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計畫中文摘要計畫中文摘要計畫中文摘要計畫中文摘要：：：： 

 

關鍵詞關鍵詞關鍵詞關鍵詞：：：：蛋白質功能與交互作用，HMM 模型，序列與結構排列。 

     

蛋白質體學被認為是後基因時代非常重要的領域，然而在生物實驗室中，蛋白質比基

因更難處理，生物資訊研究者的任務在分析已知蛋白質資料，用演算法及智識庫的技

術，來預測未知蛋白質的特性，這個研究成果可節省生物實驗室巨大的時間、人力、

金錢。 

    在中華大學生物資訊實驗室中，我們已成功地完成 2D 及 3D 結構預測，在這個計

劃，我們利用自創的預測 2D 結構的 HMM 模型，來預測蛋白質的功能及交互作用〈有

關 4D 結構〉。這個模型可以產生整體的機率，此機率結合氨基酸碼出現在 2D 元件機

率，也結合下一氨基酸碼之轉換機率。這種方法稱為序列及結構排列法。 

    蛋白質被分成十二種功能，我們的序列及結構排列法，可用來預測蛋白質功能，

也可預測未知蛋白質位於表面的子序列，是否會與交互蛋白質智識庫中之子序列產生

交互作用，然後再用智識庫統計之能量，找出所有交互作用的子序列對，和子序列對

的交互排列。 
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計畫英文摘要計畫英文摘要計畫英文摘要計畫英文摘要：：：： 
 

Keywords: Protein function and interaction, HMM, sequence-structure alignment. 

 

Proteomics is considered to be a very important field in post-genome era. However 

protein is much difficult to handle than gene in biological laboratory. Bioinformatics 

researcher’s responsibility is to analyze known protein data, and use algorithms and 

knowledge base technology to predict unknown protein’s characteristics. This research 

result can save tremendous time, manpower and money for biological laboratory. 

     In the bioinformatics laboratory of Chung-Hua University, we have successfully 

developed our approaches to predict 2D and 3D protein structure. In this project, we are 

trying to predict protein function and interaction (relating 4D structure) basing on our 

HMM which is created to predict protein 2D structure. This model will generate an overall 

probability which combines not only the probability of amino acid code appearing in a 

particular 2D component, also their transition probability to next code. This method is 

called sequence-structure alignment approach. 

 All proteins are categorized as 12 functions and sequence-structure alignment 

approach is used to predict protein function. This approach can also be applied to predict if 

query protein’s surface subsequence can be interactive with any subsequences in protein 

interacting library. Then knowledge base statistical energy is used to identify all interacting 

subsequence pairs and the alignment of interacting subsequence pair.



 1 

(三三三三))))報告內容報告內容報告內容報告內容：：：：    

 

1. Preface 

Protein-protein interactions play an important role in predicting protein function. 

Identification of protein-protein interaction sites and detection of specific amino acid 

residues that participate in protein interactions is an important problem ranging from 

rational drug design to analysis of metabolic and signal transduction networks. 

Experimental proteomics projects have already resulted in complete ‘interactomes’. 

While such efforts yield a catalog of interacting proteins, experimental detection of 

residues in protein-protein interaction surfaces must come from determination of the 

structure of protein-protein complexes. However, determination of protein-complex 

structures using X-ray and NMR methods lags far behind the number of known 

protein sequences. Hence, there is a need for the development of reliable 

computational methods for identifying protein-protein interaction residues. 

Many cellular events involve the formation of protein–protein complexes. 

Elucidation of the structural details of these complexes will undoubtedly contribute to 

our understanding of their functional properties, and thus is a major goal of structural 

biology. However, only a small fraction of experimentally determined structures are of 

protein–protein complexes. Therefore, it is of substantial interest to develop 

computational docking methods that, given the structures of the individual component 

proteins, are able to assemble them into the complex in an accurate and reliable way. 

Today, new genomes are constantly increasing. It is only possible to assign 

function to 40% of all protein sequences based on sequence similarity. There is a great 

need for protein function prediction methods. If a protein sequence is not similar to 

any other known protein, it is reasonable to expect that proteins with related function 

will have similar properties. 

 

2. Research purpose 

The main purpose of this research is to predict the interactions and functions of 

proteins. A HMM model which is related to 1D sequence and secondary states is built 

to predict protein interaction and protein function. The result of this research can be 

used to extend gene network databases. These databases can be further applied for 

medical diagnosis, drug discovery and biological researches. 

  

3. Previous Efforts 

Based on different characteristics of known protein-protein interaction sites, 

several methods have been proposed for predicting interface residues using a 
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combination of protein sequence and structural information. For example, based on 

their observation that proline residues occur frequently near interfaces, Kini and Evans 

[1] predicted potential protein-protein interaction sites by detecting the presence of 

‘‘proline brackets.’’ Jones and Thornton [2][3] successfully predicted interfaces in a set 

of 59 structures using a scoring function based on six parameters: solvation potential, 

residues interface propensity, hydrophobicity, planarity, protrusion, and accessible 

surface area. Gallet et al. [4] identified interacting residues using an analysis of 

sequence hydrophobicity based on a method previously developed by Eisenberg et al. [5] 

for detecting membrane and surface segments of proteins. Lu et al. [6] have developed 

statistical potentials for interfaces and used them in a structure-based multimeric 

threading algorithm to assign quaternary structures and predict protein interaction 

partners for proteins in the yeast genome. 

  Several groups have used neural networks to predict protein-protein interaction 

sites. Zhou and Shan [7] and Fariselli et al. [8] have independently used neural 

network algorithms to predict whether or not a residue is located in an interaction site 

using the spatial neighbors of the target residues as input, and achieved accuracy of 

70% and 73%, respectively. Ofran and Rost [9] have successfully predicted 

protein-protein interaction sites using a neural network method based on their 

observations that the majority of protein-protein interaction residues are clustered on a 

sequence and that the protein-protein interfaces differ from the rest of the protein 

surface in residue composition. 

There are a number of methods to predict protein function, such as: 1. Pairwise 

sequence similarity methods [10, 11, 12, 13, 14]. 2. Iterative search methods among 

multiple sequences [15,16]. 3. Super family database methods [17, 18]. 4. Alignment 

based methods using functional links [19, 20]. 5. Predicting protein function via 

structure [21, 22]. 6. Neural network using protein feature [23]. In [24], Jenson had 

developed 17 protein features from sequence or secondary structure. Many physical, 

chemical or biological characteristics are involved to compute these features. Then 

neural network is trained to recognize specific property of these features. Our HMM 

statistic model is relatively simple to gene ontology [25]. This model has considered 

the alignment corresponding relationships between sequence and secondary structure. 

For orphan protein which has similar property and dissimilar sequence, the 

propagation possibilities of HMM can recognize such property and provide better 

prediction. 

 

4. Research Methods 

Our research includes two parts: interaction and docking. We acquired all 

protein data files from Protein Data Bank (http://www.rcsb.org/pdb/Welcome.do). All 
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the files are about protein primary structures and second structures. And we download 

protein interaction dataset from Yan’s website (http:// www.cs.iastate.edu /~yan330 

/p-p /p- p.htm ). We create a database to store these data records. 

 

Figure 1. HMM Model of Our Approach. 

  We train our statistic model in Figure1 using the database. After training, we also 

test the statistic model. The statistic model achieved 71% accuracy (complicated 

model) and 80% accuracy (easy model). The statistic model can predict which 

residues participate in protein-protein interaction when you input a protein sequence. 

  The second step is about docking. After predicting protein interaction site, 

interactions between proteins become critical in biology. With the advent of genome 

and proteome projects, there is much interest in predicting the structures of 

protein-protein complexes. We use genetic algorithm to modify FTDock. Then we 

displace MultiDock by our statistic model and cooperate RPDock to be fitness 

function [26].  

The Gene Ontology (GO) Annotation project at European Bioinformatics 

Institute has mapped identifiers of Protein Data Bank (PDB) into GO terms. Three 

organizing principles of GO are cellular component, biological process and molecular 

function. Table 1 collects 6362 proteins from Protein Data Bank. These proteins are 
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classified according to six categories of GO cellular component. These six categories 

are envelope, extracellular matrix, extracellular region, organelle, protein complex and 

virion. The protein quantity for each classification is also showing in the table. 

 

Figure 2. Genetic Algorithm for FTDock. 

In this research [27, 28], a HMM predictor have been trained for a subset of Gene 

Ontology classes. Since protein function is closely related to both protein sequence 

and structure. To record a large amount of protein properties, the input data for this 

HMM are amino acid sequences aligning with the corresponding secondary structure 

sequences. This mathematical approach is practical and easy to compute. The 

accuracy of this method can reach to 62.97%. 

 

5. Results and Conclusions: 

 

There are 10 protein datasets (10% of 77 protein datasets) are used to test our 

statistic model. After training our model, we have all the logistic probability of every 

route and amino acid in a block. We input our test sets to test if our statistic model is 

good or not. First we load test datasets to our database like training datasets in the 

setup interaction 

database 

train statistic 

model 

find protein 

interaction site 

modified FTDock 

calculate fitness 

choose superior 

Loop 5000 

generation 
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same way. Every division of test sets is input our interaction model and 

non-interaction model. All kind of logistic probability (all route and amino acid in a 

block) that test sets match are summed. So we have input interaction test sets in our 

interaction model and non-interaction model. The statistic model achieved 71% 

accuracy (complicated model) and 80% accuracy (easy model). 

We have developed a method to predict protein function. Our algorithm, a 

Hidden Markov Model, has been built to solve our problem with statistical concept. At 

present, many researchers are devoted to the study of this field. But several methods 

are too complex because many factors of the protein are considered. We utilize 

advantage of the computer to deal with a large amount of biological data quickly. The 

mathematical model is trained to get the probability. We can use our method to predict 

protein function after training. The relation between the protein function and its 

molecular structure is close, so the secondary structure is considered in our method. 

Finally, the average accuracy of our method is 62.97%. In the future, this method can 

be applied to the prediction of other functions of biochemistry such as Enzyme and 

Non-enzyme.  
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計畫成果自評計畫成果自評計畫成果自評計畫成果自評：：：：    

蛋白質相互作用之預測及功能預料，達成之目標與原計畫相符，超出部份為：

產生基因演算法之 FFT 3D Dock 軟體，及未來可發展一個精確度八成以上的 gene 

ontology 預測軟體。基因演算法之 FFT 3D Dock 有學術或應用價值，是否申請專

利應評估其是否能有效產生經濟價值而定。此種 docking 方法應研究如何應用在

藥物設計才能發揮經濟價值，尤其是中草藥之研究。Gene ontology 預測軟體則有

待進一步發展，用以預測 gene pathways。 
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可供推廣之研發成果資料表可供推廣之研發成果資料表可供推廣之研發成果資料表可供推廣之研發成果資料表    

□ 可申請專利  ▓ 可技術移轉                                 日期：95 年 10 月 31 日 

國科會補助計畫國科會補助計畫國科會補助計畫國科會補助計畫    

計畫名稱：用序列與結構排列法，預測蛋白質功能與交互作用。 

計畫主持人：         

計畫編號：94-2218-E-216-007-    學門領域：量子計算 

技術技術技術技術////創作名稱創作名稱創作名稱創作名稱    
基因演算法之 FFT 3D Dock 軟體 

發明人發明人發明人發明人////創作人創作人創作人創作人    許文龍 

中文：此一軟體可用來預測蛋白質四極結構，此軟體即 FTDock

是由英國癌症研究基金會提供之免費公開軟體修改而成，其精確

度可由 12 度旋轉角度提昇至 1 度，基因演算法可有效降低大量

增加之計算量，此研究所發展之蛋白質交互作用之數學模型，可

當作基因演算法之 fitness function。 

 

技術說明技術說明技術說明技術說明    英文：The technique can be used to predict protein 

quaternary Structure. This program “FTDock” is modified 

from the cancer foundation institute of united kingdom. The 

accurate of rotating angles can be increased from 12 degrees 

to 1 degree. The computing time can be greatly reduced by 

using genetic algorithm. The mathematical model developed 

from the protein interacting research can be used as fitness 

function of genetic algorithm.  

可利用之產業可利用之產業可利用之產業可利用之產業    

及及及及    

可開發之產品可開發之產品可開發之產品可開發之產品    

用於中草藥研究，可應用來開發藥物。 

技術特點技術特點技術特點技術特點    

精確度可由 12 度旋轉角度提昇至 1 度，基因演算法可有效降低

大量增加之計算量 

推推推推廣及運用的價值廣及運用的價值廣及運用的價值廣及運用的價值    

藥物設計極需快速且精準之 3D dock 軟體，電腦輔助藥物設計的

成功機會才可提昇。 
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附錄附錄附錄附錄    

(民生電子暨信號處理研討會論文, Dec 16~17 2006) 

Predict Protein Functions Using Sequence-Structure  

Alignment Method 
 

Wen-Lung Shu1, Hsin-Hung Wu2 and Jyh-Wei Liou2 

Bioinformatics Department1 

Department of Computer Science and Information Engineering2 

Chung Hua University, Hsinchu 300, Taiwan 

wlshu@chu.edu.tw 
  

Abstract 
 

Today, new genomes are constantly increasing. 

It is only possible to assign function to 40% of all 

protein sequences based on sequence similarity. 

There is a great need for protein function prediction 

methods. If a protein sequence is not similar to any 

other known protein, it is reasonable to expect that 

proteins with related function will have similar 

properties. 

 In this paper, a HMM predictor have been 

trained for a subset of Gene Ontology classes. Since 

protein function is closely related to both protein 

sequence and structure. To record a large amount of 

protein properties, the input data for this HMM are 

amino acid sequences aligning with the 

corresponding secondary structure sequences. This 

mathematical approach is practical and easy to 

compute. The accuracy of this method can reach to 

62.97%.    

 

1 Introduction 
 

New genomes are increasing rapidly. When 

analyzing the protein coding genes, it is typically 

only possible to assign function to 40% of all protein 

sequences based on sequence similarity [1, 2, 3, 4]. 

There is a great need for protein function prediction 

methods. There are a number of methods to predict 

protein function, such as: 1. Pairwise sequence 

similarity methods [5, 6, 7, 8, 9]. 2. Iterative search 

methods among multiple sequences [10, 11]. 3. 

Super family database methods [12, 13]. 4. 

Alignment based methods using functional links [14, 

15]. 5. Predicting protein function via structure 

[16,17,18]. 6. Neural network using protein 

features.[19] 

The Gene Ontology project [20] provides a 

controlled vocabulary to describe gene and gene 

product in any organism. The GO consortium has 

grown to include many databases, including several 

of the world’s major repositories for plant, animal 

and microbial genomes. The three organizing 

principles of Gene Ontology are cellular component, 

biological process and molecular function. A gene 

product might be associated with or located in one or 

more cellular components; it is active in one or more 

biological processes, during which it performs one or 

more molecular functions. 

If a protein sequence is not similar to any other 

known protein, it is reasonable to expect that proteins 

with related function will have similar properties, 

even if they are not evolutionarily related. In this 

paper, a HMM predictor have been trained for a 

subset (cellular component) of Gene Ontology 

classes. Similar technique can be applied for 

biological process and molecular function of GO 

classes. Since protein function is closely related to 

both protein sequence and structure. To record a 

large amount of protein properties, the input data for 

this HMM model are amino acid sequences aligning 

with the corresponding secondary structure 

sequences. This mathematical approach is practical 

and easy to compute. The accuracy of this method 

can reach to 62.97%. 

In [19], Jenson had developed 17 protein 

features from sequence or secondary structure. Many 

physical, chemical or biological characteristics are 

involved to compute these features. Then neural 

network is trained to recognize specific property of 

these features. Our HMM statistic model is relatively 

simple to predict function. This model has 

considered the alignment corresponding relationships 

between sequence and secondary structure. For 

orphan protein which has similar property and 

dissimilar sequence, the propagation possibilities of 

HMM can recognize such property and provide 

better prediction. 
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A data set and HMM graph is introduced in 

Section 2. This HMM is trained in Section 3. Then a 

prediction method is applied in Section 4. Finally, 

the performance of our approach is evaluated in 

Section 5. 

 

2 Data Set and Hidden Markov Model 
 

The Gene Ontology (GO) Annotation project 

at European Bioinformatics Institute has mapped 

identifiers of Protein Data Bank (PDB) into GO 

terms. Three organizing principles of GO are cellular 

component, biological process and molecular 

function. Table 1 collects 6362 proteins from Protein 

Data Bank. These proteins are classified according to 

six categories of GO cellular component. These six 

categories are envelope, extracellular matrix, 

extracellular region, organelle, protein complex and 

virion. The protein quantity for each classification is 

also showing in the table. 

Table 1. Classify PDB proteins into 6 GO terms. 

Classification name quantity test set# 

envelope 22 8 

extracellular_region 2292 639 

extracellular_matrix 184 49 

organelle 1830 444 

protein complex 1574 416 

virion 460 129 

Figure 1. HMM graph using for sequence 
- structure alignment method 

The HMM graph of our sequence-structure 

method is given in Figure 1. Three states are helix, 

sheet and coil. Each state includes 20 probabilities 

that represent the probabilities of 20 amino acids 

appearing in this state. The propagation probabilities 

are used to represent all the probabilities of transiting 

from one state to another. 

 

3 Training Hidden Markov Model 
 

Three arrays are created: h[residue], s[residue] 

and c[residue]. The index “residue” represents 20 

different amino acids. Every parameter represents 

individual probability. $h_s means the frequency of 

transition from helix to sheet. $h[0] means the 

frequency of amino acid G appearing in α-helix. 

Example 1:  

Assume that protein sequence is defined as 

array aa[0..4] = ”AQGQM”, and the corresponding 

2D structure sequence is array ss[0..4] = ”THHHE”. 

 

When the symbol of the 2D structure is “E”, it 

represents β-sheet state. The symbol of the 2D 

structure “H” represents α-helix state. All the 

symbols including the blank differ from these two 

represents the state is in the coil,. The following 3 

steps are used to train HMM: 

 

Step1: calculate the frequency in each path: 

At index=0, ss[index]=”T” and aa[index]=”A” in 

Example 1. Since ss[index] = “T”, the state is 

transiting from start to coil. Therefore amino acid 

“A” is in state of coil. $start_c and $c[1] are 

incremented. 

At index=1, ss[index]=”H” and aa[index]=”Q”. 

because ss[index] is equal to “H”, the state is from 

coil to helix. $c_h and h[12] are incremented by 1. 

At index=2, ss[index]=”H” and aa[index]=”G”. 

$h_h and $h[0] are incremented. 

Sheet

P(G)   P(N)
P(A)   P(E)
P(V)   P(Q)
P(L)   P(K)
P(I)    P(R)
P(F)   P(S) 
P(Y)   P(T)

P(W)   P(M) 
P(H)   P(C)
P(D)   P(P) 

Coil
P(G)   P(N)
P(A)   P(E)
P(V)   P(Q)
P(L)   P(K)
P(I)    P(R)
P(F)   P(S) 
P(Y)   P(T)

P(W)   P(M) 
P(H)   P(C)
P(D)   P(P) 

Helix

P(G)   P(N)
P(A)   P(E)
P(V)   P(Q)
P(L)   P(K)
P(I)    P(R)
P(F)   P(S) 
P(Y)   P(T)

P(W)   P(M) 
P(H)   P(C)
P(D)   P(P) 

P(Start-C)

P(H-H)

P(S-S)

P(C-C)

P(Start-S)

P(Start-H) P(H-End)

P(S-End)

P(
C-E

nd
)

P(H
-C)

P(C-H)

P(
H

-S
)

P(
S-

H
)

P(C-S) P(S-C)Start End
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At index=3, ss[index]=”H” and aa[index]=”Q”.  

$h_h and $h[12] are incremented. 

At index=4, ss[index]=”E” and aa[index]=”M”. 

$h_s and $s[17] areincremented. 

After all, it’s the end of the string, the state is from 

sheet to end. Then $s_end=$s_end+1. 

Figure 2. Training the HMM model. 
 

Step2: calculate the probability of every parameter 

We have to know the probability of each 

parameter. Utilizing the data counted, we can get 

the expected value of each parameter. In helix, 

sheet or coil, the total sum of probabilities of 20 

amino acids equals 1. The probability of amino 

acid G is the frequency of amino acid G divided 

by total frequency of 20 amino acids, as: 

 

It is noted that the starting and ending protein 

sequences are usually corresponding to coil at 

most of time.  

 

Step3: The calculated probability translates into 

log value, and the base of logarithm is e (= 

2.71828). There is every parameter’s log value 

about this example. Because we can not take log 

of 0, represent it by ∮. 

 

4 Predicting Method 
 

 We got the protein data from protein data bank 

and had said we focus on the cellular component. 

It has eight categories at present, but we only fetch 

six categories. After running our training model, 

we can get envelope model by training set of 

envelope category. Extracellular matrix, 

extracellular region, organelle, protein complex 

and virion are the same. After training, we can 

begin to test. See the figure 3-7. 

The predicting method is to input an unknown 

protein into the model, and we multiply every 

parameter of passing through. Then we can finally 

get the expected value. But the last value may be 

very difficult to calculate because the value is too 

small, like 3.95E-70. It is all the multiplication of 

decimals, so the result is too small to show and the 

performance is not very good on procedure 

execution. Because of this shortcoming, we utilize 

logarithmic function. Not only the result shows 

easily, the procedure is relatively high efficiency 

on addition operation. We assume there are two 

sequences, protein sequence and its 2D structure 

sequence, and the length of them is m. The 

sequence imports to our training model and 

calculate the expected value. The array “aa” 

denotes this protein sequence. P(aa) denotes its 

expected value, but it’s probably in helix, sheet or 

coil. The array “A” denotes a series of the 

transition of state. It represents probability when 

the state is changed. 

 

ccschccssshschshhhA _||_||_||_||_||_||_||_||_=  

There is a formula about logarithmic function. 

 

Assume the base of logarithm is e and rewrite the 

formula above. 

 

Then we get a simple prediction utilizing above 

training data. Given an unknown protein sequence 

and it’s 2D structure. 

protein sequence: PSGQM 

2D structure sequence: GGHHH 

Log value of Expected = P(start_c)+P(P in 
coil)+P(c_c)+P(S in coil)+P(c_h)+P(G in helix) 
                   +P(h_h)+P(Q in 
helix)+P(h_h)+P(M in helix)+P(h_end) 
                  = -2.3552 
Expected value = 0.0948365875081179 
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H(G) 0.0462 S(G) 0.0426 C(G) 0.09 

H(A) 0.106 S(A) 0.0838 C(A) 0.0856 

H(V) 0.0836 S(V) 0.1276 C(V) 0.0846 

H(L) 0.0999 S(L) 0.0799 C(L) 0.0615 

H(I) 0.0704 S(I) 0.0732 C(I) 0.0419 

H(F) 0.03 S(F) 0.0472 C(F) 0.0292 

H(Y) 0.0351 S(Y) 0.0529 C(Y) 0.0328 

H(W) 0.0167 S(W) 0.0259 C(W) 0.0132 

H(H) 0.0084 S(H) 0.0159 C(H) 0.0158 

H(D) 0.0493 S(D) 0.0239 C(D) 0.0518 

H(N) 0.0514 S(N) 0.0415 C(N) 0.0686 

H(E) 0.0601 S(E) 0.0364 C(E) 0.0412 

H(Q) 0.0401 S(Q) 0.0304 C(Q) 0.0341 

H(K) 0.0598 S(K) 0.0488 C(K) 0.0507 

H(R) 0.0507 S(R) 0.0409 C(R) 0.0432 

H(S) 0.0818 S(S) 0.0817 C(S) 0.089 

H(T) 0.0622 S(T) 0.082 C(T) 0.0806 

H(M) 0.0137 S(M) 0.0156 C(M) 0.0123 

H(C) 0.0085 S(C) 0.0152 C(C) 0.0117 

H(P) 0.025 S(P) 0.0334 C(P) 0.0613 

 

Start_S 0 Start_H 0 Start_C 1 

S_S 0.7896 S_H 0.0023 S_C 0.208 

H_S 0.0006 H_H 0.9022 H_C 0.097 

C_S 0.0826 C_H 0.0212 C_C 0.8883 

S_End 0 H_End 0 C_End 0.0079 

 

 5 Performance of Our Approach 

1 Data source and our database 

We get data from protein data bank, and put them 

into our database with Perl. Perl is often applied to 

the bioinformation because it’s easy to handle 

string. Capacity of the file is usually very big and 

the string is mostly too long, like DNA sequence. 

Putting the data into our database, the program 

fetches the data from the database directly. Our 

systematic environment is as follows. 

Apache Web Server Version 1.3.33 

PHP Script Language Version 4.3.10 

MySQL Database Version 4.1.8 

Zend Optimizer Version 2.5.7 

phpMyAdmin Database Manager Version 

2.6.1-rc2 

 

2 Training 

The program fetches the data from database and 

put them into our mathematical model. The result 

of virion category is shown as follows. It’s every 

variable’s frequency of passing through of virion. 

After knowing this, we can calculate every 

variable’s probability.. 

The probability translates into log value through 

the logarithmic function and the base of logarithm 

is e. 

3 Performance 

Table 4-6 Rank table of test dataset 

 

We know protein sequence and its secondary 

structure of every protein in our dataset, then 

utilizing our approach to predict. We see an 

example of secondary structure in figure 4-2. 

After testing, we see the output of envelope 

category. It’s shown in table 4-5. In the table 4-5, 

each score is log value and every protein has data 

of six different categories. We assume one certain 

protein belongs to the category which score is the 

biggest. According to the output of envelope 

category, there are seven proteins belong to the 

envelope category. We see the result of all and it’s 

shown in table 4-6. The accuracy: 

1061/1685=62.97%. Sensitivity: TP / (TP+FN) = 

1061 / (1061+624) = 0.6297 

Accuracy: 63% 

 

4 Conclusion 
 

We have developed a method to predict protein 

function. Our algorithm, a Hidden Markov Model, 

has been built to solve our problem with statistical 

concept. At present, many researchers are devoted to 

the study of this field. But several methods are too 

complex because many factors of the protein are 

considered. We utilize advantage of the computer to 

deal with a large amount of biological data quickly. 

The mathematical model is trained to get the 

Function\rank 

  
1 2 3 4 5 6 

envelope 7 0 0 0 0 1 

extracellular_matrix 26 8 0 6 5 4 

extracellular_region 427 83 80 37 12 0 

organelle 275 85 49 14 12 9 

protein complex 266 106 33 9 2 0 

virion 60 14 13 26 12 4 

total 1061 296 175 92 43 18 
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probability. We can use our method to predict protein 

function after training. The relation between the 

protein function and its molecular structure is close, 

so the secondary structure is considered in our 

method. Finally, the average accuracy of our method 

is above 60%. In the future, this method can be 

applied to the prediction of other functions of 

biochemistry such as Enzyme and Nonenzyme.  
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