For the special case of medium with isotropic mechanical properties, the associated
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closed-form solutions are obtained by the conditions of g, = u, = 1 for equations (23a) to (23g).

carried out by using L Hospital’s rule with careful calculations. The results are given as follows:

Wﬁ =B (r2)+[ 208 ~(21-1) B, | (2}
_ Qa,, " .
e {B:8.(r.2)+[ 208 ~(2n-1) B, |4, (r.2)}.,
_ 9
=7 (r,z),
G . . . .
o, :49”—770/’12{(277—1)@@(r,z)+z(n—1)/32¢7(r,z)+[z(2n—1)ﬁr ~ B )¢ (r.z)+ 0B 4, (r.2)
B o (r.2)+[2nB] - (2n-1) B ]y, (r.2)}

G . . .
aw=%é%« ~1) B4, (r2)+2(n-1) .6, (r.2)+[2(20-1) B~ B | (r.2) + 0B (.2)
_ﬁ:ﬂo(raz)_[znﬂ:_(277_1):8;:|¢11(’32)},

G
azz=4Qmjj (2(0-1) B, (r2)+ 208, (ro2)+ [ 208, +2(3n-1) B ] (r.2) + 0Bty (r.2)]

=908 (T —2(p-1) 5. s (ro2)+ [ 208 ~2(0-1) 8 [ (22}

O—I'Z
4rnA,

where 7= (1 — v)/ (1 - 21/) . The parameters ﬂ: and ﬂ: are defined as follows:

B =2v+a,/a.)i-2v),
B =2[(1-v)+2va,/a, |/(1-2v).

The definitions of functions ¢, (i =1 ',13) in equations (24a) to (24g) are listed below:

1 T 1 r 1 r
4(p-1) R AM—WR*zqz

¢1(r,z)=

_ 1 z_ o L1 Z o 1M
¢3(r,2) 4(/1 —I)R 2(#2—1)2 sinh r+2 1 >-sinh o
z -0 1 1 M
¢4(r’z)_4(,u —1)R+2(,u2—1) sinh :_2</¢2_1)2 sinh .
1
¢ b - bl
. (r,2) iR,
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(24a)

(24b)

(24¢)

(24d)

(24e)

(249)

(24g)

(25a)
(25b)

(26a)

(26b)

(26¢)

(26d)

(26¢)

(261)

[ 46



©CoO~NOUITA,WNPE

International Journal for Numerical and Analytical Methods in Geomechanics

=D\ RR ) 1] R (i) E,
¢3(r’z):4(yi—1)R_23 2(/121—1)2113_2(/;—1)21{_1#’
@(nz)—-ﬁﬂa
¢10(r,z)=—4(ﬂ1 my ;23 2(ﬂ21_1)2 R;; _2ﬂ(u12 )y R:;;z :
g e
T

& (I”,Z):—4<lu2 _1) R +2(’u2 _1)2 RR 2(/—12_1)2 R”R; >

where the parameters u=1/4, /4. , R=Nr’+z>, R =R+|z|, R, =r’+4’z* and R, =R, +ulz|.

3.3. Cases of Isotropic Mechanical and Thermal Properties
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(26g)

(26h)

(26i)

(26))

26k)

(260)

(26m)

Furthermore, the closed-form solutions for the special case of medium with isotropic mechanics and heat flows
properties are acquired through the conditions of g =1 for equations (24a) to (24g). Applying the L’Hospital’s

rule and careful calculations, the results are given as below:

—_

9= ,
474, R
2
5 = Q0a V)1 )
472, (1-v) (R R’
0Ga, (1+v)
Coo =" /1 N\ n°
472,(1-v) R
2
, o QG ()1 )
= 472, (1-v) (R R’
__QGCZS (1+V) rz

T T am,(1-v) R

where 4, denotes thermal conductivity of the isotropic soils or rocks.

(27a)

(27b)

(27¢)

27d)

(27e)

(279)

(272)

The derived closed-form solutions, equations (27a) to (27g), illustrated that all field quantities are functions of the
distance from the heat source and they are inversely proportional to the thermal conductivity. Besides, the shear
modulus does not have influence on displacements and temperature increment of the homogeneous isotropic strata.
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4. ILLUSTRATIVE EXAMPLE

To study the effect of anisotropy on displacements, temperature increment and thermal stresses of the strata due to a
point heat source, numerical results were obtained for different appropriate sets of soil thermoelastic constants.
These thermoelastic constants are summarized in Table 1. The degrees of anisotropic linear thermal expansion
coefficient «,, /a, =10.0 and thermal conductivity 4, /4. =10.0 are assumed in cases 2 to 5. For the heavily

over-consolidated London clay, the range of the ratio E,/E. is 1.35 to 2.37 and the ratio G_/E, is 1.35 to 2.37
[22,23]. The average values of E, /E, and G_/E, are1.84 and 0.38, respectively. In these numerical studies,
the Young’s modulus in vertical direction E_, linear thermal expansion coefficient in vertical direction «, and

thermal conductivity in vertical direction A, are treated as constants in cases 1 to 5.

Table 1. Material properties of isotropic and cross-anisotropic soils (*assumed values).

Case VrU Vrz Grz / Ez Er / Ez asr / a.\'z ﬂ’tr / j"tz Reference
Case 1: Isotropy 0.25 0.25 0.4 1.0 1.0 1.0 Booker & Carter [20]
Case 2: Cross-anisotropy  0.125  0.75 0.445 2.0 10.0°  10.0° Poulos & Davis [21]
Case 3: Cross-anisotropy 0.125  0.75  0.64 3.0 10.0°  10.0° Poulos & Davis [21]
Case 4: Cross-anisotropy 0.125  0.75  0.64 4.0 10.0°  10.0° Poulos & Davis [21]

Case 5: Cross-anisotropy 0 0.38 0.38 1.84 100" 10.0° Tarn & Lu[12], Lee & Rowe [22],
Wang et al. [23]

The influence of anisotropy on long-term thermoelastic responses are given in Figures 2 to 4. In these figures,
the thermoelastic responses have been normalized. It is observed from Figures 2 to 4 that the anisotropy of the
soils has significant effect on long-term thermally elastic responses compared with the results obtained for an
isotropic soil of case 1. For example, the long-term horizontal displacement of case 4 is reduced to around 75% of
the corresponding value for the isotropic soil of case 1, while the long-term vertical displacement of case 4 increases
to 150% of case 1 for z/r > 3 as shown in Figure 2. For the assumed ratios of 4, /4, at 10.0 in cases 2 to 5, the
long-term temperature increments of the strata of cases 2 to 5 are reduced to around 10% of the corresponding value
for the isotropic soil of case 1 as illustrated in Figure 3.

Figures 5 to 7 illustrate the long-term horizontal and vertical displacements effected by the anisotropy of the
strata.  As shown in Figure 5(a), the ratio £, /E. ranges from 0.5 to 10.0, and the effect of E /E, on horizontal

displacement of the strata is secondary. However, the ratio of E,/E. has an apparent effect on long-term vertical
displacement of the strata as shown in Figure 5(b). Based on the available data of v ,=0.00, v_=0.38,
G./E =038, a,/a,=10.0 and A, /A4, =10.0, Figures 6(a) and 6(b) use the ratio of «,, /a, to display its

influence on long-term horizontal and vertical displacements of the strata. It is shown from Figure 7 that the
degree of anisotropic thermal conductivity 4, /4. has the most significant effect on long-term horizontal and

vertical displacements of the strata due to a point heat source.
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Figures 8 to 10 illustrate the thermal stresses affected by the anisotropy of the strata. Based on the available data
of v,=0.00, v.=038, G_/E., =038, a,/a,=10.0 and A, /A4 =10.0, Figures 8(a) to 8(d) use the ratio
of E./E. to display the influence on thermal stresses of the strata. As shown in Figures 9(a) to 9(d), the ratio
a, [a, ranges from 0.2 to 10.0, and the effect of ¢, /o, on long-term thermal stresses of the strata is important.
It is shown from Figures 10(a) to 10(d) that the degree of anisotropic thermal conductivity 4,/4, has the most
significant effect on long-term thermal stresses of the strata due to a deep point heat source.

As illustrated in Figures 5 to 10, the higher ratio of linear thermal expansion coefficients «,, /o leads to
corresponding higher displacements and thermal stress components of the strata with varying degrees of anisotropy.
However, the displacements and thermal stress components decrease with higher ratio of the thermal conductivities
A, /2. . Based on the numerical results obtained from this anisotropic thermoelastic research, all of the thermal
stresses of strata subjected to a point heat source are compressive and significantly affected by the ratio of
mechanical property E,/E. and thermal properties «,. /o, and A, /4, .
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The long-term normalized temperature increment of the strata were calculated from equation (23c¢) for values of
various anisotropic ratio E, /E., «,/a, , A,/A, ,and the results are shown in Figures 11 to 13. Figures 11 and
12 display the anisotropic ratio £ /E, and e, /a, , and they have no effect on the long-term temperature
increment of the strata due to a point heat source. However, Figure 13 illustrates that the ratio of anisotropic
thermal conductivity A, /A4, has the most significant effect on temperature increment of the strata. In all cases,

the temperature increment of the strata is larger when the location is closer to the point heat source.

5. CONCLUSIONS

The closed-form solutions of thermoelastic responses due to a point heat source buried in a cross-anisotropic

thermoelastic full space were obtained by using Hankel and Fourier integral transforms. The results were

examined by simplifying the solutions of cross-anisotropic thermoelastic responses into the case of isotropic strata.

The investigations show that:

1. The derived solutions illustrated that all field quantities are functions of the distance from the heat source, and
they are inversely proportional to the thermal conductivity. Besides, the shear modulus does not have influence
on long-term displacements and temperature increment of the strata for the totally isotropic properties case.

2. Based on the numerical results, the thermal stresses of strata are compressive, and they are significantly affected
by the ratio of mechanical and thermal properties E./E., «,/a, and A,/2. . For example, the higher

ratio of linear thermal expansion coefficients «,, /a _ leads to corresponding higher thermal stress components

of the strata with varying degrees of anisotropy. However, the thermal stress components decrease with higher
ratio of the thermal conductivities A, /4, .

3. The influence of the ratio of anisotropy E,/E. on long-term horizontal displacement due to a point heat source
is secondary while the effects of thermoelastic anisotropy «,, /er, or A,/7, has an appreciable effect on the
long-term horizontal displacement.
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NOMENCLATURE

Constants defined in equations (21a) to (21¢) (°C")

Material constants defined by Love (Pa)

Constants defined in equations (21d) to (21f) (°C™")

Young’s modulus in horizontal/vertical direction (Pa)

Body forces of the strata (N/m®)

Shear modulus of the isotropic strata (Pa)

Modulus of shear deformation in vertical plane (Pa)

Heat flux vector (J/sm?)

Unit vector parallel to the radial/vertical direction(Dimensionless)
First kind of the Bessel function of order « (Dimensionless)
Internal (or external) heat sources (J/sm’)

Strength of the point heat source (J/s)

Cylindrical coordinates system (m, radian, m)

Parameter, R = m (m)

Parameter, R, = m (m)

Parameter, R =+/r’+z° +|z| (m)

Parameter, R, =R, + 4, |z| (m)

Displacement components of the strata (m)

Hankel transforms of u, and u_, equations (13a) and (13b) (m*)

Fourier transforms of U, and U, , equations (16a) and (16b) (m*)

Linear thermal expansion coefficient of the isotropic strata (°C™")

Linear thermal expansion coefficient of the cross-anisotropic strata in horizontal/vertical

direction (°C™")

Thermal expansion factors of the cross-anisotropic strata (Pa/°C)
Thermal expansion factors of the isotropic strata (Pa/°C)

Dirac delta function (m™)

Parameter, 7 = (1 - v)/(l - 21/) (Dimensionless)

Temperature change of the strata (°C)

Hankel transform of &, equation (13c) (°Cm?)

Fourier transform of @ , equation (16¢) (°Cm?)
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¢ (i=5,,13)

@

Lame constant of the isotropic strata (Pa)

Thermal conductivity of the isotropic thermoelastic medium (J/sm°C)

Thermal conductivity of the cross-anisotropic thermoelastic medium in the horizontal/
vertical direction (J/sm°C)

Characteristic root, u= m (Dimensionless)

Characteristic roots of characteristic equation (22) (Dimensionless)

Characteristic root, x, = W (Dimensionless)

Poisson’s ratio of the isotropic strata (Dimensionless)

Poisson’s ratio for strain in the vertical direction due to a horizontal direct stress
(Dimensionless)

Poisson’s ratio for strain in the horizontal direction due to a horizontal direct stress
(Dimensionless)

Poisson’s ratio for strain in the horizontal direction due to a vertical direct stress
(Dimensionless)

Hankel transform parameter (m™")

Thermal stress components of the strata (Pa)

Functions defined in equations (26a) to (26d) (Dimensionless)

Functions defined in equations (26e) to (26m) (m™")

. -1
Fourier transform parameter (m"')
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ABSTRACT

In this paper, the deep buried line heat source of constant
strength affects the thermally mechanical responses of the
stratum are presented. To simulate the stratified earth
medium, the soil mass is modeled as cross-anisotropic
with different properties in the horizontal and vertical
directions. On the basis of fundamental solutions caused
by a deep point heat source, the analytic solutions of
ground deformation, thermal stresses and temperature
changes of the thermoelastic medium due to deep line
heat source are presented by using appropriate line
integral techniques. The anisotropic soil shows
significant effect on long-term thermally elastic responses
compared with the results from isotropic soil. Besides,
the derived solutions illustrated that shear modulus does
not have influence on long-term displacements and
temperature increment of the strata for the case of
isotropic properties.

KEY WORDS
Point Heat Source, Line Heat Source, Fundamental
Solution, Closed-form Solution.

1. Introduction

The deep buried line heat source of constant strength
affects the thermally mechanical responses of the stratum.
The heat source such as a canister of radioactive waste
can cause temperature rise in the soil, and thus the solid
skeleton and pore fluid can expand. This leads to increase
in pore water pressure and reduction in effective stress,
because the volume increment of the pore water is greater
than that of the voids of solid matrix. Therefore, thermal
failure of soil can occur as a result of losing shear
resistance due to reduction in effective stress.

Booker and Savvidou [1,2], Savvidou and Booker [3]
presented the solutions of thermo-consolidation around
spherical and point heat sources. In their solutions, the
thermal properties were considered as isotropic [1,2] or
cross-anisotropic [3] whereas the elastic properties of the
soil were treated as isotropic [1-3]. Moreover, the stratum
was modeled in full space to simulate the deep buried heat
sources. Georgiadis et al. [4] analyzed the transient

DOI: 10.2316/P.2012.776-040

dynamic coupled thermoelasticity paradigm of a half-
space under the action of a buried thermal/mechanical
source. Shendeleva [5] theoretically presented a model
comprising an instantaneous line heat source situated
parallel to the interface between two semi-infinite heat-
conductive media in perfect thermal contact. Three-
dimensional Green’s functions for a steady point heat
source were derived by Wang ef al. [6]. Lu and Lin [7]
displayed the transient ground surface displacement
produced by a point heat source or fluid sink through
analog  quantities between thermoelasticity and
poroelasticity. Lu et al. [8] presented the closed-form
solutions of a homogeneous isotropic elastic half space
subjected to circular plane heat source on the basis of the
fundamental solutions of half space due to a point heat
source. Analytical solutions of the transient and long-
term horizontal and vertical displacements due to a point
heat source were presented by Lin and Lu [9].

Soils in general are deposited through process of
sedimentation over a long period of time. Under the
accumulative  overburden pressure, soils display
significant anisotropic mechanical and thermal properties.
In order to describe the anisotropic nature of soils, it can
be modeled as cross-anisotropic medium whose properties
are symmetric about the vertical axis. For the heat source
buried at a great depth, the effects of half space boundary
on thermally response can be neglected.

In general, soils or rocks are deposited through a
geologic process of sedimentation over a long period of
time. Under the accumulative overburden pressure, strata
display significant anisotropic mechanical, seepage and
thermal properties. Both stratified soil and rock masses
can show the phenomenon of anisotropy. For this reason,
theoretical and numerical models should be able to
simulate the layered soils and rocks as cross-anisotropic
media [10-14].

The investigation is focused on long-term thermally
elastic mechanical behaviors of the stratum. On the basis
of the derived deep point heat source induced
fundamental solutions, the closed-form solutions of long-
term ground deformation, thermal stresses, and
temperature changes of the soil mass due to a deep line
heat source are obtained by using appropriate line integral
techniques. Results are simplified to isotropic case to
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provide better understanding of the thermally induced
mechanical responses of the stratum. The solutions can
be used to test numerical models and evaluate numerical
simulations of the thermoelastic responses near the line
heat source.

2. Fundamental Solutions Caused by a Deep
Point Heat Source

2.1 Basic Governing Equations

Theoretical and numerical models usually simulate the
layered strata as cross-anisotropic media [10-14]. Figure
1 shows a point heat source buried deep in the cross-
anisotropic thermoelastic strata. The stratum is
considered as a homogeneous cross-anisotropic medium
with vertical axis of symmetry. The constitutive behavior
of the elastic soil or rock skeleton for linear axially
symmetric deformation in the cylindrical coordinates (7, 6,
z) can be expressed by

o, =Ae, +(A-2N)e, +Fe_ - B9, (1a)
Og =(A-2N)e, + Agyy+Fe_ - B9, (1b)
o, =F¢, +Fgp+Cs_—p.93, (Ic)
o.=2Lg,., (1d)

where o, is the thermal stress tensor. The temperature

change of the stratum is denoted by $. The material
constants of 4, C, F, L, N for the cross-anisotropic strata
are defined by Love [15]. The symbols
B, = 2(A—N)av +Foa_ and . =2Fa, +Ca_ are the
thermal expansion factors in the horizontal and vertical
directions, respectively. The linear thermal expansion
coefficients of the strata in the horizontal and vertical
directions are denoted by ¢, and ¢, respectively. The

sz %

strain components ¢, and displacement components

are governed by the linear kinematic equation:

ou
e =—>, 2a
rr a]/’ ( )
u
Egp =, (2b)
r
ou
e_=—=, 2c
zz aZ ( )
g, = L[ Ou ) (2d)
2\ 0z or

Note that u, and u, are displacements of the stratum in

the radial and axial directions, respectively. The shear
stress components o,, and o,  vanish by locating the

vertical z-axis through the point heat source. For an
isotropic stratum, 4=C=A+2G, F=A1, L=N=G,

B, =B.=(2G+31)a,, where 2, G, a, are the Lame

constant, shear modulus and linear thermal expansion
coefficient of the isotropic stratum, respectively.

Deep Point Heat Source of
Strength O(J/s)

Figure 1. Point heating problem.

The thermal stresses must satisfy the equilibrium
relations of axial symmetry in cylindrical coordinates as
below:

oo o, —0 oo
00 +

rr + rr rz +br — 0 R (3a)
or r Oz
%+%—”+i+bz:0, (3b)
or Oz r

where b, (i =r,z) denotes the body force tensor.

Using equations (la)-(1d) and the linear kinematic
equations (2a)-(2d), the equilibrium equations (3a)-(3b)
for axially symmetric problem without body forces b, are
expressed in terms of displacements u;, and temperature
change of the stratum 9 as follows:

2 2 2
A(a i +l%—u—r]+L6 s +(F+L)a X

ot ror ¥ oz° Ooroz
2%, (4a)
or
2 2 2
(F+L) Ou, 10w\, 6u22+16uz oA uzz
oroz r Oz or r or 154
g9y, (4b)
Oz

The third relation among u, , u, and 9 can be

roo

obtained from the conservation of energy:
~V.-h+q, =0, ®)

where h is the heat flux vector; ¢, is the internal or

external heat sources.
Assuming that the cross-anisotropic thermal flow is
governed by Fourier’s heat conduction law, we have

h = _ﬂ’tr %ir - ﬂ’tz %iz > (6)
or oz
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where 4, and A, are the thermal conductivities in the

horizontal and vertical direction, respectively; i, and i,

are the unit vector parallel to the radial and vertical
direction, respectively.
Considering a point heat source of constant heat

generation rate Q located at point (0,0). Equation (6) is
substituted into (5) to yield

lﬁ[az_%l%jm 79,0 s(s(z)=0, @

o’ r or o2 2nr

in which &(x) is the Dirac delta function.

Equations (4a), (4b) and (7) constitute the basic
governing equations of the steady state axially symmetric
thermoelastic responses of a homogeneous cross-
anisotropic stratum due to a deep point heat source.

2.2 Boundary Conditions

The point heat source is buried at a great depth, and the
effect of the point heat source must vanish at the infinity
depth (z — tw). Therefore, the boundary conditions of
the mathematical model are as below:

lim {u, (r,z),u, (r,z),8(r.z)} ={0,0,0}. (8)

This mathematical model is based on the governing
equations (4a), (4b), (7) and the corresponding boundary
conditions (8).

2.3 Analytic Fundamental Solutions

The closed-form analytic solutions of the long-term
thermally elastic responses of ground deformations,
thermal stresses, and temperature change of the stratum
due to a point heat source buried deep in a cross-
anisotropic full space are obtained by using Hankel
transform as follows:

u,_(r,z):_Q -(alL*+a2L*+a3L*], (9a)
am \ 'R R TR
u,(r,z)= (bl sinh ™ £12 +b, sinh™' 5
4nl, r r
+b, sinh™ ﬁj , (9b)
r
9(rz)=-2 L (%)

-2N| q, L*+azi*+a3%
R R, R,

H Hy Hy 1
+F| b —+b,—+b,— |- , 9d
(IRI 2Rz 3R3] ﬂr/l3R3:| e
0 1 1 1
Oy (7,2 a—+a,—+a,—
99( ) ﬂ, 1R1 2R2 3R3
( ol u3|*)
R2R2 R3R3
+F(blﬂ+b2ﬁ+b3ﬁ} L (9
R R, R, JT
Uzz(r,z): Q F ali+azL+a3i
4rA, R, R, R,
K Hy Hy 1
+C| b —+b,—=+b,— |-, —— |, 9
(IR1 2R2 3R3] ﬁz,u3R3:| (f)

O',Z(r,z)zi 0 Ll a ,uﬂ’* ta, ,Uzl”*+a3 /lsr*
4n, RR RR, RR,

b H |Z| “2|Z| ”3|Z| H

rR, rR, R,

%g)

in which the upper and lower signs of o (r,z) are for
the conditions of z>0 and z <0, respectively. The
R=\r+ 2
(i=1,2,3). The coefficients a, and b, are defined as
following:

symbols R =R +ulzl  and

LB, +|(F+L)B,—CB, |1
“r CLHI[(uf ) /l]s) ’ (10
Lﬁr+[(F+ ) B. Cﬂ} 105)
Crae (i)
LB, +|(F+L)B.-CB,
o CLus[(M - )(e —qu) ’ (109
_ LB +(F+L)B, — AP, ’ (10)
CL(pf =153 ) (11 = 113
_ LB +(F+L)p, - 4B. (100)
Coon(-m) (s -m)
_LBagH(FL)B AP (10

CL(1 17 )15 = 113 )

in which the characteristic roots g, and u, must satisfy
the characteristic equation

CLu' -[ AC-F(F+2L) |y’ + AL =0, (11)



and the characteristic root u, =/4, /4, . Using the
computational software Mathematica, the fundamental
solutions of an isotropic stratum are obtained from (9a)-
(9g) by taking appropriate limit of 4 =y, = u; =1 and
using L’Hospital’s rule.  Carrying out the tedious
procedure, the solutions are obtained as below:

_Qa, (1+V)L, (12)
" 874, (1-v) R
- Oa, (1+V)i, (12b)
* 874, (1-v) R
92 1 (12¢)

4n, R

__OGa (l+v)(1 12d
e 4m4kw)(R+RJ’ (120

__QGaS(1+v)i 12
%0 4, (1-v) R (120
(,:_Qgﬁﬂﬂﬁﬂl+i}, (129)
© 4m(1-v) \R R

__QGa,(14v) rz (12¢)

T A (o) B

where 4,, G, v, and «, are the thermal conductivity,
shear modulus, Poisson’s ratio, and linear thermal
expansion coefficient of the stratum, respectively. The
symbol R =~/r* +z° denotes the distance from the point
heat source located at the origin (0,0) to the arbitrary

observation point (r,z) of the stratum. The negative

signs in equations (12d)-(12f) represent that the thermal
stresses due to a point heat source are compressive normal
stresses.

3. Closed-form Solutions Caused by a Deep
Horizontal Line Heat Source

The deep horizontal line heat source, shown in Figure 2,
can also introduce thermoelastic responses, and the
responses are derived from the fundamental solutions
caused by a deep point heat source. In the Cartesian
coordinates system (x, y, z), the fundamental solutions in
(9a)-(9g) or (12a)-(12g) are expressed as:

u, (x,y,z) =u, (r,9,2)0059 —u, (r,@,z)sin@ , (13a)
u, (x,y,z)=u, (r,0,z)sin +u, (r,0,z)cos 6 , (13b)
u, (x,y,z):uz (r,@,z), (13¢)
9(x,y,z):9(r,9,z), (13d)

o, (xy.2)=0,(r.0,z)cos’ 0 +0,,(r,0,z)sin’> 6

+0,, (r,@,z)sinZQ , (13e)
o, (x.y.2)=0,(r.0,z)sin’ 0 + 0, (r,0,z)cos’ O

~0,4(r,0,2)sin 20 , (13%)
(o (x,y,z):dzz (r,@,z), (13g)
o, (xy.z2)= [G,, (r,0,2) =04y (r,@,z)}cos@sin@

+0,4(r,0,2)cos26, (13h)
o, (x,y,z):cryz (x,y,z):crrz (r,@,z) s (131)

in which u#, =0 and o,, =0 for the case of axially
symmetric thermoelastic medium.

/\/\\/\A/\J
. —Q
z v,
Y,
y
‘;
,

Deep Line Heat Source of
Strength g(//sm)

- (x.0.2)

Figure 3. The horizontal component of the distance from
an elementary heat source at point (0, s, 0).

Figure 3 presents the horizontal component of the
distance from an elementary heat source at point (0, s, 0),
and the strength of the line heat source is treated as g.
Considering the elementary length ds of the line heat
source, the thermal strength of the length ds is equal to
qds. The quantity gds can be treated as a point heat
source. To determine the thermally mechanical responses
due to the elementary heat source at a point (x, y, z), the

quantity gds is substituted for 0, and r = \/x* +( y—s)2

for r=4x>+y°> . Using Mathematica, the thermo-

mechanical behaviors at a point (x, y, z) on the xz-plane
due to the entire line heating source can be obtained by
integration with the symbol s from —oo to oo as below:

%:;%{@+@+@L (14a)

1z
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u =0, (14b)

0, :ﬁu(}h +hs+hg), (14c¢)
q
9= h, 14d
4n), 7 (14d)
q
o =—1_(Ah +Fh,—B.h,), 14
XX 471_1” ( 8 9 Br 7) ( e)
__4 _ _
ey [(A=2N)hg+Fhy—B,h, ], (14f)
0. =—L—(Fh+Chy~p.h,), (14g)
472,
c, =0, (14h)
q .
=—1"Ih,, 141
O, a7, 10 (141)
o, =0, (14j)

where £, (i=1,2,-+,10) are expressed as following:

o 2uxz
=—a,|xIn(x* + 1’2" )+ gztan™ — L
h, 1 ( Hy ) H 122X
+7u, |z|] , (15a)
I 2
hy, =—a,| xIn (x2 + uzzzz)+ Wz tan™ %
L bz —x
san )], (15b)
I 2
h, =—a,| xIn (x2 + ,u3222)+ Wz tan™ %
L Kz —x
+7pL, |z|] , (15c¢)
2
hy = b, {x tan” 2 (x4 g2 )} (15d)
X -z
2
hy =-b, |:x'[an_1 %+ uzzln(x2 +uz’ )} , (15e)
X -z

3

2
h, =—b, {xtanl%+%zln(x2 +,u3222 )}, (159)
X -z

h, :—iln(xzwfzz), (15g)
Hy

hy =—a, ln(x2 +/41222)—a2 ln(x2 +u2222)

—a, In(x* +127), (15h)
hy ==bu, ln()c2 +u1222)—b2u2 ln(x2 +,uzzzz)
—b, 14 ln(x2 +,u3222), (151)
o 2uxz o 2U,xz
1 1
hlozalﬂl tan /11222—1_)62'}‘(,12/12 tan luzzzz—z_xz

2uU.x|z bz
+a, i, tan”' ,uzz;——|x|2+%ln(xz +/11222)
3

+b2'u—zzln(x2 +u§zz)+b3“—321n(x2 ). (5)
X X

Proceeding with similar manner, the solutions of an
isotropic stratum due to the deep horizontal line heat
source are determined as below:

1
. :__ji&f}js)xmm, (162
u =0, (16b)

u, = len\/xz+z2 , (16¢)

T 4m (1-v)

9=—9 mnx+27, (16d)

274,

q(1+v)Ga, - X
= l - > 16
7 " m, (1-v) [n e A (16
o - q(1+v)Ga,
” w2, (1-v)

2
aﬂ:q(“‘/)Ga“' [ln\/m_ 2z ZJ’ (162)

In (x2 +22), (161)

ZHA,(I—V) X +z
c,=0, (16h)
o :_q(1+v)Gas Xz (16i)
- 272, (1-v) x*+2°
. =0, (16i)

in which the displacement component u, and shear stress

vanish by locating the y-axis

components, o, and o,
through the deep line heat source as shown in Figure 3.

The results of (14a)-(14j) are confirmed by
simplifying  the  solutions of cross-anisotropic
thermoelastic behaviors to isotropic case of (16a)-(16j).
All field quantities are functions of the distance from heat
source and are proportional to the linear thermal
expansion coefficient, but they are inversely proportional
to the thermal conductivity. For isotropic cases, the shear
modulus does not have influence on the displacements
and temperature change of the stratum as shown in (16a)-
(164d).

4. Numerical Results

The numerical results were obtained for different
appropriate sets of soil thermoelastic constants to
investigate the effect of anisotropy on displacements,
temperature increment and thermal stresses of the strata
due to a deep point heat source. The related thermoelastic
constants are summarized in Table 1.
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Table 1.

Material properties of isotropic and cross-

anisotropic soils (*assumed values).

Case Ve V. G.JE, EJE a,la, 4./,
Case 1: Isotropy [16] 025 025 0.4 1.0 1.0 1.0
Case 2: Cross-anisotropy [17] 0.125 0.75  0.445 2.0 10.0° 10.0"
Case 3: Cross-anisotropy [17] 0.125 075  0.64 3.0 10.0° 10.0"
Case 4: Cross-anisotropy [17] 0.125  0.75 0.64 4.0 10.0° 10.0°
Case 5: Cross-anisotropy [11,18,19] 0 038  0.38 1.84 10.0° 10.0°
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The values of anisotropic linear thermal expansion
coefficient ¢« /a, =10.0 and thermal conductivity

A, /A, =10.0 are assumed in cases 2 to 5. For the

heavily over-consolidated London clay, the range of the
ratio £ /E._ is between 1.35 and 2.37, and the ratio

G_/E. is between 1.35 and 2.37 [18,19]. The average
values of E /E. and G_/E. are 1.84 and 0.38,

respectively. In these numerical studies, the Young’s
modulus in vertical direction £E linear thermal

z

expansion coefficient in vertical direction o and

thermal conductivity in vertical direction A, are treated

as constants in cases 2 to 5.

The influence of anisotropy on long-term
thermoelastic responses are given in Figures 4 to 6. In
these figures, the thermoelastic responses are normalized.
From Figures 4 to 6,the anisotropy properties of the soils
show significant effect on long-term thermally elastic
responses compared with the results obtained for an
isotropic soil of case 1. For example, the long-term
horizontal displacement of case 4 is reduced to around
75% of the corresponding value for the isotropic soil of
case 1, while the long-term vertical displacement of case
4 increases to 150% of case 1 for ratio z/» > 3 as shown in
Figure 4. For ratio of 4, /A, at 10.0 in cases 2 to 5, the

long-term temperature increments of the strata in cases 2
to 5 are reduced to around 10% of the corresponding
value for the isotropic soil of case 1 as illustrated in
Figure 5.

5. Conclusion

Using the computational software Mathematica, this
investigation obtains closed-form solutions of the long-
term thermoelastic responses due to an infinite horizontal
line heat source of constant heat generation rate buried
deep in a cross-anisotropic elastic full space. Results for
solutions of cross-anisotropic thermoelastic behaviors are
obtained by simplifying closed-form solutions to the
isotropic case of thermoelastic full space. The solutions
are used to evaluate detail numerical simulations of
thermoelastic responses near the heat source. The results
show:

1. The derived solutions illustrate that all field quantities
are inversely proportional to the thermal conductivity.
However, the shear modulus does not have influence
on long-term displacements and temperature increment
of the strata for the case of isotropic properties.

2. The anisotropy of the soils has significant effect on
long-term thermally elastic responses compared with
the results obtained for an isotropic soil. For example,
the long-term horizontal displacement for anisotropic
soil of case 4 is reduced to around 75% of the
corresponding value for the isotropic soil of case 1,
while the long-term vertical displacement of case 4

increases to 150% of case 1 for ratio z/# > 3 as shown
in Figure 4.

Acknowledgements

This work is supported by the National Science Council
of Republic of China through grant NSC100-2221-E-216-
025.

References

[1] J.R. Booker & C. Savvidou, Consolidation around a
spherical heat source, International Journal of Solids and
Structures, 20(11/12), 1984, 1079-1090.

[2] J.R. Booker & C. Savvidou, Consolidation around a
point heat source, International Journal for Numerical
and Analytical Methods in Geomechanics, 9(2), 1985,
173-184.

[3] C. Savvidou & J.R. Booker, Consolidation around a
heat source buried deep in a porous thermoelastic medium
with anisotropic flow properties, International Journal for

Numerical and Analytical Methods in Geomechanics,
13(1), 1989, 75-90.

[4] H.G. Georgiadis, A.P. Rigatos & L.M. Brock,
Thermoelastodynamic disturbances in a half-space under
the action of a buried thermal/mechanical line source,
International Journal of Solids and Structures, 36(24),
1999, 3639-3660.

[5] M.L. Shendeleva, Instantaneous line heat source near
a plane interface, Journal of Applied Physics, 95(5), 2004,
2839-2845.

[6] X. Wang, E. Pan & A.K. Roy, Three-dimensional
Green’s functions for a steady point heat source in a
functionally graded half-space and some related problems,

International Journal of Engineering Science, 45(11),
2007, 939-950.

[7] J. C.-C. Lu & F.-T. Lin, The transient ground surface
displacements due to a point sink/heat source in an elastic
half-space, Geotechnical Special Publication No. 148,
ASCE, 2006, 210-218.

[8] J. C.-C. Lu, W.-C. Lin & F.-T. Lin, Closed-form
solutions of the homogeneous isotropic elastic half space
subjected to a circular plane heat source, Geotechnical
Special Publication No. 204, ASCE, 2010, 79-86.

[9] F.-T. Lin & J. C.-C. Lu, Golden ratio in the point heat
source induced horizontal and vertical displacements of
an isotropic elastic half space, Geotechnical Special
Publication No. 204, ASCE, 2010, 87-94.

u 72


John Lu
螢光標示

John Lu
螢光標示

John Lu
螢光標示


[10] B. Amadei, H.S. Swolfs, W.Z. Savage, Gravity-
induced stresses in stratified rock masses, Rock
Mechanics and Rock Engineering, 21(1), 1988, 1-20.

[11] J.Q. Tarn & C.-C. Lu, Analysis of subsidence due to
a point sink in an anisotropic porous elastic half space,
International Journal for Numerical and Analytical
Methods in Geomechanics, 15(8), 1991, 573-592.

[12] P.R. Sheorey, A theory for in situ stresses in
isotropic and transversely isotropic rock, International
Journal of Rock Mechanics and Mining Sciences and
Geomechanics Abstracts, 31(1), 1994, 23-34.

[13] S.L. Lee & J.H. Yang, Modeling of effective thermal
conductivity for a nonhomogeneous anisotropic porous
medium, [International Journal of Heat and Mass
Transfer, 41(6-7), 1998, 931-937.

[14] C.D. Wang & C.S. Tzeng, Displacements and
stresses due to nonuniform circular loadings in an
inhomogeneous cross-anisotropic material, Mechanics
Research Communications; 36, 2009, 921-932.

[15] A.E.H. Love, 4 Treatise on the mathematical theory
of elasticity (New York: Dover Press, 1944, 636p).

[16] J.R. Booker & J.P. Carter, Analysis of a point sink
embedded in a porous elastic half space, International
Journal for Numerical and Analytical Methods in
Geomechanics, 10(2), 1986, 137-150.

[17] H.G. Poulos & E.H. Davis, Elastic solutions for soil
and rock mechanics (New York: John Wiley & Sons,
1974, 183-192).

[18] K.M. Lee & R.K. Rowe, Deformations caused by
surface loading and tunnelling: The role of elastic
anisotropy, Geotechnique, 39(1), 1989, 125-140.

[19] C.D. Wang, E. Pan, C.S. Tzeng, F. Han & J.J. Liao,
Displacements and stresses due to a uniform vertical
circular load in an inhomogeneous cross-anisotropic half-

space, International Journal of Geomechanics, ASCE,
6(1), 2006, 1-10.

Nomenclature

Parameters defined in equations (10a)-
(10c)

A, C,F, L, N Elastic constants of the cross-anisotropic
stratum defined by Love [15]

a,a,,d;

b,b,,b, Parameters defined in equations (10d)-
(101)
b, (i =rz ) Body forces in cylindrical coordinates

Shear modulus of the isotropic stratum

(r, 0,2)
R

R,.R,,R,

* * *

R ,.R,,R,

U, Uy, U,
u_u U

x27yr 7z

(x,»,2)

Heat flux vector

Functions defined in equations (15a)-
(155)

Unit vector parallel to the radial/vertical
direction

Heat generation rate of the line heat
source

Internal/external heat sources

Heat generation rate of the point heat
source

Cylindrical coordinates system
Distance parameter defined as

R=Ar*+7*
Distance parameters defined as

R, = +,ul.zz2 s (i:1,2,3)

Distance parameters defined as
R =R +ulz|, (i=1,23)

Radial/tangential/axial displacement of
the thermoelastic stratum

Displacements of the medium expressed
in Cartesian coordinates system
Cartesian coordinates system

Linear thermal expansion coefficient for
the isotropic thermoelastic stratum
Linear thermal expansion coefficient of
the cross-anisotropic thermoelastic
stratum in the horizontal/vertical
direction

Linear thermal expansion factor of the
cross-anisotropic thermoelastic stratum in
the horizontal/vertical direction

Dirac delta function

Kronecker delta

Strain components of the stratum
Temperature change of the thermoelastic
stratum

Lame constant of the thermoelastic
stratum

Thermal conductivity of the
thermoelastic stratum
Horizontal/vertical thermal conductivity
of the cross-anisotropic stratum

Characteristic roots defined in equation
(11)
Characteristic root, u, = /4, /A,

Poisson’s ratio for the isotropic
thermoelastic stratum

Thermal stress components of the
thermoelastic stratum
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ABSTRACT

On the basis of a point sink induced half space
fundamental solutions, the investigation presents
analytical solutions of the long-term consolidation
settlement and excess pore fluid pressure of a saturated
elastic aquifer subjected to a circularly symmetric fluid
sink. The governing equations of the mathematical model
are based on the theory of poroelasticity. The aquifer is
modeled as a homogeneous isotropic poroelastic half
space, and the total stresses of the aquifer obey Newton’s
second law and Hooke’s law. Besides, the mass
conservation and Darcy’s law are introduced to formulate
the governing equations of pore fluid flow. The software
Mathematica is used to complete the symbolic
calculations, and the closed-form solutions are derived.

KEY WORDS
Fluid Sink, Half Space, Closed-form Solution, Porous
Medium.

1. Introduction

Large amounts of groundwater withdrawal can induce
land subsidence [1]. The stratum compact on itself when
the groundwater is withdrawn from the saturated aquifer
of the strata. As water pumped from an aquifer, the pore
water pressure is reduced in the withdrawal region. It
leads to increase in effective stress between the solid
skeleton and the subsidence of ground surface.

The coupled three-dimensional consolidation theory
introduced by Biot [2,3] is generally regarded as the
fundamental theory for modelling consolidation
settlement. The approach followed Rice and Cleary [4]
who provided an elegant formulation of Biot’s theory in
terms of easily identifiable quantities and material
constants. Bear and Corapcioglu [5,6] presented the
modified Biot’s equations where the pore fluid was
treated as compressible and the solid skeleton was
assumed incompressible.  Based on Biot’s theory
modified by Bear and Corapcioglu [5,6], Booker and
Carter [7-10], Tarn and Lu [11] presented solutions of
subsidence by a point sink embedded in the saturated

DOI: 10.2316/P.2012.776-044

elastic half space at a constant rate. Chen [12,13], Kanok-
Nukulchai and Chau [14] presented analytic solutions for
the steady-state responses of displacements and stresses in
a porous half space subject to a fluid point sink. Lu and
Lin [15,16] displayed transient displacements of the
pervious half space due to steady pumping rate [15] and
impulsive pumping [16]. Hou et al. [17] presented that
the ground horizontal displacement occurred as
groundwater withdrawn from an aquifer.

The present investigation is focused on the closed-
form solutions of an isotropic poroelastic half space due
to a circularly symmetric fluid sink which still have not
been derived in previous studies. In this study, the aquifer
is modelled as a linearly -elastic medium with
homogeneous isotropic properties. ~ The half space
fundamental solutions of the long-term displacements and
excess pore fluid pressure of the saturated aquifer due to a
point sink are obtained by using Hankel and Fourier
transforms.

Based on the derived fundamental solutions, the
software Mathematica is used to complete the symbolic
calculations and obtain the closed-form solutions for the
aquifer subjected to a circularly symmetric fluid sink.
The solutions can be used to develop numerical models
and the detailed numerical simulations of the
consolidation settlement near the circularly symmetric
fluid sink.

2. Modelling of Poroelastic Point Sink
Problem

2.1 Basic Governing Equations

The formulation of Biot’s equations follows that of Rice
and Cleary [4] who provided an easily identifiable
quantities and material constants. Four basic material
constants are selected in the constitutive equations
including the shear modulus G, the drained Poisson’s

ratio v, the undrained Poisson’s ratio v, and Skempton’s

pore pressure coefficient B [18]. The physical ranges of
material constants B and v, are 0<B<1 and
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0<v<v, <1 [4], respectively. For the situation of
incompressible constituents, the poroelastic coefficients
B=1and v, =% . According to Rice and Cleary [4], the
reformulated constitutive relations are expressed as [19]:
2Gv 3(v,-v)

=2Ge, 5 -
O T B T B ) (14 ,)

PO (1a)

2GB(1+v,)  2GB*(1-2v)(1+v,)’

p=- £+ S, (1b)
3(1-2v,) 9(v, —v)(1-2v,)

in which o, p and ¢; are the total stress components,

excess pore fluid pressure and solid strain components of
the poroelastic media, respectively. Note that positive o,
and p represent tension. The parameter ¢ is variation of

fluid content per unit reference volume of the aquifer.
The volumetric strain of the skeletal material is denoted
by ¢ and ¢ =¢, +&y +&;;; 0, is the Kronecker delta.
The inversions of equations (l1a) and (1b) are shown as
the form:

&, :L[G..—LG 6..j+ 3 )
P26\ ey ) 2GB(1+v)(1+v,)
~9(v, —v)(1-2v,) 3(v, -v)
268 (1-2v)(1+v,) T B(1-2v)(1+v,)

péy;, (1a*)

e. (1b¥)

The solid strain components ¢, and displacement

components u, are governed by the linear kinematic
equation:

& = %(”f,.i TU, ) : (2)

The total stress components o, must satisfy the

equilibrium equations:

c,, +b =0, 3)

where b, denote the body force components. The mass
balance for the fluid phase is denoted by:

a—g+vl.l.+q:0, 4)
ot ’

in which v, is the specific discharge velocity components;
the quantity ¢ is the rate of fluid extracted from the

saturated porous aquifer per unit volume by the sink. The
pore fluid flow is governed by Darcy’s law as below:

v,‘ :_ip’,‘s (5)
Yy

in which k£ and y, denotes the permeability of the porous
aquifer and the unit weight of pore fluid, respectively.

The governing equations (1) to (5) are combined to
derive various field equations for their corresponding
solutions of boundary value problems. The equilibrium
equation (3) and mass balance equation (4) are expressed
in terms of displacement components u, and excess pore
fluid pressure p by substituting (1a) into (3), (1b*) and (5)
into (4) as below [20]:

szui-i-iﬁ—aa—p-kbi:(), (6a)
1-2v ox, Ox,
-v)(1-2
kg 9(v, —v)( vzl)za_p+a6_e+q:0’(6b)
Yy 2GB*(1-2v)(1+v,) 0 ot

where a is known as Biot’s coefficient of effective stress
which can be defined as

3(v,—v)
B2 (14 @)

The above mathematical model is known as coupled
model of poroelasticity where the flow field is dependent
on the displacement field. The long-term consolidation
settlement model is preferred in this investigation, and the
time dependent differentiation terms in equation (6b) are
neglected.

Figure 1 presents a fluid point sink buried in a
saturated porous elastic half space at a depth 4. The
constant pumping strength is denoted as Q at the location

(0,h).  Introducing the equilibrium equations for
axisymmetric poroelasticity model with a vertical axis of
symmetry and neglect the effects of body forces b,, the

equation (6a) are transformed to equations (8a) and (8b).
Moreover, the mass balance equation (6b) are expressed
as (8c) by assuming the long-term consolidation
settlement. After doing so, the governing equations in

axially symmetric coordinates (r,z) are derived in terms

of displacements u,(i=r,z) and excess pore fluid

pressure p as following:

v+ % gl P g (32)
1-2v or r or
v +—3 %8 _ P, (8b)
1-2v 0z 0z
k > 0
V2 5(r)8(2-h)=0, 8¢
y/.pZﬂr()(Z) (8¢)

U 80



. . , 0 10 &
where the differential operator V' =—+——+—
or~ ror oz

. . Ou, u, Ou, .

and solid strain components & =——+—+—=; §(x) is
or r 0z

the Dirac delta function. Equations (8a) to (8c) are the
basic field equations of long-term consolidation
settlement with a point sink at a constant pumping rate, in
which the fluid and solid are treated as compressible
constituents.

Permeable Surface

Point Sink of
Strength Q

e . ‘.'
v--@-------f

a0

Poroelastic Half Space

Figure 1. Poroelastic point sink problem.
2.2 Boundary Conditions

The ground surface of the half space is treated as a
pervious and traction-free boundary for all times >0 .
Therefore, the mathematical statements of the ground
surface boundary z=0 in axisymmetric coordinates

(r,z) are:
0,.(r,0)=0, o_(r,0)=0,and p(r,0)=0. (9a)

The displacements and excess pore fluid pressure at
the remote boundary z — oo due to the effect of a point
sink must be nil at any time. These conditions are written
as

lim{ur(r,z),uz (r,z),p(r,z)} ={0,0,0} . (9b)

Z—0

This mathematical model is based on the governing
equations (8a)-(8c) and the corresponding boundary
conditions (9a)-(9b).

2.3 Fundamental Solutions

Applying Hankel integral transformation [21] with respect
to the variable r, the closed-form analytic fundamental
solutions of the long-term responses of ground
deformations and excess pore water pressure of the elastic

aquifer due to a point sink in an isotropic half space are
obtained as follows [11]:

u (r Z):M _L+ r _(3_4‘/) l"h
T l6r(1-v)Gk| R OR R, R,

R, R,R,
rz 2hrz }

+ +

RE R
) (1—ZV)aQ7f{ -

h z
- - P 3_4 —_ -
lor(1-v)Gk| R + V)R2 +R2

+—2hz(~z+h)} (10b)
R

Oy, (1 1
, = = —— 5 10
p(r2) Ak R R, (10¢)
where R, =./r’ +(z—h)2 , R, =yr? +(Z+h)2 and
R =\r?+(z+h)’ +z+h. The equations (10a)-(10c)

are the fundamental solutions of the poroelastic half space
due to a fluid point sink.

(10a)

u,(r,z)

3. Closed-form Solution Due to a Circularly
Symmetric Fluid Sink

Pumping Well

e mmmmm el oo

Poroelastic Half Space

Figure 2. Circularly symmetric fluid sink problem.

Figure 2 displays the circularly symmetric fluid sink
model. The closed-form solutions of the horizontal

displacement u, (r,z) , vertical displacement u_(r,z)
and excess pore fluid pressure p(r,z) due to a circularly

symmetric fluid sink with radius b at a depth / are derived
from equations (10a)-(10c).
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Pervious Surface

Circularly Symmetric
Fluid Sink of
Congtant Strength ¢
Poroelastic Half Space

Figure 3. Analysis of the circularly symmetric fluid sink
problem.

Figure 3 shows a unit area d4 located at a distance s
from the center of circularly symmetric fluid sink. The
pumping strength of this unit area is gd4 , and it is
approximated as a fluid point sink. The increment of
displacements u, , u, and excess pore fluid pressure p
due to the elementary circularly symmetric fluid sink are
obtained by substituting »—s for » and gsdsd6 for Q
in equations (10a)-(10c).  Thus, the induced total
increment of displacements and excess pore fluid pressure
of the aquifer are determined by the integration with
radial limits of s =0 to s =56 and circumferential limits
of =0 to 6 =27 . Using Mathematica to complete the
symbolic calculations, the closed-form solutions are given
as below:

1-2v)aqy,
) R:th [ 2 :z+h
(=) I () In
r—b,z—h L r=b,z+h

+2b(z+h)+rR, ., —(r+b)R_, .,

-2r(z+ h)lnM

zth,r=b |

_2(3_4V)h|:—b+(z+h)ln If’””’ +7ln Reonr }

r—b,z+h z+h,r—b

R R
+2{—b+(z+h)ln 22 4 rln "}

b R:,z+h
+4hz —In— , (11a)
erb‘z+h r—b,z+h

R..
_(Z_h)(Rr—b,z—h —R, . ,+rin IS = ]

r—b,z—h

R i
+[(3 —4v)h+ Z](R,-_b,m R, ., +rin R* 2+ )

r—b,z+h

2
+2_}12[R”+h_r(r—b)+(z+h) ] | .
z+h ’ R

r—b,z+h

qy
p(l", Z) = 2_1:[_Rr,z+h + Rr,z—h - Rr—b,z—h + Rr‘—b,z+h

R __R
—l"h'l :th I**b,z+h , (11C)
r,z+th—b,z—h
1 : _ 2 -2 . .2 .2
in which Rl.qj—\/z +J° ., R, =i+4i"+j" , and

Lj=r,r—b,z—h,z+h.
The ground surface horizontal and vertical
displacements are found when z=0:

NP+ +1

1-2 -
_(=)agy i) !
(7—5) +1+1

w(rh0) =g [P

VFT+1+1

+In , (12a)
(7—5)2 +14+7-b

()= 2
(7—5)2 +1+7-b

NP+ +7 ’

—-r'n

(12b)

where 7 =r/h and b =b/h. The solutions can be used

to test numerical models and the detailed numerical
simulations of the consolidation processes near the
circularly symmetric fluid sink.

4. Numerical Results

The normalized parameter of circularly symmetric fluid
sink with radius b to depth % ratio (b/h) is used to verify
the proposed solutions. The profiles of vertical and
horizontal displacements at the ground surface z =0 are

normalized by (1-2v)aqy h* /2Gk as shown in Figures

4 and 5, respectively. The results shown in Figures 4 and
5 indicate that the higher normalized parameter b/ can
induce larger displacements on the ground surface. The
values in Figure 4 are the ground surface horizontal
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displacement pointed outward from the axial symmetric
center near the circularly symmetric fluid sink, and the
negative value indicates that ground surface horizontal
displacement is directed toward the axial symmetric
center. Figures 4 and 5 also concluded that the elastic
ground surface deformations due to a circularly
symmetric fluid sink reached their extreme values near
the edge of circularly symmetric fluid sink, i.e., » equals b.
At distance away from the sink, the displacements
reduced at remote ground surface boundary.

u, (r,O)/[(l— 2v)aq}'fh2 /ZGk]

Normalized Horizontal Displacement,

Normalized Radius, /A

Figure 4. Normalized horizontal displacement profile at
the ground surface z = 0 due to circularly symmetric fluid
sink.

0.5 = b/l
1.0
1 15
2.0

2.5

3.0,

Normalized Settlement,
u, (r,O)/I:(l—21/)aq7’/,h2 /ZGk:I
w

5 3.5

o
IN)
-
o
®
=
o

Normalized Radius, #/A

Figure 5. Normalized settlement profile at the ground
surface z = 0 due to circularly symmetric fluid sink.

5. Conclusion

Based on the fundamental solutions due to a fluid point
sink, the analytical solutions of long-term horizontal
displacement, vertical displacement and excess pore fluid
pressure of a poroelastic half space subject to a circularly
symmetric fluid sink were obtained. The closed-form
solutions are derived by using Mathematica to complete
the symbolic calculations. The solutions provide valuable
information to test numerical models and simulations of
the groundwater withdrawal processes near the circularly
symmetric fluid sink. The results show:

1. The numerical results indicate that the larger
normalized circularly symmetric fluid sink radius b/
can induce larger displacements of the ground surface.

2. The long-term  poroelastic ground  surface
deformations due to a circularly symmetric fluid sink
reached their extreme values near the edge of fluid
sink, and the values reduced at remote ground surface
boundary.
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Nomenclature

b, Body forces (Pa/m)

b Normalized radius of the circularly
symmetric fluid sink, b = b/h
(Dimensionless)

B Skempton’s pore pressure coefficient
(Dimensionless)

dA Elementary area of the circularly symmetric
fluid sink (m”)

ds Elementary distance of the distance from the
center of circularly symmetric fluid sink ()

deo Elementary circumferential angle (radian)

G Shear modulus of the isotropic porous aquifer
(N/m?)

h Pumping depth of the sink point ()

k Permeability of the isotropic porous aquifer
(m/s)

p Excess pore water pressure (N/m®)

q Rate of fluid extracted from the saturated

porous aquifer per unit volume (s')
Pumping strength of the point sink (m’/s)

0
(r,@,z) Cylindrical coordinates system (m, radian, m)
7

Normalized radial variable, 7 = r/h

(Dimensionless)

R, ; Distance parameter, R, ; = Vit + 7 (m)

R Distance parameter, R, = /1> + (z— h)2 (m)

R, Distance parameter, R, =+/r> + (z +h)2 (m)

R: J Distance parameter, R: ;=1 FAfi° 4 j7 (m)

ﬁ; Distance parameter,
B =\r?+(z+h) +z+h (m)

S Distance from the center of circularly
symmetric fluid sink (m)

t Time variable (s)

u, Displacement components of the poroelastic
aquifer (m)

u,,u, Radial/axial displacement of the porous
aquifer (m)

v, Specific discharge velocity components (m/s)

o Biot’s coefficient of effective stress
(Dimensionless)
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Unit weight of pore fluid (N/m?)
Dirac delta function (m™)

Kronecker delta (Dimensionless)

Volume strain of the porous aquifer

(Dimensionless)

Strain components of the poroelastic medium

(Dimensionless)

Variation of fluid content per unit reference

volume (Dimensionless)

Poisson’s ratio of the isotropic porous strata

(Dimensionless)

Undrained Poisson’s ratio of the poroelastic

medium (Dimensionless)

Stress components of the porous strata (N/m?)
2 2

Differential operator, V> = 6—2 + 10 + 6—2

or’ ror oz

(1/m?)
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ABSTRACT

This paper presents the axisymmetric ground surface
displacements and excess pore water pressure caused by
impulsive point sink in a saturated isotropic poroelastic
half space. The formulations of the mathematical model
are based on Biot’s three-dimensional consolidation
theory of porous media. Closed-form solutions of the
transient consolidation deformation and excess pore water
pressure are derived by using the Laplace and Hankel
integral transforms. The consolidation affected by the
consolidation parameters are illustrated and discussed.
Results show that the maximum ground surface horizontal
displacement is around 38.5% of the maximum vertical
displacement for the pervious ground surface. The study
concludes that horizontal displacement is significant and
should be considered in prediction of the transient
consolidation deformations induced by impulsive
groundwater withdrawal.

KEY WORDS
Impulsive Point Sink, Consolidation Settlement, Closed-
form Solution, Half Space

1. Introduction

Large amounts of groundwater withdrawal can induce
land subsidence [1]. The stratum compact on itself when
the groundwater is withdrawn from the saturated aquifer
of the strata. As water pumps from an aquifer, the pore
water pressure is reduced in the withdrawal region. It
leads to increase in effective stress between the solid
skeleton and thus the subsidence of ground surface.

The coupled three-dimensional consolidation theory
introduced by Biot [2,3] is generally regarded as the
fundamental theory for modelling consolidation
settlement. The approach followed here is that of Rice
and Cleary [4] who have provided an elegant formulation
of Biot’s theory which is in terms of easily identifiable
quantities and material constants. Bear and Corapcioglu
[5,6] presented the modified Biot’s equations where the
pore fluid is treated as compressible while the solid
skeleton is assumed as incompressible. Based on Biot’s
theory modified by Bear and Corapcioglu [5,6], Booker

and Carter [7-10], Tarn and Lu [11] presented solutions of
subsidence by a point sink embedded in the saturated
elastic half space at a constant rate. Chen [12,13], Kanok-
Nukulchai and Chau [14] presented analytic solutions for
the steady-state responses of displacements and stresses in
a porous half space subject to a fluid point sink. Lu and
Lin [15,16] displayed transient displacements of the
pervious half space due to steady pumping rate [15] and
impulsive pumping [16]. The results presented by Hou et
al. [17] shown that ground horizontal displacement
occurred when groundwater withdrawal from an aquifer.

The present investigation is focused on the closed-
form solutions of an isotropic poroelastic half space due
to an impulsive point sink with compressible constituents
which still have not been derived in previous studies. In
this paper, the aquifer is modelled as a linearly elastic
medium with homogeneous isotropic properties. By
using Laplace and Hankel transforms, the half space
closed-form solutions of the transient displacements and
excess pore fluid pressure of the saturated aquifer due to
an impulsive point sink are obtained. The solutions can
be used to test numerical models and the detailed
numerical simulations of the consolidation settlement near
the impulsive point sink.

2. Mathematical Models

2.1 Basic Equations

The formulation of Biot’s equations is following that of
Rice and Cleary [4] who have provided an easily
identifiable quantities and material constants. Four basic
material constants are selected in the constitutive
equations: the shear modulus G, the drained Poisson’s
ratio v, the undrained Poisson’s ratio v, and Skempton’s
pore pressure coefficient B [18]. The physical ranges of
material constants B and v, are obviously 0< B <1 and

0<v<v, << [4], respectively. For the situation of

incompressible constituents, the poroelastic coefficients
B=1and v, =% . According to Rice and Cleary [4], the

reformulated constitutive relations can be expressed as
[19]:
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o,

ij »

(1a)

in which oy,
excess pore fluid pressure and solid strain components of
the poroelastic media. Note that o;; and p are here taken
as positive for tension. The parameter ¢ is the variation
of fluid content per unit reference volume of the aquifer.
The volumetric strain of the skeletal material is denoted
by ¢ and & =g, +&, +&5; O is the Kronecker delta.
The inversions of equations (1a) and (1b) can be shown to
take the form:

p and &; are the total stress components,

(v 3(n —v) .
G _E(U‘j 1+vo-kk5ij]+ZGB(l+v)(1+vu) Paj. (12%)

9(v, —v)(1-2v,) . 3(v, —v)
2GB?(1-2v)(1+v, ) B(1-2v)(1+v,)

e (1b%)

g:

The solid strain components &; and displacement

components u;, are governed by the linear kinematic
equation:

g5 =5 +uy)- @

The total stress components o; must satisfy the
equilibrium equations:

o;;+h =0, @)

where b, denote the body force components. The mass
balance for the fluid phase is denoted by:

o¢
—=+V,.+q=0, 4
FeAURL @

in which v, is the specific discharge velocity components;
and q is the rate of fluid extracted from the saturated

porous aquifer per unit volume by the sink. Assuming
that the pore fluid flow is governed by Darcy’s law, we
have

w=-"p, ©
Vs

in which k denotes the permeability of the porous aquifer
and y, is the unit weight of pore fluid.

The governing equations (1) to (5) can be combined
to yield various field equations for the solutions of
boundary value problems. Substituting (1a) into (3), (1b*)
and (5) into (4), respectively, then the equilibrium
equation (3) and mass balance equation (4) can be
expressed in terms of displacement components u, and

excess pore fluid pressure p as below:

G 2 ap

GViu, + ——a—+b =0, (6a)
1-2vaox  ox
9(v, —v)(1-2
_LVZ (Vu V)( Vu) - 6p +a%+q =0, (Gb)
Vs 2GB? (1-2v)(1+v,) ot ot

where o is known as Biot’s coefficient of effective stress
which can be defined as

3(v,—v)

B(1-2v)(1+v,) ")

a =

The above mathematical model is known as coupled
model of poroelasticity where the flow field is dependent
on the displacement field. The coupling term dg/6t in
equation (6b) is neglected in this paper.

Figure 1 presents a fluid point sink buried in a
saturated porous half space at a depth h. The impulsive
pumping strength at t = 0 is denoted as Q at the location

(O,h). Introducing the equilibrium equations for
axisymmetric poroelasticity problem with a vertical axis
of symmetry and neglect the effects of body forces b, ,
then equation (6a) is transformed to equations (8a) and
(8b). Moreover, assuming the flow field is independent
from the displacement field, then the mass balance

equation (6b) can be expressed as (8c). After doing so,
the uncoupled governing equations in axisymmetric

coordinates (r,z) are derived in terms of displacements

u; (i =r, z) and excess pore fluid pressure p as following:

G de .U op

GV, +—— G—L-a—=0, (8a)
1-2v or r or
eviu,+ 2 % P g (8b)
1-2v oz 0z
_va N 9(vu—v)(1—2vu) : op
Vi 2GB? (1-2v)(1+v,) o
Q
+——48(r)d(z-h)o(t)=0, 8c
SL5(r)a(z-n)a(t) (8)
2 2
where V? =a—2+li+a—2 is the Laplacian operator
or® ror oz
ou. u ou

and ¢=—-—+-"-+—= is the volumetric strain of the
or r oz
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poroelastic aquifer; &(x) is the Dirac delta function.
Equations (8a) to (8c) are the uncoupled basic field
equations with an impulsive point sink at a pumping
strength Q in which the fluid and solid are treated as
compressible constituents.

Permeable Surlace

~ @ Impulsive
3 l Powmnt Smlk

Saturated Elastic
Half Space
Figure 1. Impulsive point sink induced consolidation
deformation problem.

2.2 Boundary Conditions and Initial Conditions

Consider the half space surface as a traction-free
boundary for all times t>0. Hence, the mechanical
boundary conditions at z =0 are expressed as

z,(r.0t)=0and z,(r,0,t)=0. (9a)

An additional condition is provided by considering
the half space as pervious. The mathematical statement of
the hydraulic boundary condition at z =0 is given by

p(r,0,t)=0. (9b)

The boundary conditions at the far boundary z — o
due to the effect of an impulsive point sink must vanish at
any time. This can be written as

IZLT{Ur (r,z,t),u,(r,z,t), p(r,z,t)} ={0,0,0}. (9¢c)

Assuming no initial changes in displacements and
seepage of the aquifer, then the initial conditions at time

t =0" of the mathematical model are:
u,(r,z,01)=0, u,(r,z,0')=0and p(r,z,0')=0. (10)

The mathematical model in this study is based on the
governing equations (8a) to (8c), the corresponding
boundary conditions (9a) to (9c) and initial conditions
(10).

3. Analytic Solutions
3.1 Laplace and Hankel Transforms Solutions

Applying initial conditions in equation (10), the
governing partial differential equations (8a) to (8c) are
reduced to ordinary differential equations by performing
Laplace-Hankel transforms [20] with respect to the time
variable t and the radial coordinate r, respectively:

(j zng] (298 Lepoo, )
R T+ SN
ila e P iy

+225(z-n)=0, (11¢)

where & and s are Hankel and Laplace transform
parameters. The symbols 77 =(1-v)/(1-2v) and 0, , @
p are defined as

0, (z;¢8)= I:I: ru,(r,z,t)exp(-st)J, (&r)dtdr, (12a)
0,(z:&,s)= Iowjow ru,(r,z,t) exp(—st)J, (&r)dtdr, (12b)

p(z;&,8)= I:j: rp(r,z,t) exp(-st)J, (&r)dtdr, (12c)

in which J,(x) represents the first kind of Bessel

function of order a. The Laplace-Hankel inversions of
equations (12a) to (12c) are:

r Z t j j(l+|00
27ZI a-io

r Z t '[ -[a/-%-lw
27r|

r Z t I Ja+|00
27rl a—iwo

The general solutions of equations (11a) to (11c) are
obtained as

(z;£,5)e™J,(ér)dsds, (13a)
(z;&,5)e™ 3y (&r)dsd¢, (13b)

z;&,5)e ), (&r)dsdé. (13c)

0, (z;¢,5)=C,exp(&z)+C,zexp(&z)
+C,exp(—¢z)+C,zexp(—¢z)

+C, exp( /§2+EZJ+C6 exp(— §2+§z]
c c
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Qay;

87mGk[_geXp( §|Z h|)
ey §2+§7 exp(— /§2+i|z—h|j], (14a)
s c c

2n+11

UZ(Z;f,S):{—Cl+ =

]e p(¢z)-C,zexp(&z)

4
2n+11 _
+(C3+—2’7—1§C Jexp( £2)+C,zexp(—£z)

1 /§2+§C5 exp( /§2+EZJ

¢ c c
+l /§2+§C6 exp(— |2 +EZJ

¢ c c

_ Qay;
+8m]Gk[ exp( lz- h|)

—Eexp[— §2+i|z-h|ﬂ, (140)
S c
ﬁ(Z:fvs)=—2nG§§csexp(1/§2+ZZJ
—ZUGliceexp[— §z+izj
éc V" e
Q}’f ) , S
pp k,/g +2 exp( £ +E|z—h|], (14c)

2GB?(1-2v)(1+v, ) k
(v, —v)(1-2v,) 7,
the constants C,(i=1,2,--,6) are functions of the
transformed variables £ and s. These variables are
determined from the transformed boundary conditions.
The upper and lower signs in equation (14b) are for the
conditions of (z—h)>0 and (z—h) <0, respectively.
The constitutive relations (1) and linear kinematic
equation (2) for axisymmetric deformation, i.e.,
ou, u, ou,
&y = . Ep=— and g, = , are used to
or r oz
reformulate the half space boundary conditions in
equation (9a). After doing so, the Laplace-Hankel
transforms are applied to (9a) to (9c¢) with respect to the
time variable t and radial coordinate r, respectively.

The mechanical and hydraulic boundary conditions at
z=0 and z —> o of the transformed domains (z;g,s)

are derived as follows:

where the parameter c = and

da (0;¢&,
” a, ( §s)

& +(n-1)&0, (0;4,5)=0, (15a)

Bl%8) g, (0:2:9)=0, (o)

p(0;¢&,5)=0, (15¢)
!m{ﬂr(z;é,s),ﬁz(z;g,s),ﬁ(z;f,s)}z{o,o,o}, (15d)

where G, , G, and p follow the definitions shown in

equations (12a) to (12c). The symbol 7 =(1-v)/(1-2v).
The constants C,(i=12,---,6) of the general

solutions are determined by the transformed half space
boundary conditions at z=0 and z —» as shown in
equations (15a) to (15d). Finally, the desired quantities
u,, u, and p are obtained by applying appropriate
inverse Laplace-Hankel transformations [21,22].

The focus of the study is on the ground surface
horizontal displacement u, (r,0,t), settlement u, (r,0,t)

r

and excess pore fluid pressure p(r, z,t) of the strata due

to a point sink.  The transformed ground surface
displacements and excess pore fluid pressure of the strata
are derived from equations (14a) to (14c) with the
transformed boundary conditions (15a) to (15d), and they
are obtained as follows:
0, (0:,5) = Qay, (1-2v) ~Sexp(~zh)
277Gk s

+Eexp[— |2 +§hH, (16a)
s c

0105322

—Eexp[— &2 +§hﬂ, (16b)
s c
p(z:¢,5)= (jylf([ /§2+— exp[ §2+%|z—h|]
_ §2+§_ exp(_ /§2+§(z+h)J]_ (16¢)
c c

Applying the Laplace-Hankel inversion formulae (13a)
to (13c), equations (16a) to (16¢) lead to the following
transient ground surface displacements by letting z = 0
and the excess pore fluid pressure of strata as below:

0, (r,0,t) = Qay, (1-2v) : cr2 .
276k | (h+r)

ot _r?eon? 2 2
+j Ll R L R (L | L ROT
o 167 8r 8r
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u,(r,0,t)= Qay, (1_2‘/){ ch erf (\/h2 +r’ J

276k |(h*+1?) 24ct

ch 1 her?
- e |, 17b
h? +r? ~Jzrct } ( )

Qr, 1 - rz*(lgh)z . r2+(zc;h>2
(= U L

where 1_(x) is known as the modified Bessel function of

the first kind of order « ; and erf (x) denotes error

function. The instantaneous ground surface horizontal
and vertical displacements of the pervious half space at

t — 0" are obtained from equations (17a) and (17b) as
following:

cQay, (1—21/) r
27Gk  (h*+ rz)” ’

cQay, (l— 21/) h
27Gk  (h*+ rz)“ '

u,(r,0,0")= (18a)

u,(r.0,0")=

(18b)

The maximum ground surface horizontal
displacement u___ and vertical displacement u,__ of the

half space due to an impulsive point sink are derived from
equations (18a) and (18b) by letting r = h/ﬁzO.?O?h
and r =0, respectively, as below:

r max

b0 (WNE 0,0 )R L) g
1-2

uzmax :uz (01 010+):C(?C(}/f—(2‘/)1 (19b)
27Gkh

in which the critical value r:h/\/i is derived when
du, (r,0,0° )/dr is set equal to zero. Hence, the absolute

value of the displacement ratio u, ., /u, .. can be derived
from equations (19a) and (19b) as below:

23

9

r max

u

z max

x100% =

x100% = 38.5% . (20)

The above result shows the maximum ground surface
horizontal displacement is around 38.5% of the maximum
vertical displacement for the pervious ground surface due
to an impulsive point sink. Hou et al. [16] shown that
ground horizontal displacement occurred when pumping
from an aquifer.

4. Numerical results

The particular interest is the vertical displacement of
stratum at each stage of the consolidation process, and the
average consolidation ratio U is defined as:

_ Ground surface vertical displacement at time t
Maximum vertical displacement, u

U . (1)

zmax

For pervious half space, U can be derived as below:

3 2 2 2 2 h24r2
U= lerf et ) Ve SR o
(h2+r2) 24ct et

Figure 2 shows the average consolidation ratio U at
r/h=0, 1, 2 and 5 for the impulsive pumping. Note that
U initially decreases rapidly, and then the rate of vertical
displacement reduces gradually. Each final value of U

vanished for the saturated aquifer is treated as linear
elastic porous medium in this mathematical model.

/(%)

100 |

60 |

40 |

20 |

Percent Average Consolidation Ratio, U

Time Factor, et/

Figure 2. Average consolidation ratio U at r/h =0, 1,2
and 5 for impulsive pumping.

Normalized Radius, »/

Normalized Settlement, w.(r,0,0)/1 1.

Figure 3. Normalized vertical displacement profile at the
ground surface z =0 for impulsive pumping.
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0.4 0_= e’

Normalized Horizontal Displacement, w,(r,0,0)/11. pu.

Normalized Radius, r/

Figure 4. Normalized horizontal displacement profile at
the ground surface z =0 for impulsive pumping.
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Figure 5. Distribution of normalized excess pore water
pressures p(r, z,t)/[cQ;/f /87r“’kh3] .

The profiles of normalized vertical and horizontal
displacements at the ground surface z=0 are shown in
Figures 3 and 4, respectively. The results shown in
Figures 3 and 4 indicate that the ground surface
displacements due to impulsive pumping can reach its
extreme values initially, and then the displacements
decreases gradually. Figure 4 shows that the ground
surface has significant horizontal displacement, and the
maximum ground surface horizontal displacement is
around 38.5% of the maximum vertical displacement at
r/h ~0.707 for the impulsive pumping.
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From equation (17c), the profiles of normalized
excess pore water pressure p(r,z,t)/[chf /S;r“’khﬂ of
the pervious half space at four different dimensionless
time factors /ct/h* = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, 1.0, 1.1 and 1.2 are illustrated in Figures 5(a)-(l),
respectively. The changes in excess pore water pressure
have negative value p which is caused by suction of

groundwater withdrawal. It’s observed that the negative
excess pore water pressure increases to a wider region of
the aquifer initially and then gradually decreased. The
impulsive pumping induced negative excess pore water
pressure finally full dissipated. The elastic deformations
of the stratum due to groundwater extraction will fully
recover after the excess pore water pressure dissipated.

5. Conclusions

Closed-form solutions of the axisymmetric elastic
consolidation due to impulsive pumping from pervious
saturated elastic half space were obtained by using

Laplace and Hankel transformations. Ground surface

displacements and excess pore water pressure of the

aquifer were investigated. The results show:

1. The ground surface displacements due to impulsive
pumping reach its extreme values initially, and then
the displacements decrease gradually in this model.
Each final value of displacements vanished for the
saturated aquifer is treated as linear elastic porous
medium.

2. It is observed that the negative excess pore water
pressure increases to a wider region of the aquifer
initially and then gradually decreased. The impulsive
pumping induced negative excess pore water pressure
finally full dissipated.

3. The maximum ground surface horizontal displacement
is around 38.5% of the maximum vertical
displacement of the pervious half space at

r=h/\J2~0.707h . It concludes that horizontal

displacement must be properly considered for better
prediction of the transient consolidation deformations
induced by groundwater withdrawal.
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Nomenclature

b Body forces (Pa/m)

Skempton’s pore pressure coefficient
(Dimensionless)

2GB? (1-2v)(1+, )" k

c Parameter, ¢ = —
(v, —v)(1-2v,) 7,
(m%s)
erf (x) Error function (Dimensionless)

Shear modulus of the isotropic porous aquifer
(N/m?)

Impulsive pumping depth of the sink point
(m)

Modified Bessel function of the first kind of
order a (Dimensionless)

Bessel function of the first kind of order a
(Dimensionless)

Permeability of the isotropic porous aquifer
(m/s)

Excess pore water pressure (N/m?)
Laplace-Hankel transforms of p (Ns)

Rate of fluid extracted from the saturated
porous aquifer per unit volume (s™)
Impulsive pumping strength of the point sink
(m)

Cylindrical coordinates system (m, radian, m)
Laplace transform parameter (s™)

Time variable (s)

Displacement components of the poroelastic
aquifer (m)

Radial/axial displacement of the porous
aquifer (m)

Laplace-Hankel transforms of u, /u, (m’)

Maximum ground surface horizontal
displacement (m)

Maximum ground surface settlement (m)

Specific discharge velocity components (m/s)

Biot’s coefficient of effective stress
(Dimensionless)

Unit weight of pore fluid (N/m®)
Dirac delta function (m™)

Kronecker delta (Dimensionless)

Volume strain of the porous aquifer
(Dimensionless)

Strain components of the poroelastic medium
(Dimensionless)

Variation of fluid content per unit reference
volume (Dimensionless)

Mechanical parameter, 7 =(1-v)/(1-2v)

(Dimensionless)

Poisson’s ratio of the isotropic porous strata
(Dimensionless)

Undrained Poisson’s ratio of the poroelastic
medium (Dimensionless)

Hankel transform parameter (m™)

Stress components of the porous strata (N/m?)
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ABSTRACT

The investigation presents closed-form solutions of the
long-term consolidation settlement and excess pore fluid
pressure of a saturated elastic aquifer subjected to a fluid
line sink. The governing equations of the mathematical
model are based on the Biot’s theory of poroelasticity.
The aquifer is modeled as a homogeneous elastic half
space of porous medium, and the total stresses of the
aquifer obey Newton’s second law and Hooke’s law.
Besides, the mass conservation and Darcy’s law are
introduced to formulate the governing equations of pore
fluid flow. The software Mathematica is used to complete
the symbolic calculations, and the closed-form solutions
are derived.

KEY WORDS
Fluid Line Sink, Closed-form Solution, Half Space,
Porous Medium.

1. Introduction

Groundwater withdrawal can induce land subsidence [1].
The stratum compact on itself when groundwater is
withdrawn from the saturated aquifer of the strata. The
pore water pressure is reduced in the withdrawal region as
water pumped from an aquifer. It leads to increase in
effective stress between the solid skeleton and thus the
subsidence of ground surface occurred.

Biot’s coupled three-dimensional consolidation
theory [2,3] is generally regarded as the fundamental
theory for modelling consolidation settlement.  The
approach followed Rice and Cleary [4] who provided an
elegant formulation of Biot’s theory in terms of easily
identifiable quantities and material constants. Bear and
Corapcioglu [5,6] presented the modified Biot’s equations
where the pore fluid was treated as compressible and the
solid skeleton was assumed incompressible. Based on
Biot’s theory modified by Bear and Corapcioglu [5,6],
Booker and Carter [7-10], Tarn and Lu [11] presented
solutions of subsidence by a point sink embedded in the
saturated elastic half space at a constant rate. Chen
[12,13], Kanok-Nukulchai and Chau [14] presented
analytic solutions for the steady-state responses of

displacements and stresses in a porous half space subject
to a fluid point sink. Lu and Lin [15,16] displayed
transient displacements of the pervious half space due to
steady pumping rate [15] and impulsive pumping [16].
Hou et al. [17] presented that the ground horizontal
displacement occurred as groundwater withdrawn from an
aquifer.

The present investigation is focused on the closed-
form solutions of an isotropic poroelastic half space due
to a fluid line sink which still have not been derived in
previous studies. In this study, the aquifer is modelled as
a linearly elastic medium with homogeneous isotropic
properties.

Based on the derived fundamental solutions, the
software Mathematica is used to complete the symbolic
calculations and obtain the closed-form solutions for the
aquifer subjected to a fluid line sink. The solutions can be
used to develop numerical models and the detailed
numerical simulations of the consolidation settlement near
the fluid line sink.

2. Modelling of Poroelastic Point Sink
Problem

2.1 Basic Governing Equations

The formulation of Biot’s equations follows that of Rice
and Cleary [4] who provided an easily identifiable
quantities and material constants. According to Rice and
Cleary [4], the reformulated constitutive relations are
expressed as [19]:

o; =2Gg; + 2Gv £6; — 3 —v)
' ' 1-2v Y B(1-2v)(1+v,)

PS; (1a)

2(1_ 2
__2GB(1+VU)8+ZGB (1-2v)(1+v,) c (1)
3(1—21/“) 9(1/u —V)(l—ZVu)
in which o, p and &; are the total stress components,

excess pore fluid pressure and solid strain components of
the poroelastic media, respectively. Note that positive oy
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and p represent tension. The parameter ¢ is variation of

fluid content per unit reference volume of the aquifer.
The volumetric strain of the skeletal material is denoted

by ¢ and =g, +¢&, +&5; 0 is the Kronecker delta.

Four basic material constants are selected in the
constitutive equations (1a) and (1b) including the shear
modulus G, the drained Poisson’s ratio v, the undrained

Poisson’s ratio v, and Skempton’s pore pressure
coefficient B [18]. The physical ranges of material
constants B and v, are0<B<1and 0<v <y, <% [4],

respectively. For the situation of incompressible

constituents, the poroelastic coefficients B=1 and

=1
Vy=1%.

The inversions of equations (1a) and (1b) are shown
as the form:

g—-:i(a-—LO' 5"j+ o) pg;, (1a%)
TU2GUTT 14y Y ) 2GB(L4v)(14y,)

9(v, —v)(1-2 3(v, -
o Seem) )

2GB? (1-2v)(1+v, ) B(l-2v)(l+v,)
The solid strain components &; and displacement

components u, are governed by the linear kinematic
equation:

gy =5 (U +uj)- ©)

The total stress components o; must satisfy the
equilibrium equations:

o;;+b =0, ®)

where b, denote the body force components. The mass
balance for the fluid phase is denoted by:

og
—+vVv..+q=0, 4
Vit *

in which v, is the specific discharge velocity components;
the quantity q is the rate of fluid extracted from the

saturated porous aquifer per unit volume by the sink. The
pore fluid flow is governed by Darcy’s law as below:

Yi :_L P ©)
Vi

in which k and y, denotes the permeability of the porous

aquifer and the unit weight of pore fluid, respectively.

The governing equations (1) to (5) are combined to
derive various field equations for their corresponding
solutions of boundary value problems. The equilibrium

equation (3) and mass balance equation (4) are expressed
in terms of displacement components u;, and excess pore

fluid pressure p by substituting (1a) into (3), (1b*) and (5)
into (4) as below [20]:

GV°y, + G 6—'g—az@+bi =0, (6a)
1-2vox,  ox
(v, —v)(1-2
—LVZ + (n —v)(1-2v,) > P +aa_g+q =0, (6b)
7 2GB? (L-2v)(L+v,) ot ot

where o is known as Biot’s coefficient of effective stress
which can be defined as

— 3(Vu _V)
TR+, @)

The above mathematical model is known as coupled
model of poroelasticity where the flow field is dependent
on the displacement field. The long-term consolidation
settlement model is preferred in this investigation, and the
time dependent differentiation terms in equation (6b) are
neglected.

Figure 1 presents a fluid point sink buried in a
saturated porous elastic half space at a depth d. The
constant pumping strength is denoted as Q at the location

(0,d) . Introducing the equilibrium equations for

axisymmetric poroelasticity model with a vertical axis of
symmetry and neglect the effects of body forces b,, the

equation (6a) are transformed to equations (8a) and (8b).
Moreover, the mass balance equation (6b) are expressed
as (8c) by assuming the long-term consolidation
settlement. After doing so, the governing equations in

axially symmetric coordinates (r, z) are derived in terms

of displacements ui(izr,z) and excess pore fluid
pressure p as following:

oviu, + 2 % gl P _g (8a)
1-2v or r or
Gviu, +-C 9 P g (8b)
1-2v oz oz
~ K v+ s5(r)s(z—d) =0, (89)
Vs 2ar
2 2
where the differential operator V2:8—2+1£+a—2
or® ror oz
. . ou, u, 0u, .
and solid strain components & =—-+-—"+ ; 6(x) is
o r oz

the Dirac delta function. Equations (8a) to (8c) are the
basic field equations of long-term consolidation
settlement with a point sink at a constant pumping rate, in
which the fluid and solid are treated as compressible
constituents.
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Figure 1. Fluid point sink problem.
2.2 Boundary Conditions

The ground surface of the half space is treated as a
pervious and traction-free boundary for all times t>0.
Therefore, the mathematical statements of the ground
surface boundary z=0 in axisymmetric coordinates

(r,z) are:
o,(r,0)=0, 0,,(r,0)=0,and p(r,0)=0. (9a)

The displacements and excess pore fluid pressure at
the remote boundary z — « due to the effect of a point
sink must be nil at any time. These conditions are written
as

lim{u, (r,2),u,(r,z),p(r,z)} ={0,0,0} . (9b)

w0

This mathematical model is based on the governing
equations (8a)-(8c) and the corresponding boundary
conditions (9a)-(9b).

2.3 Fundamental Solutions

Applying Hankel integral transformation [21] with respect
to the variable r, the closed-form analytic fundamental
solutions of the long-term responses of ground
deformations and excess pore water pressure of the elastic
aquifer due to a point sink in an isotropic half space are
obtained as follows [11]:

1-2

ur(r,z):(vﬂ SRS S Td
16z(l-v)Gk| R, R; R,R;

rz  2rd

— ~ 10a
Taaa o
1-2 -

uz(r,z)z( Vs _z_d +~i+(3—4v)~i
16z(l-v)Gk| R, R, R,

N 2zd g:d)} (10b)

p(r,z):—m(%—ﬁil, (10c)

where R, =4r?+(z-df , R,=4r’+(z+d}’ and
R;=yr?+(z+d) +z+d. The equations (10a)-(10c)

are the fundamental solutions of the poroelastic half space
due to a fluid point sink.

3. Closed-form Solution Due to a Fluid Line
Sink

e Pervious Surface

Figure 2. Fluid line sink problem.

Figure 2 displays the fluid line sink model. The
closed-form solutions of the horizontal displacement

u,(r,z), vertical displacement u, (r,z) and excess pore

fluid pressure p(r,z) due to a fluid line sink are derived
from equations (10a)-(10c).

Let the length ds located at a depth s from the ground
surface and considering q is the pumping strength per unit
length. The pumping strength of this unit length is qds
and it is approximated as a fluid point sink. The
increment of displacements u, , u, and excess pore fluid
pressure p due to the elementary fluid line sink are
obtained by substituting s for d and qds for Q in
equations (10a)-(10c). Thus, the induced total increment
of displacements and excess pore fluid pressure of the
aquifer are determined by the integration with depth limits
of s=h—L to s=h. Using Mathematica to complete
the symbolic calculations, the closed-form solutions are
given as below:
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ur(r,z) _ s {h3+zh2+(r2—222)h—22(r2+22) _

8mGnk TRz4h
2[(h—L)3+z(h—L)2+(T2—222)(h—L)—22(r2+22)]_I_
TRz4h-L
2 — 2_(z— *
:[ln\/r +(z—h+L)?—(z—h+L) + (1 _ Zv)lnthh_L] +
2 JrZ+(z-h)2—(z-h) Rz+h

3(RZ+h?)+4hz 3[R§+(h—L)2]+4(h—L)z}

(11a)

Rz+h Rz+h-L

qavf
16mGnk

uz(T: Z) = {Rz—h — Ry p + 4v (Rz+h—L -

R, 3(RZ+h?2)+4hz
R,in + zln =221 )+ (RE+h7)+ahz _
Rzth-L Rz+h

3[R§+(h—L)2]+4(h—L)z}
Rz+h-L

(11b)

p(r,z) = TL{n(R}y, + Rj_y) + In =2tk (11c)

z—h-L

in which p=@0-v)/Q-2v) ; R =vri+i®
R =R +i,and i=z,z-h,z+h,z—h+L,z+h-L.

The maximum settlement can be found from equation
(11b) by letting L = h:

_qvrL(1-2v)
Uzmax = ™76k

(12)

4. Numerical Results

The normalized parameter of fluid line sink is used to
verify the proposed solutions. The profile of settlement at
the ground surface z =0 is normalized by the maximum
%as shown in Figure 3. The results
shown in Figure 3 indicate that the higher normalized
parameter L/h can induce larger settlement on the ground
surface. Figure 3 also concluded that the elastic ground
surface deformations due to a fluid line sink reached their
extreme values near r equals 0. At distance away from
the line sink, the displacements reduced at remote ground
surface boundary.

settlement

Normalized Radivs, » 7

Mormalized Settl

Figure 3. Normalized settlement profile at the ground
surface z = 0 due to fluid line sink.

CONCLUSION

Based on the fundamental solutions due to a fluid point
sink, the closed-form solutions of long-term horizontal
displacement, vertical displacement and excess pore fluid
pressure of a poroelastic half space subject to a fluid line
sink were obtained. The solutions are derived by using
Mathematica to complete the symbolic calculations. The
solutions provide valuable information to test numerical
models and simulations of the groundwater withdrawal
processes near the fluid line sink. The results show:

1. The numerical results indicate that the larger
normalized fluid line sink L/h can induce larger
displacements of the ground surface.

2. The long-term  poroelastic ground  surface
deformations due to a fluid line sink reached their
extreme values near the fluid line sink, and the values
reduced at remote ground surface boundary.
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Nomenclature

b, Body forces (Pa/m)

B Skempton’s pore pressure coefficient
(Dimensionless)

d Pumping depth of the sink point (m)

ds Elementary legth of the fluid line sink (m)

G Shear modulus of the isotropic porous aquifer
(N/m?)

h Pumping depth of the line sink (m)
Permeability of the isotropic porous aquifer
(m/s)

Y Excess pore water pressure (N/m?)

q Rate of fluid extracted from the saturated
porous aquifer per unit length (m?/s)

Q Pumping strength of the point sink (m%s)

(r,6,z) Cylindrical coordinates system (m, radian, m)

R Distance parameter, R, =vr® +i® (m)

R, Distance parameter, R, =+/r?+(z—d)’ (m)
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N

v =

L
N

Distance parameter, R, =+/r>+(z+d)’ (m)

Distance parameter, R =R, +i (m)
Distance parameter,

Ry =yr?+(z+d)f +z+d (m)

Depth of the fluid line sink (m)

Time variable (s)

Displacement components of the poroelastic
aquifer (m)

Radial/axial displacement of the porous
aquifer (m)

Specific discharge velocity components (m/s)
Biot’s coefficient of effective stress
(Dimensionless)

Unit weight of pore fluid (N/m®)

Dirac delta function (m™)

Kronecker delta (Dimensionless)

Volume strain of the porous aquifer
(Dimensionless)

Strain components of the poroelastic medium
(Dimensionless)

Variation of fluid content per unit reference
volume (Dimensionless)

Poisson’s ratio of the isotropic porous strata
(Dimensionless)

Undrained Poisson’s ratio of the poroelastic

medium (Dimensionless)
Stress components of the porous strata (N/m?)
2 2
Differential operator, V> :6_2+1i+6_2
or® ror oz

(1/m?)
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ABSTRACT

This paper presents the ground surface displacements
induced by periodic groundwater withdrawal in a
homogeneous isotropic poroelastic half space. The
formulation of the mathematical model is based on Biot’s
consolidation theory of porous media. Using Laplace-
Hankel integral transforms, the closed-form solutions of
the transient consolidation deformations are derived. The
solutions can be used to evaluate numerical models and
numerical simulations of the poroelastic consolidation of
a saturated porous aquifer due to periodic groundwater
withdrawal.

KEY WORDS
Periodic Pumping, Point Sink, Closed-form Solution, Half
Space

1. Introduction

Land subsidence due to groundwater withdrawal is a well-
known phenomenon in environmental engineering [1].
The pore water pressure is reduced in the withdrawal
region as groundwater pumped from an aquifer. It leads
to increase in the effective stress between the soil
particles and consolidation settlement of ground surface.
The  three-dimensional  consolidation  theory
presented by Biot [2,3] is generally regarded as the
fundamental theory for modelling land subsidence. Based
on Biot’s theory, Booker and Carter [4-7], Chen [8,9],
Kanok-Nukulchai and Chau [10] presented analytical
solutions for the transient or steady-state responses of
displacements and stresses in a half space subjected to a
point sink of constant pumping rate. Tarn and Lu [11]
presented solutions of subsidence by a point sink
embedded in a saturated poroelastic half space. The
pumping rate is treated as constant in the studies of
Booker and Carter [4-7], Chen [8,9], Kanok-Nukulchai
and Chau [10], Tarn and Lu [11], etc. Tarn and Lu [11]
found that groundwater withdrawal from an impervious
half space can induce a larger amount of consolidation

settlement than a pervious one.  The anisotropic
permeability was proved to have significant effects on the
land subsidence due to fluid extraction. Lu and Lin [12-
14] displayed transient displacements of the pervious half
space due to steady pumping rate [12,13] and impulsive
pumping [14]. Nevertheless, both transient closed-form
solutions of the consolidation settlement due to periodic
pumping and the consolidation effects due to periodic
pumping were not obtained in the above studies.

In this paper, the aquifer is modeled as an isotropic
saturated pervious elastic half space. Transient ground
surface displacements due to a periodic point sink are
obtained by using Laplace-Hankel transforms. Results
are useful to evaluate numerical models and numerical
simulations of the poroelastic consolidation of a saturated
porous aquifer due to periodic groundwater withdrawal.

2. Mathematical Model

2.1 Basic Equations

Figure 1 presents a saturated aquifer due to a periodic
point sink at a depth h. The aquifer is considered as a
homogeneous isotropic porous medium with a vertical
axis of symmetry. The constitutive behaviours of the
saturated elastic aquifer for linear axisymmetric
deformation in the cylindrical coordinates (r,6,z) are

expressed as

T = ZGgij +

2Gv
> &6 = oy, @

where z;, &; and ¢ denote the incremental total stress

components, strain components and volumetric strain of
the porous aquifer, respectively. The symbol o; is

known as Kronecker delta. The excess pore water
pressure p is positive for compression. The elastic

constants v and G are Poisson’s ratio and shear modulus
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of the skeletal materials, respectively. The strains ¢; and

displacement components u, are given by the linear law

&ij Z%(“i,i +“j,i) .

Pervious Surface

eriodic

P
Point Sink

N Saturated Poroelastic
Z Half Space

Figure 1. Periodic point sink induced consolidation
deformation problem.

The total stress components z; satisfy the
equilibrium equations:

z’ij,j+bi =0, )

where b, denote the components of body force vector.
From equation Sl) and strain-displacement relationships
& =3\U;; +u;;) , the equilibrium equation (2) for
axially symmetric problem without body forces b, can be
expressed in terms of displacements u;, and excess pore
water pressure p in cylindrical coordinates (r,H,z) as
follows:

Gy, + o 0 gl P _g (3a)
1-2v or r< or

Gvau, +—0 0 _P_g (3b)
1-2var &

where V2 =0%/or? +1/rd/or +0%/6z* is known as the

Laplacian operator.

The model is decoupled with the flow field sought
independently from the displacement field. The third
relation between u, , u, and p is obtained from the

conservation of mass as:

V~[n(vw—vs)]+nﬂ%+q=0, (4)

where n is the porosity of the porous aquifer. The
variables v,, and v, are velocities of pore water and solid
matrix, respectively.  The symbol S denotes the
compressibility of pore water, and q is the rate of water

extracted from the saturated porous aquifer per unit
volume. Assuming that Darcy’s law governs the pore
water flow, we have

k (op. op.
nv, -v. )=—| —i_+—1_ |, 5
(v —v.) yw[arr ~ ] (5)

in which k denotes the permeability of the saturated
aquifer and y,, is the unit weight of pore water.

Let us consider a periodic point sink of constant
strength Q, as t >0 located at point (0,h). Substituting
(5) into (4) yields

k

__v2p+nﬂ%+%5(r)6(z—h)f(t)=0, (6)

Yw

in which the symbol &(x) denotes the Dirac delta
function. The pumping rate is represented by a periodic
function f(t) as shown in Figure 2, and f(t) is
expressed as below:

1, 0<t<T
f(t)=4" and f(t+T)=f(t),t>0, (7
(){0, Td£t<Tan (t+T)=1(1) 0

where the pumping period T is reasonable to be assumed
as 24 hours for daily agricultural irrigation. The symbol
T, is the duration of groundwater withdrawal in one

period T.

- T, =T, i~ T,

- T - - ;-" 3 - }“ -
Figure 2. The pumping rate is represented by a periodic
function f (t) with pumping period T.

Equations (3a), (3b) and (6) constitute the basic
governing equations of the axially symmetric time-
dependent linear elastic responses of a saturated porous
aquifer subjected to periodic pumping.

2.2 Boundary Conditions and Initial Conditions
Considering the half space surface as a traction-free

boundary for all times t >0, the mechanical boundary
conditions at z =0 are expressed as
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7,(r,0,t)=0 and 7,,(r,0,t)=0. (8a)

An additional condition is provided by considering
the half space as permeable. The mathematical statement
of the hydraulic boundary condition at z =0 is given as

p(r,0,t)=0. (8b)

The boundary conditions at the remote boundary
Z —> o due to the effect of a periodic point sink must
vanish at any time. These boundary conditions are
written as

lim{u, (r,z,t),u,(r,z,t), p(r,z,t)} ={0,0,0} . (8¢)

Z—0

Assuming no initial changes in displacements and

seepage of the aquifer, the initial conditions at time t =0"
of the mathematical model are:

ur(r,z,O*):O, uz(r,z,O*)zo and p(r,z,O*)zo. 9)

3. Analytic Solutions
3.1 Laplace-Hankel Transforms Solutions

The initial conditions of equation (9), the governing
equations (3a), (3b) and (6) are reduced to a set of
ordinary differential equations by performing appropriate
Laplace-Hankel transforms [15] with respect to the time
variable t and the radial coordinate r as below:

d? di, 1,

(d 7218 J —(2n-1)¢ . +a§p—0, (10a)
240 d® ). 1dp

(2n-1)¢& - [2ndz £ ]uz ol (10b)

L P _
(dz é}p+nﬁsp+2ﬂ5(z h)F(s)=0, (10c)

where & and s are the Hankel and Laplace transform
parameters, respectively. The symbol 7 is defined as

n=0-v)/a-2v).

F(s) are denoted as:

Expressions for 4, , U,, p and

U, (z:&.8)= J.:J.: ru, (r,z,t)e™J, (&r)dtdr, (11a)
0,(z¢,8)= j:j: ru, (r,z,t)e"Jy(&r)dtdr (11b)
p(z;é,5)= I:J.: rp(r,z,t)e 3, (&r)dtdr, (11c)

-sTy
$)=[ [ "t ey, (er)dr=—"%"_ (110)

s(l—e’ST) ’

in which J, (x) represents the first kind of Bessel

function of order v .
The general solutions of equations (10a) to (10c) are
obtained as below:

0 =(A+Az)exp(Ez)+ (A +Az)exp(—£2)

/2 S /2 ]
+A5exp[ I +Ez]+Aﬁexp[— & +EZ]

QOJ/W c
* BmoK s F (s)[—exp(—§|z ~h)

+&, | &2 +57 exp(q/éz +§|z—h|J] : (12a)
c c

:(_A& 277+11A2 Azzjexp( £2)

/2 S
—2 § +— Asexp( & +EZJ

(Az +1 = 2n+1 ; A + AAZJexp( £1)

1/, s P
+E ¢ +EA5exp(— /5 +EZ]

_ Qv C
+87;”7ﬁgF(5)[exp(—§|z—h|)

—exp(— &2 +£|z—h|ﬂ, (12b)
C

p=-27G12| Aexp| &7 +2

P=2n1G oo Ao c

el )

—%F(S)w/fhriilexp &2 fz-hl | @20
47k c ¢ ,

where the symbol ¢ is defined as c=k/ngy, . The

fer)

N

constants A (i=1,2,---,6) are functions of the
transformed variables £ and s which are determined

from the transformed mechanical and hydraulic boundary
conditions. The upper and lower signs in equation (12b)
are for the conditions of (z—h)>0 and (z—h)<0,

respectively.
3.2 Transformed Boundary Conditions

The Laplace-Hankel transforms are applied to equations
(8a)-(8c), and the transformed mechanical and hydraulic
boundary conditions at z=0 and z—>o are listed
below:
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W—éﬂz (0;¢,5)=0, (13a)
vgﬁr(O;é,s)+(l—v)%=o, (13b)
p(0;¢,5)=0, (13c)

lim{d, (;£,5).0, (z:£,s), p(z:£,5)} ={0,0,0},  (13d)
where U, , U, and p follow the definitions of equations
(11a) to (11c).

The constants A (i=12,---,6) of the general

solutions are determined by the transformed half space
boundary conditions at z=0 and the remote boundary

conditions at z —» . Finally, the desired quantities u,,
u, and p are obtained by applying appropriate inverse

Laplace-Hankel transformations with the help of a
mathematical handbook [16].

3.3 Expressions for Ground Surface Displacements

The focus of this study is on the horizontal and vertical
displacements of the ground surface, z=0, due to a
periodic point sink. The transformed ground surface

displacements 0, (0;¢,s) and 0, (0;£,s) of the pervious

half space are derived from equations (12a) and (12b) as
follows:

Q (1-2v)y, cF(s)
G

+ exp( ﬂ (142)

Q(L-2v)7, cF(s)
ok s L)

_exp[— |£2 +§hﬂ. (14b)

Applying the Laplace-Hankel inversion formulae
lead to the following displacements:

0, (0:6,5) =

0, (0;&,8)=

a+iwo

u,(r,z,t)= j &, (z;£,5)J,(&r)e”déds, (15a)

27Z'I a-io

a+io

u,(r,z,t)= J. £, (z;£,5)d, (£r)e”déds. (15b)

27Z‘I a—in

Using equations (15a)-(15b), the desired transient
horizontal ~ displacement  u,(r,0,t) and  vertical
displacement uz(r,o,t) of the pervious ground surface due

to a periodic point sink can be derived from equations
(14a)-(14b) as follows:

0 (o) e ro(ct)
T 2(2n-YaGk | (v )"

o hrd(ct— 2 2
+It ro(c T)exp[—r +2hJ

0 167° 8r
r2 r2
X{IOEEJ—I{EHM}, (16a)
. (r,0,8) = —— ho (ct)

2(2n-1)7Gk | (1?4 12)"”

h 1 r? +h?
+——————8exp| — dr, 16b
rz + |’12 T p( 4z J:| T} ( )

where 1, (x) is known as the modified Bessel function of
the first kind of order « . The complementary error
function is denoted as erfc(x) . The functions ®(ct)
and W(ct) in equations (16a) and (16b) are defined as
below:

cT 2 {sin 2n7z(ch)sin 2nz (ct)

~on’z cT cT
2nz(CT, 2nz(ct
+[1-cos 7(CTs) 1-cos 7(e) . (17a)
cT cT

_2nz( cT) 2nz(ct)
+Znﬂ{ cos— —

{1—005 Zn”(CT" )}sin ZM(Ct)} , (17b)
cT cT

in which d(D(t)/dt:‘{’(t). Solutions of consolidation

deformations due to groundwater withdrawal at a constant
strength are derived from equations (16a) and (16b) by
taking an appropriate limit T, =T and using L’Hospital’s
rule. Carrying out the procedure, we obtain

Qo7 ctr
0,t)= -
(109232 -1) 0k (r +h2)"

o (ct—7)hr r? +2h?
+Io 167° eXp(_ 8r J
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{. [;}_.{ﬁﬂm},

Qo7 exp _ri+h?
2(2n-1)7Gk | r +h2 4ct

[
T
T

r? +h? J} (18b)

where erf (x) is known as the error function and
erf (x) =1-erfc(x).

The long-term ground surface horizontal and vertical
displacements are found when t—oo . Let
u” =limu, (r,0,t) and u;” =limu, (r,0,t), then we have

u,(r,0,t)=

2\/r +h2

the closed-form solutions of long-term ground surface
displacements.

For periodic pumping:

07 = —lim—— % hr (1 (19)
L o427 -1) Gk fr2 2 (\/r2+h2 +h)

t—>°°4(277 1) 7Gk \/r +h?

For pumping at a constant strength:

U= Qo7 hr ' (20a)
4(2n7-1)7Gk Jy? £ p? (\/r2 Th h)
P h (20b)

4(2n-1)7Gk \Jr? s pn?

The maximum long-term ground surface horizontal
displacement and vertical displacement of the half space
due to a point fluid sink at a constant strength are derived
from equations (20a) and (20b) by letting

r=yph=1272h and r=0 , respectively.  Here,
¢=(1+\/§)/2z1.618 is known as the golden ratio
[17,18]. For the point fluid sink at a constant strength
problem, the maximum horizontal displacement u, ..,

and vertical displacement u of the ground surface
derived from equations (20a) and (20b) are

=ur(\/$h,0,oo):

Z max

_ Qoyw (1_ ZV)

1
—_—, 21a
4zGk  ¢*° (212)

Qorw(1-2v)

21b
477Gk (210)

zmax = U; (O'O'OO):

The maximum ground surface horizontal displacement is
approximately 30% of the maximum ground surface
vertical displacement, i.e.,

u

r max

u

:%:0.3003 at r=,/gh. (22)

Z max

The value r=./gh is derived when du, (r,0,c0)/dr is

equal to zero. It is noticed from equations (21a) and (21b)
that the maximum long-term ground surface horizontal
displacement and settlement for pumping at a constant
strength is not directly dependent on the pumping depth h
of the point sink.

4. Numerical Results

The long-term elastic consolidation subjected to pumping
at a constant strength is numerically analyzed. The
profiles of normalized horizontal and vertical
displacements at the ground surface z=0 for isotropic
saturated half space are shown in Figures 3 and 4,
respectively. The ground surface reveals significant
horizontal displacement. The example in Figure 3 shows
that the maximum ground surface horizontal displacement
is about 30% of the maximum ground settlement at

r=./ph~1.272h.

—
[N

<
<]
|

o
o

o
i

0 | | J |
0 Jp 2 4 6 8 10

Normalized Radius, r/'h

Nommalized Horizontal Displacement, | w,(r,0,90) 5= o |

Figure 3. Normalized horizontal displacement profile at
the ground surface z = 0 for pumping at a constant
strength.
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Figure 4 shows that the ground surface vertical
displacement is around 61.8% of the maximum ground

surface vertical displacement at radial variable r = /gh,

where the maximum ground surface horizontal
displacement occurred.

Normalized Radius, 1/h

10 8 6 4 20p 0
\ \ I I 0
Z
02 2
g
0.4 7
=
0.6 Z
¢ 2
08 =
1 &
12

Figure 4. Normalized settlement profile at the ground
surface z = 0 for pumping at a constant strength.

5. Conclusions

Closed-form solutions of the elastic consolidation due to
periodic pumping from pervious saturated elastic half
space were obtained by wusing Laplace-Hankel
transformations.  Transient ground surface horizontal
displacement and settlement of the half space aquifer
were investigated. The solutions can be used to evaluate
numerical models and numerical simulations of the elastic
consolidation settlement near the sink point. The results
show:

1. The maximum long-term ground surface horizontal
displacement and vertical displacement of the half
space due to a point fluid sink at a constant strength are
derived from equations (20a) and (20b) by letting
r :ﬂh ~1.272h and r =0, respectively.

2. It is noticed from equations (21a) and (21b) that the
maximum long-term ground surface horizontal
displacement and settlement are independent on the
pumping depth h of the point sink at a constant
strength for the isotropic elastic half space.
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Nomenclature

b, Body forces (Pa/m)

c Parameter, ¢ = k/ngy,, (m?s)

erf (x) Error function (Dimensionless)

erfc(x) Complementary error function

(Dimensionless)

f(t) Periodic function (Dimensionless)

F(s) Laplace-Hankel transforms of f (t) (m’s)

G Shear modulus of the isotropic porous
aquifer (N/m?)

h Depth of the periodic sink point (m)

i, Unit vector in r/z direction
(Dimensionless)

I, (x) Modified Bessel function of the first kind

of order « (Dimensionless)

Bessel function of the first kind of order
a (Dimensionless)

k Permeability of the isotropic porous
aquifer (m/s)

n Porosity of the porous aquifer
(Dimensionless)

p Excess pore water pressure (N/m?)

el

Q
(r.0,2)

— 1~ w»

Laplace-Hankel transforms of p (Ns)
Rate of water extracted from the saturated
porous aquifer per unit volume (1/s)
Strength of the periodic pumping (m®/s)
Cylindrical coordinates system (m, radian,
m

Le)lplace transform parameter (s™)

Time variable (s)

Pumping period (s)

Duration of groundwater withdrawal in one
period T (s)

Radial/axial displacement of the porous
aquifer (m)

Laplace-Hankel transforms of u, /u, (m°s)
Maximum long-term ground surface
horizontal/vertical displacement (m)

Long-term ground surface
horizontal/vertical displacement (m)
Velocity of pore water/solid matrix (m/s)
Compressibility of pore water (m?/N)
Unit weight of groundwater (N/m®)
Dirac delta function (m™)

Kronecker delta (Dimensionless)
Volume strain of the porous aquifer
(Dimensionless)

Strain components of the porous aquifer
(Dimensionless)

Parameter, n =(1-v)/(1-2v)
(Dimensionless)

Poisson’s ratio of the isotropic porous
aquifer (Dimensionless)

Hankel transform parameter (m™)

Total stress components of the porous
aquifer (N/m?)

Golden ratio, ¢ ~1.6180339887...
(Dimensionless)
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4 Darcy %5 (2.5) ~ £(2.22) ~ ;£ (2.23)18 » 4 T g N (2.6) R A F AT
5\:(2-7)ﬁ v Pz L 4\‘ Z_ Zéﬂ‘ ﬁi}\‘ v 4T F* .
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3(vy—v)

A+ Wieri + Wik = 50 qyyPi Tfi=0 (2.24)
_k 3(vy—v) . 9(vy—v)(1-2vy) o
y; Pk G v Yok T s (2 (142 q=0 (2.25)

Bear £ Verruijt »+ 1987 & 51 % 3 T -k jn e jrLgl » € 3722 4f Biot = MR %L
BAR b R R BRI R 0 R RAEARAR 5 ¥ - I e d o AT HR A
AT ETE S A R S A ST S S T
N EEY 2o

S IUHORETORGSM X2 ORGSR R GO LRATB KRG M

v}‘l;'lj%\ullf)\ apj;ﬁ‘i }gif*ffo'fr"ﬁ]%“’/"?ﬁ‘mfs@ﬁl’k’%_r/ﬁf E/%’E’;

V- (npy3,) + 22 = 0 (2.26)
V- [(1=n)py, ] + % =0 (2.27)
# v
Py P = FARL HEIH KL B
B D, = TR W2 BB R Bk -

PR ER > £(Q226) 2Q2NTF G L
V- [0y — )] + = +nf L =0 (2.28)

Wi
e

# o WAL REE BRIk R L GRA S
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p=—2w (2.29)

EIL M -keand 2 & Darcy T & ¢

S k
n(y, —vs) = —;Vp (2.30)
H e
k=7 kki%& ik

Yw = M kZHEERBE =p,g gt it i o

#-Darcy % E355(2.30)1% » 55(2.28) » VMR w5 Al B 5
_ kg2, 4 02 or_
vap+at+nﬁ6t 0 (2.31)

£ 31 % Terzaghi enj »c g4 BLAMK SV A L e 2457 5 ¢

Tij = 2 + Aed;; +p6 (2.32)
NP LI R R RBBEE LY 262 Sk 0 NQ232)TH A TS At o T
Tijj =0 d B EH PSR RN Q232)F &4 T 238 > 7 F A F ot I

KR S Rl AR AR

uV?u; + u(2n —1e; —p; =0 (2.33)

1-

cFQINE AR R e S 4 R A

AR R B R SO RS R R TR B = AR R R4 E
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22 AL 1 s 2 oy N . N 2 — A 44 o v A v
SCE K TReAR MR R 2 0 R AT A Y o s kR B S -

=

F(1991)#7A7 o 2 BRdd oK 9751 Sehz R

v

ez LRRBFIAT B R E
TRk R R AR kTS A A R E KT B AR YRR ]

WEARY 0 F 3% [ BLIE N 0 Mathematica Wl § 2 MAE A EE o & A0

\‘“

BB IR PP M B RERNRH SR8

4,n

32

0 167



R S s

:

3.1

-\jn\,

(>

A BRI E R

‘-l\}

(199 e g S R FA MY > B AR A
P RS IR KR SN e AR L R U K R R 2 4
B2 A AR AR B 2 MR R R B AR i - H AT

SRR KRR AR P 6 R A L R RIS ¥ B e SR fe S A

AESES Y = LN EE NS ) L LAt kRN
205w R SER P AT 2 Bk e kil de e Ao £ Tk

TR AL R MR R INHCRRZ R R e R o

3.2 B KR A2 B & jid

3.2.1 & 1%
A2 A g ek M BGK S

- S HERE R LT SEN e e AT A R k2 B F L BRI
PRERR s EepahE kaEl o e ol lk o

S EEF M RGBT R AR RBE L ERINEG

2R R N e
stk

%
Wok#ind < Darcy 2 2@ FE v w k3 B3 R REAN S

Ji

}

— 2, 4, =3
CREEE S EsL LR R

E ARSI ENCRLE VL Frar
B KA R kil O R R KPR F K 2R TR R

KEARE o T Ak S IFEFE 2 R ET

I=q

CHHRE R S - L EUB R AWR S - BN 2 kT G o FRORTIIRE AR

BOCHAN A2 4 E T f R E F R TR E o 6 - TR M g kK eh

33

[J 168



e AR Ol ey R E R UR R R R S T Y TR R

2

AT EF AR IR 2B RER 2SS FERF AT pE LG TR ER
FFSY CRBREY S REEELERE P w7 R A F RS Sk
frm s ¥ebow TR AFRG A SRR R ARAR JE N O
FIASRBRI P 2T 2R ke ARG BRI G B o

S B A ARRRGFERNT R EEY R B g AR LR @S
RS EERR o
A B R HOR G - RN LR kT IR e K FEBRE R

A

FlhY Ry B2 L P RBPITILT 5 0 T Al E BN X3 Y gER R RO S

FREAER =) BT SEKER BE AR ERT A S

0'15(r,0) = G |22 4 2200 — g (3.1)

, _2G [ouy(r,0) | 0up(r,0) 2G(1-v)G duy(r,0)
0'2(1,0) = 1—21/[ or + or 1-2v 9z 0 (3.1b)
(3.1c)

p(r,0) =0

Bepr0) =07+ jaff oy L3R @&+ L8 HOKRT 2 2ATER

FHELERBIRS BB R ZFE TR PELAERFET AL

, Ouy(r,0) | ug(r,0)
0'1y(r,0) = G [P0 4 2220 — g (3.2a)
’ _2G [ouy(r,0) ou,(r,0) 2G(1-v)G u,(r,0)
g zz(r' 0) = 1—2v[ or + or ] + 1-2v 9z 0 (32b)
op(r,0) _
9z 0 (32C)

T e (3200 D = 02 1 qe g &4 4P 0 8 Darcy R Q = KiA R4

. op(r.2) , ., DI " v _ op(r,z . ) . PN,
Bi= —%fﬂfr’Darcy TENTEE L Q= —kK p(;z A - T H R FAER R
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EQRMF . Fli S ik 3% 2R EIE R fF AL BT 7 5 R 0 ¢ Darcy

-~ . op(r,z R .. s . v v o L
R 2 D ) A hd F kR R GTIHRR LR R R AT

AP BE N T ER A
SRR P AR BEH LAY 222V - A2 G5rURE ALz o o)
EAEEREE T ok ARG - YRS R AR URR R T FERET Y

Jo 539 X oK

lim,_,{u,(r,z)} - 0 (3.3a)
lim, . {u,(r,z)} - 0 (3.3b)
lim,_,{p(r,z)} - 0 (3.3¢)

LA kw32 A4 4~ A5 AR KRR B 5t T ok i o
Baedd R{S €A - o iv* ot P (v JRgildct B2 = AR BN % » A
I ASF R DRI RTIA g KR RT B E oA KR E
A2 TN e o T F i m M - R TE® 8 4 g F] KR Y 2 FE IR
A TR € ARG s A B A 0 IR T ARE PR BITKGR % o

A2 Bk HERRE B o i B e 7k L4 F kB E R e s
FwAnl - 4o (Bl0)E X (3.20)%77m » A% A A 3RS B RE 2 E KA AHFR o
M AR LGRS B AT AR AV E RNE kA B SRR £
Mok AR A RERFORES g AV R R EF AR
F¥Prr A BN A TSR R etk T R RS 2R T R

ra
34
P4
4=
D
I
=
¥
W
o

*

P}

7

3.2.2 gL -k 2 R RE2 2
PR E &R (1991) #7734 2 B K R AP A fRiE T 2 3t 0 WY
J& AR 2 fhil 40K B RIRTAET 1 5 SR AL 0 17 RO A ARk s

((2)% 7 = AR BIL A2 &= A2 > #7472 8L -k 1Y 404 B] 3.1 577 o
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dem itk o FoR A G B F LA BRI TR S Aot F ARG

GRS Gk Bl KT R KT s L E A RO R R T A U A

o
u (7‘ Z) _ Qvw [_ r ro 2n+1  hr rz 2hrz
r\T, 16mGnk Ry Ry 21-1R@Ry  Rw@R(e R(3a)
u (T‘ _ Qvw | z-h  2n+1 h z n 2hz(z+h)
zZ\ - 16mGnk R(l) 2n-1 R(a) R(a) Rga)

G = %-kA&z ¥ 4 f#(Shear Modulus) ;

v = {p >+t (Poisson Ratio) ;

ko= 5ok k2B

R(l): re + (Z - h)Z ;
Rip=yr2+ (z—h)*+|z—h|;
Ray=Jr*+(z+hm)?;

36
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Rip=Jrt+(z+h)?+z+h-

B AL PG RN  PA g7 k4 REBILTIENER S F et Rl

kAR R G R 2 KT e s LB E AR R RRET AR AT

T & -

o - . 2n+1 hr 2hrz
,Z) = ——|——+ — — t(—4n+1 ] 3.52
ur(r,2) 161IG7]k[ Ru)  R{y 21-1R(R(y (=4 )R(a)R(a) Rla) (8:58
_ Qvw [ z-h  2n+1 _z_ | 2hz(z+h) . 1-1Zth
U, (r,2) = 167t671k[ R() t - 1R(g) Ry T D Rea) * Réa +AnsinhT ] (3:50)
- _ w1t 1
p(r2) = =i [Ru) * R(a) o0

Hoo g IR & Sl LY 255 (34a)~(B4C)p e o 14 F T Bhaw K R AE 2 A

ME T OATE A2 S AF AR 3.2 1 m SRR R AT A

i vious Surface
/—Perwousllmper ous C

Bl 3.1 2h- KR 37 & B
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e Pervious/Impervious Surfac

Bl 3.2 kKR T 3R

3.3 B 4K A2 }3’741

SAE AR 329 2 FOR A X AR KB BRI P LR T ALY B A
BedschE B (AP R k2 g ) M k2R 5 q(HEm mfsm)~# 418
ok E 2 BEdL s Pl qds AR E B k2 3R Q (H i im¥s) s ApE B ok
FR D DB AHIRRKERRERLS » TR SRR T SR 3
¥7iE 42 € & * Mathematica # 5 #5885 it e (=~ X o

HE RAURRORE R S Lo A58 (3.4a)~(3.4c) ~ %(3.5a)~(3.5C) 0 #-H P 2 fhEE
QB 5 qds- ¥Uch e 5 502 Ryy={/r2+ (z—5)2 R{y=/r2 + (z = 5)?+|z—s

R(a)Z‘/T'2+(Z+S)2 o At s A EFH Y 2 RS ﬁf*[h-L,h]%%]iéﬁlﬁA\ , WP S

B AU ok TR Az e R KT A s B B AT KR 0 dord TS

~

_qyw__ r 2n+1 ST rz 2srz
u,(r,z) = -t — + — + ds 3.6a
r( ) l6mGnk fh L( R(1) R(a) 2n-1 R(a)R(a) R(a)R(a) R(Sa)) ( )
_qyw__ _z=s 217+1 s,z 2sz(z+s)
uZ(r' Z) 16mGnk ( R(l) 21} 1 R(a) P R(a) T R(3a) )dS (36b)
= _Dw L
p(rz) =~ [ G T ds (3.6¢)
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H 9
Riy=y1% + (z — )% ;

Rip= mﬂz —s|;
Rw=/TT ¥ G5
Rz‘a)=m +(z+5s)-

79 (3.6a)~(3.6C) it {7 ARAF A 2. 5 % ho T Aon

ur(r, Z) _ _Dw {h3+Zh2+(r2—222)h—22(r2+22) _ 2[(h—L)3+Z(h—L)2+(r2—222)(h—L)—22(r2+22)] +

8mGnk TRz+h TRz4h-L

*

[ [rZ+(z—h+L)2—(z—h+L) (- 2v)lnR;+”‘L] +3(R§+h2)+4hz_

Jr2+(z—h)2—(z—h) Ryih Rz+h
2 —1)2 -
3[RZ+(h—L)?]+4(h L)z} (3.7a)
Rz4h-L
(r,2) == {R,  — Ry o+ 40 Ry — Ry + zln—ezn) 4 @D a0
uz\r,z) = 16mGnk z=h z=h+E VA Fzth-L < nR;+h—L Rz+h
2 —1)2 -
3[RZ+(h—L)?]+4(h L)z} (3.7b)
Rzih-L
p(r Z) — q}’w {ln(Rz+h % RZ h) + lTl z+h L} (37C)

z h-L

RN
Ri=vVr?’+i?+i=z~z4+h~z—h-~z+h—L-z—h+1L;
Ri=Ri+i'i=z+h-z+h—-L-
LR THIE SRR 2 32 B AR ¢

EY BB S A BRI RISUR KT R R KT g E e ok

CEEY LR

ur(r, Z) _ _Dw {h3+Zh2+(r2—222)h—22(r2+22) _ 2[(h—L)3+Z(h—L)2+(r2—222)(h—L)—22(r2+22)] +

8mGnk TRz+h TRz+h-L
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r|, Jri+@-h+1)2-(z-h+L) _ R;+h_L] 3(R+h*)+4hz
2[ln N +(1-2v)In R + Rorn

3[R§+(h—L)2]+4(h—L)z}
Rz4h-L

(3.83)

3(RZ+h?)+4hz
Rz+n

qV R*
uZ(rl Z) = 1671'2/111( {Rz—h - RZ—h+L + 4v (Rz+h—L - Rz+h + zln R*i:hL> +
Z+h—

3[R§+(h—L)2]+4(h—L)z} (3.8b)

Rzih-L

p(r,2) = 2 In(R; 4y * R;_p) — In Rouna) (3.8¢)

z h-L

Rooorm LR SRRy R 3284k -

»

34%\1/ 7\' iﬁg

341 Bhp KR REZ B Rt L8 2

_—

A A g K FEBIE TR X et Fe ARG SRR Rl

Bt LR EBE AR AHEMEE > Tr =03z =0 =F b o d 5%(34b)r

%\’ ﬁh’y‘ ,i_’f:é_ ;ﬁré‘:‘lﬂuzmax:‘%‘ :

Qyw(1-2v)
Uy max = Uz(0,0) = % (3.9)

5

dRAEE B AR LTI PHBAREEN LR Q F AT G kRSB
Bk RiprivE L0 SR .
FARY A2 2ERFR B A5 A TE BB A AR o
e

X (3.5b)7F Arp & B4

Uy max = lim,_ou ,(r,0) = lim =%~ Qw | 172V Ginh-— 1(—) (3.10)

r—0 4nGk ’1+()2
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He oim 8 & S LY 2322338k -

»

342 By KR REZ B A X KT =8

d N(Bha)i(BEa)F s F Y BB A KT ERREF T Y RAY 248 A
BBz =0 2 P2 2 BB WY BHEEE £ S B RS L Sk At A2
BARKTEHBOPEREEARE o Fl 2R A RTEBFA 02 A5 57 &EFHH
2B ARTEHFSEE T T e A KT =B R 2 Plcr (Tis > RiSHE K
AR GF AW FRE ARSI EHBFLTEER 2 BT AR 0 T

2or= JOhM o g3 ¥ R h A RT A o @ il Az A X kT B R Uy gy

Q (1-2v) 1
Ur max = ur(\/_h 0) = V‘Zr:Gk L ¢25 (3.11)
B2 f AR S A KT f R s B A BT A D

1++v5 1 \/
¢ = > = J1+¢= 1+11+11 = |1+ J1+v1++v1+ (3.12)
1
1+=

343 SUEF KA Z A b x £ B =
EY R A LSRR PARH KRR A2 BT d £ AETh)Y L &

Hor =04E I 0 B R ol T A

u, (r,0) = L2 T pz — 2 (h = L)7| (3.13)

FALEY 2 Rz =0 TV E N AL ERFRT > SN RTIIRZ B A
B S %—__ﬁ_ =4 g—uzmax (L=h) .
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w(1-2v) wl(1-2v)
Uz max 1=y = Uz(0,0) = =2 [h — |h — L[] = 2= (3.14)

Fr ARG E R AR KPR 2 LE =BT d £ 5(38b)7 2 %

Ber =040 -

w,(r,0) = 2 2y [r2 ¥ (h = L)% — 2072 + hZ + sinh 12 4+ (L = h)sinh~1 222
T T

4Gk

(3.15)
PAHP 2 gz =0> TVHENE LA HE L P FREFRT > SR RT3k 2 B

E N R Uz max (L=h) .

Uy max (L=h) = Uz(0,0) = lim, o D [Zv,/rz + (h — L)% — 2vVr2 + h? + sinh™ 1h

(1 = Wysinh™ 2| (3.16)
F(3.13)~(316)¢ AP LE A FMPIL LAREFEI2 R
3.4.4 Ffedd KRR AEZ B A B KT A

d 342 §aFtar e b ARG B ORE A B OREIRT 2 AR T 2 hfE 'y 4p

P 5450372~ (38a)" 2L E Ak ¥Hz=0F

_ _arw(1-2v) [L2h-L)  hVr2+h? | (h-L){r2+(h-L)? VrZ+hZ+h
u,(r,0) = p—— - —+ - + rin N (e T
(3.17)
NP LSRR A SRS T AP E 328k c BA T 342 Fh 2

EPF 2B A LT EFd EE W AKX RTIREHBE ATT L RE LB KT 2
BEFACE2ZAIRIF EAFSF AR A RTEBES 2 2 R K 4 KT

A 0 MGV (7)) 2 T (FHA  REEMA BEEF o KA HAGLINR A KA
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BB B SRR I R G FS B kI Rz A AR T
A - MO FER T L E SHE § A B N e R R TR pt - R 2 BT

FESF AT YA o

3.5 %

“\*—-

.
Kl

AR E RN R R AT A AR A W R £ L RE A Bk A
P R KT R AR R R EAR RO £ R0 B ¢ RN R 2 2 ook B R
SEGKR KA > AT 2 R e FE kATl de g K B R T s AR Tt

MokBRgLE, Pig- HIENTIIRZ b LB A THAE - RS kT =8

=k

2 4

5:%1

4

(a1 ’—%’:"f——’_‘qi_éréﬁz-xﬁl ‘H}x f‘%ﬁ'{ fig/w"}’?

7 ]
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L 47

H

=
s
\\\Xr
il

4.1 =

-\jn‘,

LS Fi skl s P 25w v N2 B8 %
BB P A FHERE 2 BT & T RR] FID R T AT H e A
TR 2 ek & g %%} VS S ?’E—?—?ﬁ’fﬁﬁﬁﬁiéfi%i;%ﬁ@ﬁ_,
e A ERR SRR IE KSR 2 SRS A AR AN F e dEE
PR EAGRR KR AT R A RS R kT B R a R KA R E

R Y L

o
o

A B FR A KTELE B I AT A ARG S RER
2 B % 573P€’f’—i€—uzmaxé‘ # F]=x “’ﬁ%j}f&_ o Bhid K %EQ%\KA\‘E?]@%%E 3}‘;"; é}}%—%

(Booker f- Carter » 1986) ¢ 2_ ] # 4p 02 » 77 ¢ &2 T’?}EJ(7 AR SR AVETE SV v

CAFLEAFL R LREF MR ZARE AL /I S kB 45 25
S KAE R Fl o A F AR EREET o B A E A TREE € FAUER

d 44185 A2 W A R 2 B2 e RS L 0151 052 F
P S BR BA 4T B AR Y B A P vERA B E B 5 01540.240.25-0.340.35 -
0.4~ 0.45 ~ 0.4999 % ~ fEfiw » 4ol 2.4 2 bk 2 » 2 4 @4> H2 Eh 565 2

T PR ERLGI0 2R s AWEKE RS Y Fant BL/hG L 0150 AF AT

% 41 23z 4pt # R (Das > 2008)

3 B A
#r £4#) (Loose Sand) 0.2~0.4
P % % #)(Medium Dense Sand) 0.25~0.4
' T % #)(Dense Sand) 0.3~0.45
Ry # #)(Silty Sand) 0.2~04
#j % 7% 7 (Sand and Gravel) 0.15~0.35
44
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# 4.2 ALd 2 fpit #2 R (% 4o > 2000)
Iyt tats

#4k 4 (Soft Clay) 0.15~0.25
? &%k 2 (Medium Clay) 0.2~0.5

£|

42 %t X @ vt 2 Bh3 KR RER 3

4218 235 S KR aki Roril k2 B 2438 8

AEARPBS 2 2R HHBER kIR # 4 (220) E BB S
LB BT LB B TRGE W R A > R AL SRR
B ITHAR Uy gy » & FIRC AR 5 P #ed 5 (34b) T E 2 AL E A

1l ;;E"*’]:;\ Lo F o d ‘\‘(39)"'\-" b %1‘3—%{#& }\H“’: B4 /’LFF’E Uz max =

Qw=2v) | g s, woE
4Gk

Uy(1,0) _ uy(r,0) 1
Uz max of Pervious Half Space - u,(0,0) B (r)2+1

&< I * Mathematica frA8iE (TG W > w i »FF 2 k2 » FHEk > 78D
B4l d Bl4lv e, HEEp-Rorsldea A xL8 2 F 4 b Ar= 04t i
fhiz ¥ b oo

422 3 2 HR 5 5K F B R R RT3l R2 B AR 28
AHAER S Z R 2R HmBR R AR AR T o d $Z R 287

Wik A SRR L B kS P S KA BER P T N K A KT B2 2

FIT - Bt o AE A E A B RS B B R Uy ey b R FI

bl S AN EFS 2 m A KT BT AL

45
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<

u,(r,0) _up(r,0) _ hr _ n (4 2)

Uy, max Of Pervious Half Space  u,(0,0) Vr2+h2(Vr2+h2+h) (T)2+1< (%)2_'_1_'_1)

h

%51 * Mathematica $ic88:& (7 2D g Bl > *71F % % 4-B 4.2 #7771 o o B 4.2 & 3.4.2
G et e B B K0TSR B A oA KT g 3ty = \[Qh = 1.272henie B b 0 2

/I Z\ﬁh" J\ll"' ;lﬂ ‘]1&’\,l Z\ﬁx’\/u‘f«—rg‘m 03 |—— o ¥ 0 45 ’ﬂ ‘\(311)4‘[’" %%\

i =R A T SR E ] 2= U T A Gl 5 "—urmax—ur(\/_h 0)_ %#

\\ﬂ«

8233 FHHR L F G KRR KRB AL 2R
4o 420 B A3 AL > BE LR S B KB R P2 B T R Uy gy b

& F ek BF 5 A H NBEh)E Mk AL LS g FY T E

u,(r,0) _ uz(r,0) 1 _ ¥ sinh‘l
Uy max Of Pervious Half Space  u,(0,0) (1)2+1 1-2v

(4.3)

=18 -

£ 51 * Mathematica g %8 :& 17 2D g B> ¥t 2 K3 & 2 fp v va w] 5 0.150.2 ~
0.25~0.3~0.35~0.4~0.45~0.4999 > #3452 % 4r®) 4.3~4.10 771 - d ] 4.3~4.10 *— »
VAR S P R AT AR e A TRAE € AR S X Fv =0.4999( TrxiT 0.5) >
B A4 riR2 25 ke AR 2 mIEE g 0 B RFIV I Aty e R A
FOAP VR AP RA PR R IRS B A THAE c A NN 2
i #3 B Y Ry = 049990 med B 43 B § 2ok 2 v vie) (v =0.15)
TR EAERLI RS LERAE N RTIIRZE A MIER Y SR AL R 2EK
HREH6 R X d B4A9m Faokkiprtv= 0452 B A HER LR 2 B
WhPEE S kT RepB A MIER Q3 W 2L 2 28 AR P43 B 7
Fokkzfptrtd v= 01538 2 v= 045 pF 5 BER kA5l et laE R4 T % o o

AT B g{;;;;ﬁhggﬂﬁgii R N A 7k é} ghfp Pt 2o kR FVIRE =
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HEER R AT I R LAtk ARy R R -

B 411 B3 L4555 k82 E KR > gk oril Renk £t RaE 2 iR
B d Bl 411 400 (1)F Sk ERT BRI R AR g 0 BT §

Lo WS P SRS R ok gl ded 2 f AR iEI RS o R RA 2}

Mol B A S o kR THAR €A o (B AP AR S s kSRR B £

(s
IRy
%

A=

NS ER NI R A L Y R R R

43 % 5 1L g U 2 SR K AT
4318 £ HE: S KEFREFSRRIRTIIR2Z AL =8

AE ARG Y R 2P 0 HmE kT IR2k A (2=0) TE =H o W
Sl% @ F= b aprg P U KRR LEREFER B 2RI EERT 2
B X T AR Uy max (Loh) & B FIR AR o BF Rd N BTh) s A 2 A

A L T o Ht gt iR

L (r0) B r 2 r 2 L 2
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Normalized Radius, r/h
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