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Proteomics is considered to be a very important field in post-genome era. However
protein is much difficult to handle than gene in biological laboratory. Bioinformatics
researcher’s responsibility is to analyze known protein data, and use algorithms and
knowledge base technology to predict unknown protein’s characteristics. This research
result can save tremendous time, manpower and money for biological laboratory.

In the bioinformatics laboratory of Chung-Hua University, we have successfully
developed our approaches to predict 2D and 3D protein structure. In this project, we are
trying to predict protein function and interaction (relating 4D structure) basing on our
HMM which is created to predict protein 2D structure. This model will generate an overall
probability which combines not only the probability of amino acid code appearing in a
particular 2D component, also their transition probability to next code. This method is
called sequence-structure alignment approach.

All proteins are categorized as 12 functions and sequence-structure alignment
approach is used to predict protein function. This approach can also be applied to predict if
query protein’s surface subsequence can be interactive with any subsequences in protein
interacting library. Then knowledge base statistical energy is used to identify all interacting

subsequence pairs and the alignment of interacting subsequence pair.
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1. Preface

Protein-protein interactions play an important role in predicting protein function.
Identification of protein-protein interaction sites and detection of specific amino acid
residues that participate in protein interactions is an important problem ranging from
rational drug design to analysis of metabolic and signal transduction networks.
Experimental proteomics projects have already resulted in complete ‘interactomes’.
While such efforts yield a catalog of interacting proteins, experimental detection of
residues in protein-protein interaction surfaces must come from determination of the
structure of protein-protein complexes. However, determination of protein-complex
structures using X-ray and NMR methods lags far behind the number of known
protein sequences. Hence, there is a need for the development of reliable
computational methods for identifying protein-protein interaction residues.

Many cellular events involve the formation of protein—protein complexes.
Elucidation of the structural details of these complexes will undoubtedly contribute to
our understanding of their functional properties, and thus is a major goal of structural
biology. However, only a small fraction of experimentally determined structures are of
protein—protein complexes. Therefore, it is of substantial interest to develop
computational docking methods that, given the structures of the individual component
proteins, are able to assemble them into the complex in an accurate and reliable way.

Today, new genomes are constantly increasing. It is only possible to assign
function to 40% of all protein sequences based on sequence similarity. There is a great
need for protein function prediction methods. If a protein sequence is not similar to
any other known protein, it is reasonable to expect that proteins with related function

will have similar properties.

2. Research purpose

The main purpose of this research is to predict the interactions and functions of
proteins. A HMM model which is related to 1D sequence and secondary states is built
to predict protein interaction and protein function. The result of this research can be
used to extend gene network databases. These databases can be further applied for

medical diagnosis, drug discovery and biological researches.

3. Previous Efforts
Based on different characteristics of known protein-protein interaction sites,

several methods have been proposed for predicting interface residues using a



combination of protein sequence and structural information. For example, based on
their observation that proline residues occur frequently near interfaces, Kini and Evans
[1] predicted potential protein-protein interaction sites by detecting the presence of
“proline brackets.”” Jones and Thornton [2][3] successfully predicted interfaces in a set
of 59 structures using a scoring function based on six parameters: solvation potential,
residues interface propensity, hydrophobicity, planarity, protrusion, and accessible
surface area. Gallet et al. [4] identified interacting residues using an analysis of
sequence hydrophobicity based on a method previously developed by Eisenberg et al. [5]
for detecting membrane and surface segments of proteins. Lu et al. [6] have developed
statistical potentials for interfaces and used them in a structure-based multimeric
threading algorithm to assign quaternary structures and predict protein interaction
partners for proteins in the yeast genome.

Several groups have used neural networks to predict protein-protein interaction
sites. Zhou and Shan [7] and Fariselli et al. [8] have independently used neural
network algorithms to predict whether or not a residue is located in an interaction site
using the spatial neighbors of the target residues as input, and achieved accuracy of
70% and 73%, respectively. Ofran and Rost [9] have successfully predicted
protein-protein interaction sites using a neural network method based on their
observations that the majority of protein-protein interaction residues are clustered on a
sequence and that the protein-protein interfaces differ from the rest of the protein
surface in residue composition.

There are a number of methods to predict protein function, such as: 1. Pairwise
sequence similarity methods [10, 11, 12, 13, 14]. 2. Iterative search methods among
multiple sequences [15,16]. 3. Super family database methods [17, 18]. 4. Alignment
based methods using functional links [19, 20]. 5. Predicting protein function via
structure [21, 22]. 6. Neural network using protein feature [23]. In [24], Jenson had
developed 17 protein features from sequence or secondary structure. Many physical,
chemical or biological characteristics are involved to compute these features. Then
neural network is trained to recognize specific property of these features. Our HMM
statistic model is relatively simple to gene ontology [25]. This model has considered
the alignment corresponding relationships between sequence and secondary structure.
For orphan protein which has similar property and dissimilar sequence, the
propagation possibilities of HMM can recognize such property and provide better

prediction.

4. Research Methods

Our research includes two parts: interaction and docking. We acquired all

protein data files from Protein Data Bank (http://www.rcsb.org/pdb/Welcome.do). All



the files are about protein primary structures and second structures. And we download

protein interaction dataset from Yan’s website (http:// www.cs.iastate.edu /~yan330

/p-p /p- p-htm ). We create a database to store these data records.
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Figure 1. HMM Model of Our Approach.

We train our statistic model in Figurel using the database. After training, we also
test the statistic model. The statistic model achieved 71% accuracy (complicated
model) and 80% accuracy (easy model). The statistic model can predict which
residues participate in protein-protein interaction when you input a protein sequence.

The second step is about docking. After predicting protein interaction site,
interactions between proteins become critical in biology. With the advent of genome
and proteome projects, there is much interest in predicting the structures of
protein-protein complexes. We use genetic algorithm to modify FTDock. Then we
displace MultiDock by our statistic model and cooperate RPDock to be fitness
function [26].

The Gene Ontology (GO) Annotation project at European Bioinformatics
Institute has mapped identifiers of Protein Data Bank (PDB) into GO terms. Three
organizing principles of GO are cellular component, biological process and molecular

function. Table 1 collects 6362 proteins from Protein Data Bank. These proteins are



classified according to six categories of GO cellular component. These six categories
are envelope, extracellular matrix, extracellular region, organelle, protein complex and

virion. The protein quantity for each classification is also showing in the table.

setup interaction
database

Il

train statistic

11

find protein
interaction site

11

modified FTDock [«
~ =
calculate fitness Loop 5000
generation
~_~ A

choose superior

Figure 2. Genetic Algorithm for FTDock.

In this research [27, 28], a HMM predictor have been trained for a subset of Gene
Ontology classes. Since protein function is closely related to both protein sequence
and structure. To record a large amount of protein properties, the input data for this
HMM are amino acid sequences aligning with the corresponding secondary structure
sequences. This mathematical approach is practical and easy to compute. The

accuracy of this method can reach to 62.97%.

5. Results and Conclusions:

There are 10 protein datasets (10% of 77 protein datasets) are used to test our
statistic model. After training our model, we have all the logistic probability of every
route and amino acid in a block. We input our test sets to test if our statistic model is

good or not. First we load test datasets to our database like training datasets in the



same way. Every division of test sets is input our interaction model and
non-interaction model. All kind of logistic probability (all route and amino acid in a
block) that test sets match are summed. So we have input interaction test sets in our
interaction model and non-interaction model. The statistic model achieved 71%
accuracy (complicated model) and 80% accuracy (easy model).

We have developed a method to predict protein function. Our algorithm, a
Hidden Markov Model, has been built to solve our problem with statistical concept. At
present, many researchers are devoted to the study of this field. But several methods
are too complex because many factors of the protein are considered. We utilize
advantage of the computer to deal with a large amount of biological data quickly. The
mathematical model is trained to get the probability. We can use our method to predict
protein function after training. The relation between the protein function and its
molecular structure is close, so the secondary structure is considered in our method.
Finally, the average accuracy of our method is 62.97%. In the future, this method can
be applied to the prediction of other functions of biochemistry such as Enzyme and

Non-enzyme.
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Abstract

Today, new genomes are constantly increasing.
It is only possible to assign function to 40% of all
protein sequences based on sequence similarity.
There is a great need for protein function prediction
methods. If a protein sequence is not similar to any
other known protein, it is reasonable to expect that
proteins with related function will have similar
propetrties.

In this paper, a HMM predictor have been
trained for a subset of Gene Ontology classes. Since
protein function is closely related to both protein
sequence and structure. To record a large amount of
protein properties, the input data for this HMM are
amino  acid  sequences  aligning  with  the
corresponding secondary structure sequences. This
mathematical approach is practical and easy to
compute. The accuracy of this method can reach to
62.97%.

1 Introduction

New genomes are increasing rapidly. When
analyzing the protein coding genes, it is typically
only possible to assign function to 40% of all protein
sequences based on sequence similarity [1, 2, 3, 4].
There is a great need for protein function prediction
methods. There are a number of methods to predict
protein function, such as: 1. Pairwise sequence
similarity methods [5, 6, 7, 8, 9]. 2. Iterative search
methods among multiple sequences [10, 11]. 3.
Super family database methods [12, 13]. 4.
Alignment based methods using functional links [14,
15]. 5. Predicting protein function via structure
[16,17,18]. 6. Neural network using protein
features.[19]

The Gene Ontology project [20] provides a
controlled vocabulary to describe gene and gene
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product in any organism. The GO consortium has
grown to include many databases, including several
of the world’s major repositories for plant, animal
and microbial genomes. The three organizing
principles of Gene Ontology are cellular component,
biological process and molecular function. A gene
product might be associated with or located in one or
more cellular components; it is active in one or more
biological processes, during which it performs one or
more molecular functions.

If a protein sequence is not similar to any other
known protein, it is reasonable to expect that proteins
with related function will have similar properties,
even if they are not evolutionarily related. In this
paper, a HMM predictor have been trained for a
subset (cellular component) of Gene Ontology
classes. Similar technique can be applied for
biological process and molecular function of GO
classes. Since protein function is closely related to
both protein sequence and structure. To record a
large amount of protein properties, the input data for
this HMM model are amino acid sequences aligning
with the corresponding secondary structure
sequences. This mathematical approach is practical
and easy to compute. The accuracy of this method
can reach to 62.97%.

In [19], Jenson had developed 17 protein
features from sequence or secondary structure. Many
physical, chemical or biological characteristics are
involved to compute these features. Then neural
network is trained to recognize specific property of
these features. Our HMM statistic model is relatively
simple to predict function. This model has
considered the alignment corresponding relationships
between sequence and secondary structure. For
orphan protein which has similar property and
dissimilar sequence, the propagation possibilities of
HMM can recognize such property and provide
better prediction.



A data set and HMM graph is introduced in
Section 2. This HMM is trained in Section 3. Then a
prediction method is applied in Section 4. Finally,
the performance of our approach is evaluated in
Section 5.

2 Data Set and Hidden Markov Model

The Gene Ontology (GO) Annotation project
at European Bioinformatics Institute has mapped
identifiers of Protein Data Bank (PDB) into GO
terms. Three organizing principles of GO are cellular
component, biological process and molecular
function. Table 1 collects 6362 proteins from Protein
Data Bank. These proteins are classified according to
six categories of GO cellular component. These six
categories are envelope, extracellular matrix,
extracellular region, organelle, protein complex and
virion. The protein quantity for each classification is
also showing in the table.

Table 1. Classify PDB proteins into 6 GO terms.

Classification name |quantity| test set#

envelope 22 8

extracellular_region| 2292 639

extracellular_matrix| 184 49

organelle 1830 444

protein complex | 1574 416
virion 460 129

method is given in Figure 1. Three states are helix,
sheet and coil. Each state includes 20 probabilities
that represent the probabilities of 20 amino acids
appearing in this state. The propagation probabilities
are used to represent all the probabilities of transiting
from one state to another.

3 Training Hidden Markov Model

Three arrays are created: h[residue], s[residue]
and c[residue]. The index “residue” represents 20
different amino acids. Every parameter represents
individual probability. $h_s means the frequency of
transition from helix to sheet. $h[0] means the
frequency of amino acid G appearing in a-helix.
Example 1:

Assume that protein sequence is defined as
array aal0..4] = "AQGQM?”, and the corresponding
2D structure sequence is array ss[0..4] = "THHHE”.

When the symbol of the 2D structure is “E”, it
represents P-sheet state. The symbol of the 2D
structure “H” represents a-helix state. All the
symbols including the blank differ from these two
represents the state is in the coil,. The following 3
steps are used to train HMM:

Step1: calculate the frequency in each path:

At index=0, ss[index]="T" and aalindex]="A” in
Example 1. Since ss[index] = “T”, the state is
transiting from start to coil. Therefore amino acid
“A” is in state of coil. $start_c and $c[1] are
incremented.

At index=1, ss[index]="H” and aalindex]="Q”.
because ss[index] is equal to “H”, the state is from

P(S-S)
Sheet

P(G) P(N)
P(A) P(E)
P(V) P(Q)
P(L) P(K)
e P(l) P(R)
woet P(F) P(S)
P(H-H) P(Y) P(T)
B P(W) P(M)
Helix P(H) P(C)
P(G) P(N) P(D) P(P)
P(A) P(E)
P(V) P(Q) 2
P(Start-H) EE:_)) ;E;; S .
P(F) P(S) P(C-S) P(S-C) End
P(Y) P(T)
P(W) P(M)
P(H) P(C) ¥ _PCO
P(D) P(P) Coail
P(G) P(N)
P(A) P(E)
HlStapg. P(V) P(Q)
© P(L) P(K)
P(l) P(R)
P(F) P(S)
P(Y) P(T)
P(W) P(M)
P(H) P(C)
P(D) P(P)

Figure 1. HMM graph using for sequence
- structure alignment method
The HMM graph of our sequence-structure

coil to helix. $c_h and h[12] are incremented by 1.
At index=2, ss[index]="H” and aa[index]="G".
$h_h and $h[0] are incremented.
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At index=3, ss[index]="H” and aa[index]="Q”.
$h_h and $h[12] are incremented.

At index=4, ss[index]="E” and aa[index]="M".
$h_s and $s[17] areincremented.

After all, it’s the end of the string, the state is from
sheet to end. Then $s_end=$s_end+1.

Our training
model

Input one
sequence

new
parameters

Next
sequence?

No

End
Parameters which
we want

Figure 2. Training the HMM model.

Step2: calculate the probability of every parameter

We have to know the probability of each
parameter. Utilizing the data counted, we can get
the expected value of each parameter. In helix,
sheet or coil, the total sum of probabilities of 20
amino acids equals 1. The probability of amino
acid G is the frequency of amino acid G divided
by total frequency of 20 amino acids, as:

NG)
MG)+NA+MV)+..+NMO

RAG)=

It is noted that the starting and ending protein
sequences are usually corresponding to coil at
most of time.

Step3: The calculated probability translates into
log value, and the base of logarithm is e (=
2.71828). There is every parameter’s log value
about this example. Because we can not take log
of 0, represent it by § .

4 Predicting Method

We got the protein data from protein data bank
and had said we focus on the cellular component.
It has eight categories at present, but we only fetch
six categories. After running our training model,
we can get envelope model by training set of
envelope  category.  Extracellular  matrix,
extracellular region, organelle, protein complex
and virion are the same. After training, we can

13

begin to test. See the figure 3-7.

The predicting method is to input an unknown
protein into the model, and we multiply every
parameter of passing through. Then we can finally
get the expected value. But the last value may be
very difficult to calculate because the value is too
small, like 3.95E-70. It is all the multiplication of
decimals, so the result is too small to show and the
performance is not very good on procedure
execution. Because of this shortcoming, we utilize
logarithmic function. Not only the result shows
easily, the procedure is relatively high efficiency
on addition operation. We assume there are two
sequences, protein sequence and its 2D structure
sequence, and the length of them is m. The
sequence imports to our training model and
calculate the expected value. The array “aa”
denotes this protein sequence. P(aa) denotes its
expected value, but it’s probably in helix, sheet or
coil. The array “A” denotes a series of the
transition of state. It represents probability when
the state is changed.

A=h_hllh_sllh_clls_hlls_slls_cllc_hllc_sllc_c
log,(XY)=1log, X +log, Y

There is a formula about logarithmic function.

m—1

log, P(aa) =log, P(start)+ [log, P(ad{0])

i=0

+log, P(A,)]+1og, P(end)

Assume the base of logarithm is e and rewrite the
formula above.

m—1

P(aa) = P(start)* H[P(aa[i]) *P(A,)]

i=0

* P(end)

Then we get a simple prediction utilizing above
training data. Given an unknown protein sequence
and it’s 2D structure.
protein sequence: PSGQM
2D structure sequence: GGHHH
Log wvalue of Expected = P(start_ c)+P(P in
coil)+P(c_c)+P(S in coil)+P(c_h)+P(G in helix)
+P(h_h)+P(Q in

helix)+P(h_h)+P(M in helix)+P(h_end)

=-2.3552
Expected value = 0.0948365875081179
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H(A)
HV)
HL)
H®D

H(F)
H(Y)
HW)
HH)
HD)
HIN)
H(E)
HQ
HEK)
HR)
H(S)
H(D)
HM)
H(C)
HP)

0.0462
0.106
0.0836
0.0999
0.0704
0.03
0.0351
0.0167
0.0084
0.0493
0.0514
0.0601
0.0401
0.0598
0.0507
0.0818
0.0622
0.0137
0.0085
0.025

S(G)
S(A)
S(V)
SL)
SO
SE)
S(Y)
S(W)
S(H)
S(D)
SIN)
SE)
S(Q)
SEK)
SR)
SES)
S(T)
SM)
SC)
SP)

0.0426
0.0838
0.1276
0.0799
0.0732
0.0472
0.0529
0.0259
0.0159
0.0239
0.0415
0.0364
0.0304
0.0488
0.0409
0.0817

0.082
0.0156
0.0152
0.0334

&©)
CA)
CV)
CL)
CO

CEH
C(Y)
CW)
CH)
CD)
CIN)
C(E)
CQ
CX)
CR)
C(S)
C
CV)
C(C)
C®)

0.09
0.0856
0.0846
0.0615
0.0419
0.0292
0.0328
0.0132
0.0158
0.0518
0.0686
0.0412
0.0341
0.0507
0.0432

0.089
0.0806
0.0123
0.0117
0.0613

Start. S| 0
S_S 10.789%
H S ]0.0006
C_S 10.0826

S_End| O

Start Hl 0
S_H {0.0023
H H {09022
C_H | 0.0212

H_End| O

Start C[ 1
S_C 10208
H_C 0.097
C_C ]0.8883

C_End [0.0079

5 Performance of Qur Approach

1 Data source and our database

We get data from protein data bank, and put them
into our database with Perl. Perl is often applied to
the bioinformation because it’s easy to handle
string. Capacity of the file is usually very big and
the string is mostly too long, like DNA sequence.
Putting the data into our database, the program
fetches the data from the database directly. Our
systematic environment is as follows.

Apache Web Server Version 1.3.33

PHP Script Language Version 4.3.10

MySQL Database Version 4.1.8

Zend Optimizer Version 2.5.7
phpMyAdmin  Database
2.6.1-rc2

Manager  Version
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2 Training

The program fetches the data from database and
put them into our mathematical model. The result
of virion category is shown as follows. It’s every
variable’s frequency of passing through of virion.
After knowing this, we can calculate every
variable’s probability..

The probability translates into log value through
the logarithmic function and the base of logarithm
ise.

3 Performance

Table 4-6 Rank table of test dataset

Function\rank 1121314516
envelope 7 0 0 0] O 1
extracellular_matrix| 26 | 8 016514
extracellular region| 427 | 83 | 80 (37| 12 | O
organelle 2751 851 49 1141 12 | 9
protein complex 266106 33 9] 2 | O
virion 60 | 14 | 13 26| 12 | 4

total 1061296 | 175192 43 | 18

We know protein sequence and its secondary
structure of every protein in our dataset, then
utilizing our approach to predict. We see an
example of secondary structure in figure 4-2.

After testing, we see the output of envelope
category. It’s shown in table 4-5. In the table 4-5,
each score is log value and every protein has data
of six different categories. We assume one certain
protein belongs to the category which score is the
biggest. According to the output of envelope
category, there are seven proteins belong to the
envelope category. We see the result of all and it’s
shown in table 4-6. The accuracy:
1061/1685=62.97%. Sensitivity: TP / (TP+FN) =
1061/ (1061+624) = 0.6297

Accuracy: 63%

4 Conclusion

We have developed a method to predict protein
function. Our algorithm, a Hidden Markov Model,
has been built to solve our problem with statistical
concept. At present, many researchers are devoted to
the study of this field. But several methods are too
complex because many factors of the protein are
considered. We utilize advantage of the computer to
deal with a large amount of biological data quickly.
The mathematical model is trained to get the




probability. We can use our method to predict protein
function after training. The relation between the
protein function and its molecular structure is close,
so the secondary structure is considered in our
method. Finally, the average accuracy of our method
is above 60%. In the future, this method can be
applied to the prediction of other functions of
biochemistry such as Enzyme and Nonenzyme.
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