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Abstract

Biological systems are often organized by multi-scale functional subsystems(modules). Accurate
system-level modularity organization can provide valuable information on isolated subsystem models of
subcellular processes or physiological phenomena. Current methods for modularity detection are mostly
optimization-based and it is difficult to trace the origin of the unsatisfactory results, which may be due to
poor data, inappropriate objective function selection or simply result from natural evolution, and hence no
system-level accurate modularity can be offered. Motivated by the evolution idea and using robustness and
adaption as guiding principles, we propose a new approach that can identify significant multi-scale functional
modules that are sufficiently accurate at the system level. The success of this evolution strategy is
demonstrated by applying to the yeast protein-protein interaction network and the neuronal network of C.
elegans. Several functional subsystems of important physiological phenomena can be revealed. For example,
the cell cycle subcellular process in yeast can be successfully dissected into functional modules of cell cycle
control, cell size check point, spindle assembly checkpoint, and DNA damage check point in Go/M and S
phases. The interconnections between these modules provide clues on the signal stimulus entries of check
points into the cell cycle, which are consistent with experimental findings. For the C. elegans, biologically
plausible subsystem models of sensorimotor, chemosensation and egg-laying, mechanosensation and
locomotion were extracted from the whole neuronal network. Previous unknown pathways of how chemotaxis
affects egg-laying rate, subtle insights into functions of neurons, and a simplified neural circuit model for
thermotaxis, can be obtained from the detected modularity organization. This evolution strategy can also be
applied adequately to multi-scale biological systems from mesoscopic scale, e.g cortical network in brain, to

subcellular molecular networks.
Keywords:

Biological networks, modules, Robustness, evolution, community structure
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Biological systems are often organized by multi-scale functional subsys-
tems(modules). Accurate system-level modularity organization can provide
valuable information on isolated subsystem models of subcellular processes or
physiological phenomena. Current methods for modularity detection are mostly
optimization-based and it is difficult to trace the origin of the unsatisfactory
results, which may be due to poor data, inappropriate objective function selec-
tion or simply result from natural evolution, and hence no system-level accurate
modularity can be offered. Motivated by the evolution idea and using robustness
and adaption as guiding principles, we propose a new approach that can iden-
tify significant multi-scale functional modules that are sufficiently accurate at the
system level. The success of this evolution strategy is demonstrated by applying
to the yeast protein-protein interaction network and the neuronal network of C.
elegans. Several functional subsystems of important physiological phenomena
can be revealed. For example, the cell cycle subcellular process in yeast can be
successfully dissected into functional modules of cell cycle control, cell size check
point, spindle assembly checkpoint, and DNA damage check point in G,/M and
S phases. The interconnections between these modules provide clues on the
signal stimulus entries of check points into the cell cycle, which are consistent
with experimental findings. For the C. elegans, biologically plausible subsys-
tem models of sensorimotor, chemosensation and egg-laying, mechanosensation
and locomotion were extracted from the whole neuronal network. Previous un-
known pathways of how chemotaxis affects egg-laying rate, subtle insights into
functions of neurons, and a simplified neural circuit model for thermotaxis, can
be obtained from the detected modularity organization. This evolution strategy
can also be applied adequately to multi-scale biological systems from mesoscopic
scale, e.g cortical network in brain, to subcellular molecular networks.

Understanding multi-scale functional complexity of biological systems can help to unravel

the secret of life. Functional complexity of biological systems are usually performed by in-



teracting components(genes, proteins, metabolites and etc.) to form the so-called biological
networks. These interacting components are organized spatially and temporally into inter-
connected subsystems(modules) in hierarchy, which in turn cooperate to perform multi-scale
cellular functions. Using high throughput techniques, the interactomes of biological systems
can be realized, computational identification of consistent modules in a biological system at
the system level is one of the most significant and challenging problems in systems biology.
The accurate information of interconnected modules of a biological system not only can
reveal the functions of the members within modules, but also can shed light on how they
are orchestrated together to form cellular machines in subcellular processes.

Modularity in biological networks has been discovered to possess overlapping and hier-
archical structures [1, 2, 3, 4, 5, 6]. Modules in the same or different hierarchical levels can
overlap heavily with each other, i.e. possess common members that carry out multiple func-
tions. In a hierarchically organized biological network, a large module can be decomposed
into several submodules, these submodules can be further subdivided into even smaller sub-
modules and so on(See Fig. 1a). These modules are diverse in size, organized at various scales
simultaneously or dynamically to perform multi-scale functions. Theoretically, there is no
strict definition for modules, and the so called ”assortative mixing” rule is widely accepted
in detecting modules[7]. Modules are defined as clusters of densely intra-connected nodes
with sparse links between them. Assortative mixing is a popular definition for modules, but
there are alternative definition of modules using link clustering|8, 9].

In an evolving network, modular structures may facilitate evolutionary changes and are
governed by robustness and adaptation[10]. For survival and adaptability, modularity orga-
nizations must be robust against environmental and genetic perturbations, but at the same
time evolvable[11, 12]. To compromise between robustness and evolvability in biological
systems, the generation of a variety of non-lethal phenotypes and genetic buffering produces
many evolved modularity organizations. The core function embedded in a module is robust
against changes, and adaptation would drive modularity to be even more robust. On the

other hand the phenotypes are allowed to be changed by altering interactions between the



modules. However, due to limited resources that can be used to maintain robustness in a
bio-system, modularity cannot evolve to be extremely robust against some perturbations
or the system will be fragile against other unanticipated perturbations, which is harmful
for survival[13, 14, 15]. Hence, modularity in an evolving biological network possesses con-
served parts that were adapted optimally, and some non-adapted parts that deviated from
optimality[16].

Most of the present modular detection theories are optimization-based methods, the over-
lapping and hierarchical characteristics of the modules make the detection of true system-
level modular structures unsatisfactory[5, 17, 18, 19, 20, 21, 22| and suffered from the draw-
back of size resolution limit[23, 24]. The designed objective function could only take partial
set of perturbations into account and the optimal modularity may even be undesirable for
survival upon unanticipated perturbations, and thus fail to give the system-level plausible
modularity. One can never know where the unsatisfactory modules originated from, it can
be due to the optimization scheme, the selection of objective function, or evolution by na-
ture (See Online supporting materials). Without an accurate system-level modularity, it is
difficult to understand how the modules cooperated to build the cellular machines. Hence,
accurate identification of modularity from interactomes at the system level is important and
can provide powerful insight to unravel the pathways and signals stimuli between subcellular
processes, however optimization is not a good scheme to achieve this goal.

Despite cells are open systems, the modularity organizations of adapted robustness trade-
offs among robustness, fragility, limited resources and others, i.e robustness strength located
within the adapted region that is not too high or not too low (as illustrated in Fig. 1b),
possess an essential backbone. The functionally significant membership of these realistic
modules can be revealed by the evolutionary conservative profiles of modularity in adapted
robustness trade-offs with given interactomes. Evolutionary conservation rate of members
in a module tells us their functional significance and reliability. Hence, investigating these
adapted modularity organizations can offer us more biologically plausible system-level modu-

larity than just by using optimazation. Robustness and adaptation can serve as fundamental



guiding principles to uncover biologically plausible modularity organizations at the system
level. In this paper, this evolution strategy is applied to two real biological networks, the
yeast protein-protein interaction(PPI) and C. elegans neuronal networks, to demonstrate its
applicability on uncovering biological significant modules and revealing important biological
processes from subcellular to cellular scales.

In our evolution strategy approach, modular classification for each node is described
by several functional probability components P, if the node has some probability to be
classified into the modules labelled by o¢. A node becomes a member of the ¢ module
if its P, component is larger than a chosen threshold. A node with several probability
components larger than the threshold is assigned to multiple modules, and hence overlapped
modular structures can be produced. To apply the evolution strategy to uncover the modular
structure, a robustness function is used to evaluate and select modularity organizations of
adapted robustness trade-offs. The correlation of a node with the o-module is measured by
the quantity G, which is defined as the ratio of the percentage of directly interacting nodes
that are in the same common module to the percentage of nodes belonged to the same
module in the whole network(See Methods)[25]. The robustness function for modularity,
Ry (Py), is used to evaluate how robust the modularity(FP,) is, and is defined as the sum
of G, over all nodes and modules. Presumably, a network would be highly efficient and
more robust against perturbations if common module nodes tend to aggregate together in
the network, i.e have higher value of robustness function Ry (P,). A real network organized
its modularity structures (defined by the functional probabilities P, for each node) toward
the higher value of robustness function if such a network had been evolved and adapted for
a sufficiently long time[25, 26, 16]. Therefore, the functional probability P, is hypothesized
to be proportional to G,,, i.e nodes within a module tends to evolve to interact directly.

In nature, real modularity is composed of conserved core of modules plus some modules
that deviate strongly from optimality. In our theory, functionally significant modules are
captured by conserved components within modules by examining modularity variants in

adapted robustness trade-offs. Newly evolved and highly variational modules are difficult



to be detected accurately since they may not have adapted to be robust. Nodes associ-
ated with modules at various hierarchical levels possess different strengths of functional
probabilities. The hierarchical organization is inferred by first identifying the so-called co-
clustered groups which correspond to strongly cohesive modules at the lower level. These
are nodes with high functional probabilities to be frequently classified into the same modules
for adapted robust modularity realizations. Then these co-clustered groups associated to
form more complex hierarchical modular structure. Fig. 1a illustrates how the overlapped
modules can be detected at multi-scales. Module A has classification component oy, i.e. all
members in modules A have their community probabilities in the oy component higher than
the threshold(See Methods for more details). In this example, module A contains three sub-
modules A.1, A.2, A.3 with classification components o1, 09, 03 respectively. For instance,
nodes belonging to submodule A.3 have two components of community probability, og, o3
that are higher than the threshold. In general, nodes within each submodules are stronger
functionally correlated than other nodes in module A, for example for nodes in A.1 the
community probability in components o, is larger than that of their 0y component. Hence,
modules were detected from higher to lower hierarchies as the threshold is being varied
from low to high values. Although our theory appears to be different from the ”assortative
mixing” rule, the assortative mixing rule can be shown to arise from the robustness and
adaptation of modularity organization, but our method is free from the size resolution limit
(See Online supporting materials).

First, we apply the evolution strategy to the yeast protein-protein interaction(PPI). In the
yeast PPI network, embedding particular functions in detected modules is investigated by
the function accuracy of modules, which is defined as the highest percentage of nodes within
a module that have the same function annotation from experimental data. As shown in
Fig. 2a, there are over 70% of modules with function accuracy higher than 0.5. It indicates
that members of most detected modules have the same annotated functions. The k-clique
percolation method has been proposed that could detect overlapped modules[5] and its

results for the yeast PPI network are also shown in Fig. 2a ~ 2d for comparison. Fig.



2a shows that the function accuracy for modules detected by k-clique percolation is higher
than those by the evolution strategy. However, members of a module may participate in
the activity of a biological process that is accomplished by various function proteins (as
illustrated in Fig. 3 and discussed below). Those low function accuracy modules often
participate in biological processes with hybrid function components. The results of k-clique
percolation appears to have a higher function accuracy only because it detects the strongly
connected parts of a network, but not the true modular structures. Fig. 2b and 2c¢ show that
our detected modular structures are consistent with real protein annotation data in module
size distribution and number of function distribution for proteins. Such agreement reveals
that both overlapping and hierarchical organizations of modularity are correctly captured.
In Fig. 2b, the percentage of small size detected modules appears to be a little higher than
the real data, but the agreement with the real data greatly improved when the unknown
function modules, whose members are mostly unknown function proteins, are neglected in
the statistics. Such unknown function proteins are clustered in modules, network-based
bioinformatic approaches are difficult to infer accurate functions to these proteins[27].

Fig. 3a and 3b show two low function accuracy modules corresponding to the well-
known cell cycle control and spindle assembly check point respectively. In Fig. 3a, it is a
dynamically regulated module which controls the progress of cell cycle process. The cyclin
dependent kinase(CDK) CDC28 sequentially binds and phosphorylates the cell cycle re-
entry cyclin CLN3, G;/S specific cyclins CLN1,2, S phase cyclin CLB5, Go/M transition
cyclins CLB1-4, to control the progress of cell division from G; — S — Gy — M. CDC28
binds to CLN3 to trigger the cell cycle process, then binds to CLN1, CLN2 promoting the
cell to bud. After budding, CDC28 phosphorylates CLB5 to begin DNA replication, and
mitosis follows the binding of CDC28 to CLB1-4. Finally, the two significant inhibitors
SIC1 and CDHI1 help the cell to return to G; state, to complete one cycle of cell division.
Although, the cell cycle controlling module is biologically plausible, but only 29.6%(8/27) of
proteins possessing the main function of budding in this module. Our result suggests that

the unknown function protein YPR174C in the cell cycle control module which is localized



at the nuclear periphery, it probably participates in the cell cycle controlling mechanism.
Fig. 3b shows the detected spindle check point module with function accuracy 0.455(5/11).
The biological signal was propagated from mitotic arrest deficient proteins MAD1, MAD2,
MAD3 to CDC20 and PDS1, then transmitted into cell cycle control module to accomplish
the function of spindle assembly checkpoint[28, 29].

We select the cell cycle to demonstrate how important accurate system-wide consistent
information of modules is for building the cellular machine of biological processes, especially
the signal transmission between functional subsystems. The complete cell cycle machine
can be dissected as a combination of several detected modules, including one controlling
module, cell size check point, DNA damage check point in G3/M and S phases, and spindle
assembly checkpoint (see Fig. 3c). DNA damage response experiment revealed that DNA
damage-induced DDC1 phosphorylation requires RAD24 protein, but RAD9 is not required
for DDC1 phosphorylation, supporting the notion that RAD9 and RAD24 act in different
pathways in DNA damage response[30]. The fact that RAD9 and RAD24 are located in two
different detected modules related to DNA damage further supports such an experimental
inference. It is worth-noting that our approach detected that the protein YDJ1 in the
cell size check point module interacts with cyclin CLN3 to trigger cell cycle entry. Such
a cell cycle triggering mechanism is consistent with the recent experimental discovery that
a growth-associated chaperone YDJ1 releases CLN3 from endoplasmic recticulum to enter
the nucleus and trigger the cell cycle event[31]. Although multi time scales are involved in
the cell cycle process, our results demonstrate that only by considering protein interaction
with typical subsecond time scale can still offer deep biological function knowledge about cell
cycle if accurate and system-wide consistent information on functional subsystems(modules)
was obtained.

The other application is on the neuronal network in C. elegans, it is the simplest
brain connectome with only 281 neurons. In a neuronal network, the synapse network
topology and bursting frequency of neurons are two important parameters to determine

its physiological functions. Here the effect of bursting frequency is not considered, the



connections of chemical synapses and gap junctions are all treated as undirected edges, the
excitatory or inhibitory nature of the synapses are also ignored, only the network structure
can already reveal significant bioloigcal infomation. The C. elegans neuronal network is
densely connected, its hierarchical and overlapping modularity organization is difficult to
solve and there is still no any satisfactory result up to now. For example, the k-clique
percolation method results in a single module for the whole neuronal network. Even the
methods of optimization of modularity could only detect four large disjoint modules, which
fails to understand their physiological functions[23]. Our theory detected 13 and 24 modules
at thresholds of 0.1 and 0.3 respectively, and the modules are heavily overlapped, which
means that each neuron is responsible for several functions. Fig. 4a, b show that common
module neurons in C. elegans are mostly distributed widely in the worm body, unlike the
mammalian network in which the same function neurons aggregate into cortical areas. The
neurons within a detected module are often of multi neuron types and distributed to several
ganglia (See Online Supporting materials Fig. S4.). It indicated that neurons in C. elegans
such primitive animals are responsible for more functions than advanced mammals.

Fig. 4c ~ f show several combinations of modules at a threshold value of 0.3, all of them
correspond to specific physiological functions with some of them observed in experiments.
Fig. 4c shows the detected modules can be identified as the sensorimotor modules. The
module enclosed by red lines has sensory functions, e.g thermosensation, chemosensation,
olfaction, etc. Most neurons in this module are amphids, and amphid interneurons. The
other module enclosed by blue lines is the sensory/motor module composed of sensory neu-
rons, ring interneurons and ring motor neurons. Its function is for transmitting the signals
detected by sensory module to nerve ring motor neurons and then to innervate muscles. The
thermotaxis, chemotaxis, olfactory behaviors of C. elegans are controlled by the sensorimotor
modules.

Thermotaxis is an interesting phenomenon in C. elegans in which the worm can track
along the isotherm of previously adapted cultivation temperature. The modules enclosed

by red and blue lines in Fig. 4c¢ are detected modules corresponding to thermosensation
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and sensorimotor behaviors. The hybrid modules control the isothermal motion of C.
elegans[32, 36, 33]. The detected hybrid modules can be further reduced to a simplified
neural circuit model of thermotaxis (Fig. 4d) by selecting key neurons with severe effects on
thermotactic phenotypes and motor neurons [32, 33|. Previous experiments revealed that
AFD, AWC are the primary and secondary temperature sensory neurons, AIY is responsible
for thermophilic motion and AIZ controls cryophilic motion. RIA integrates thermophilic
and cryophilic signals from ATY and AIZ to motor output[32, 33, 34, 35]. The thermal
sensory neurons in the simplified thermotaxis model are AFD(1,4), AWC(1,2), ASE(1,00),
ASG(1,1), ASI(1,1), ASH(00,1), where the first and second number in the parentheses are
the shortest path lengths from the sensory neuron to AIY and AIZ respectively, with oo
indicates unreachable. The smaller distance to AIY/AIZ indicates the stronger correlation
with thermophylic/cryophilic motion. Hence, our results indicate that AFD, AWC, ASE,
ASG, and ASI are the key driving neurons to trigger thermophilic pathway (AFD and AWC
that can trigger thermophilic pathway was previously observed in experiments[32, 33, 36]),
whereas ASG, ASI, and ASH are the key neurons to trigger cryophilic pathway.

Fig. 4e shows the hybrid modules corresponding to the physiological function of how
chemosensation correlates with egg-laying in C. elegans. Neurons enclosed by solid and
dashed lines are members of modules at threshold value 0.3 and 0.4 respectively. The
hybrid module is composed of three modules with the functions of chemosensation and egg-
laying(green line), tail motion(orange), and ventral motion(purple). It has been reported
that chemosensation could affect egg-laying rate in C. elegans[37], but little was known
about how the signals are being conveyed from chemoreceptors to egg-laying motorneurons.
The newly detected module enclosed by the green dashed lines in Fig. 4e suggests possible
pathways on how the signals are transmitted from amphids, via the nerve ring, then to
ventral cord and arrived at vulval motorneurons HSNL, HSNR, VC5, and VC4 in blue
shadowed region 2. It was known that mechanical stimulation such as vibration of culture
medium dish inhibits the egg-laying rate[37], this effect can be understood from mechanical

sensory neurons PVM, AVM, PLMR, PLML, ALML in light blue shadow region 1 in our
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detected chemosensation/egg-laying module. Our modular detection results can have more
subtle explanation on the functions of neurons. For example, the six hermaphrodite-specific
neurons VC1-6 in the ventral nerve cord can be subdivided into two groups[37]: vulval-
proximal VC4, VC5 and vulval-distal VC1-3, VC6 within blue shadowed region 3. VC4
and VC5 have direct synaptic output to vulval muscles, but VC1-3 and VC6 make fewer
neuromuscular junctions with vulval muscles, but have more junctions with ventral muscles.
In our modular detection results, VC5 belongs to chemosensation and egg-laying module,
VC1-3 and VC6 are in ventral motion module. The VC4 neuron is located in both modules.
This result is consistent from the anatomy experimental findings.

The hybrid modules in Fig. 4f correspond to mechanosensation. C. elegans lives in dirt
and eats bacteria, mechanical sensation is important for C. elegans to detect soil particles and
help to find bacterial food sources. Hermaphrodite has 30 mechanoreceptor neurons(MRNs)
that might be used to detect mechanical stimulation[39]. In the hybrid modules, the module
enclosed by red lines is for the function of body mechanosensation. It is composed of MRNs
and motor neurons in ventral and tail. The module enclosed by green lines corresponds to
head mechanosensation. Most members in this module are MRNs and motor neurons in
nerve ring. Neurons in the light blue shadow are the complete 30 MRNs in hermaphrodite.
Fig. 4g illustrates the locomotion hybrid modules, these 3 modules correspond to head,
ventral and tail motion respectively. Other neurons direct the synaptic outputs to these
three modules to perform locomotion in C. elegans.

To summarize, our proposed evolution strategy can infer biologically plausible functional
subsystems(modules) of a biological system at the system level. With the aid of accurate
multi-scale modules, subsystems for specific physiological phenomena can be easily extract
by combining relevant modules. In addition to network interactome data, integrating multi-
sources high throughput data consistently at the system level to infer real functional sub-

systems can accelerate the understanding in biology.
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METHODS

The adjacency matrix A is used to describe the topology of a network with A;; = 1 if
node j interacts with ¢, and otherwise A;; = 0. Each node ¢ is assigned with a functional
probability P(i) which is the weight for node ¢ to be classified into the o module. The
correlation of a node 7 with the o-module is measured by the quantity G defined as [25)]

and 3 Py AP [k,

T, fo
where nf,’ ) is the percentage of nearest interacting neighbors of node ¢ that belong to module
ZIPS)

(1)

o, k; is the degree of node i, f, = is the percentage of nodes belong to the ¢ module
in the whole network of a total number of N nodes. The robustness function R,;, defined
as the sum of G[(f(), over all nodes and modules, is used to measure the robustness of the

modularity organization,

Ry (PO P2, PM) =33 60 zzp APy /"? @)

Thousands of modularity variants with adequate values of robustness function are sam-
pled with different initial conditions. To sample the adapted modularity organizations, we
start from a randomly generated initial modularity organization, i.e. assigned arbitrary
functional probabilities P, to each node in the network. The robustness function Rj,; can
be calculated using this initial modularity organization. The functional probability is hy-
pothesized to be proportional to G[(f(),,

P(Z) _ fO’G((TZg'

o0 3
S ¥e0 (3)

Pa(i) would simply be proportional to f, if the modular structure is independent of the
network topology. The influence of modular structure by the network topology is taken into
account, through the hypothesis of Péi) x G((,Zg The functional probabilities are renewed by
Eq. (3) after the robustness function was calculated from initial functional probabilities for

each node. This process is repeated iteratively until the robustness function R,; is locally
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optimized. If the robustness function falls within the adapted region as shwon schematically
in Fig. 1b, then the corresponding functional probabilities are then used for figuring out the
memberships of modules. A node with functional probability P, > X\ is classified to the o
module, where X is the chosen threshold value.

In order to investigate the evolutionary conservation rate of these sampled modularity in
adapted robustness trade-offs, we first analyze the classification results for the obtained
adapted modularity realizations at threshold 0.1 and identify the so-called co-clustered
groups. The constituents of a co-clustered group are nodes with high functional probabilities
to be frequently classified into the same modules, here we set the threshold for co-clustered
groups as 0.7, these co-clustered groups constitute the functional modules in the lower level.
The classification component for a co-clustered group is defined as the component of func-
tional probability used for figuring out the members of the corresponding co-clustered group.
Suppose that the classification components corresponding to each co-clustered groups are
o1, O2,..., Om, the community probability II) (1) of the node i at the [*" trial was defined
as the collection of functional probabilities for the node in classification components cor-
responding to each co-clustered group, I1%) (1) = (Pﬁ), PO PU(Q) With a total of L
trials, the community probability is then averaged over all sampled suboptimal modularity
organizations, (II) = % Zlel 1@ (1). Finally, this resultant average community probability
is used for figuring out members of each detected modules, i.e. nodes are assigned to mod-
ules o if the o-component of (II¥) > X. The modular classification result is independent of
the number of modules for the initial modularity organization as long as it is taken to be
sufficiently large.
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FIG. 1: Schematics illustrating how overlapping modules can be detected at multi-scales.
(a) Module A containing a co-clustered group with classification component oy. There
are three submodules A.1, A.2 and A.3 within A with classification components o1, 09, 03
corresponding to these three co-clustered groups. Usually, the community probabilities
in components oy, 09,03 are larger than that of component oy. The multi-scale modular
structures can be obtained as the threshold is being varied from low to high values. (b)
Modules were driven to have higher value of robustness function R, if they were adapted
for a sufficiently long time. Only modularity organizations with adequate value of robustness
function are advantageous in surviving for cells. Too high or too low value of robustness is

harmful for survival.(see also the supporting information).

FIG. 2: Consistency of detected modular structure and real protein annotation data in yeast
PPI network. The results of k-clique percolation method are also shown for comparison[5].
(a) Most modules detected by evolution strategy have the main functions, which means that
our detected modules are functional units. The results of k-clique percolation appears to
have a higher function accuracy only because it detects the strongly connected parts of a
network, but not the true modular structures. k-clique percolation, like other methods, fails
to be able to recognize the pathways and signal triggering entries of biological processes:
over half of the proteins detected in yeast are without modular classification (See supporting
information Table SI). (b) The consistency of detected modules and real data in modular
size distribution reveals that the true hierarchical organization was captured, while results of
k-clique percolation method deviates a lot. (c¢) Evolution strategy classification membership,
i.e. number of modules that a node participated, agrees well with the data on the distribution
of number of functions for proteins, but k-clique percolation method does not. It indicates
that the overlapping structures of modules was correctly uncovered. (d) The average number
of functions for proteins with given node degree k agrees well with real annotation data for
degree k < 20. The strong fluctuation for degree £ > 20 is due to the low number statistics

of these proteins.
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FIG. 3: Examples of detected modules in yeast PPI network. (a) The Gy, S, Gy, M
phase cyclins CLN3, CLN1,2, CLB1-5 and two significant inhibitory proteins SIC1, CDH1
are included in the cell cycle control module except CLB6 which is absent from the DIP
core data set. CDC28 binds to different phase cyclins to control the progress of cell cycle.
The main function of this module is 43.01.03.05, the budding, cell polarity and filament
formation, only 29.6%(8/27) of proteins within this module possess this function. Such a
low function accuracy is due to the hybrid functions nature in the cell cycle progression
control process. (b) Another example of low function accuracy module is a module that
functions as the spindle assembly check point. The main function is cell cycle check points
10.03.01.03 with function accuracy 45.5%(5/11). (c) The complete cell cycle process in
budding yeast is composed of the cell cycle control, cell size check point, DNA damage
check point and spindle assembly check point modules. The signal of spindle assembly check
point starts from MAD1, MAD2, MAD3 to CDC20 and PDS1, then entering into the cell
cycle control module to trigger the check of spindle assembly[28, 29]. From the cell size
check point module, cell growth triggers the cell cycle process by sending signal from YDJ1
to CLN3.
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FIG. 4: Detected modules in C. elegans neuronal network reveal significant pathways of
physiological phenomena. (a) Soma positions(projected onto the AP axis) for each neuron
for the 24 modules detected at threshold 0.3. (b) Average soma position of neurons within
each module for the 24 detected modules at threshold 0.3. (c¢) Sensorimotor modules. Six
types of neurons are colored coded[38]: Red: amphids, Orange: other sensory receptors in
head, Brown: motorneurons in the nerve ring, Purple: motorneurons in ventral cord, Yellow:
neurons in tail ganglia, Green: egg-laying neurons. Neurons that belonged to two of the
above six types are in Pink, neurons that belonged to three of the above six types are in
Light blue, neurons that belong to none of these six types are in Grey. Neurons belonging
to other modules were grouped into a circle at the right lower corner, in e~g are similar.
(d) Model neural circuit for thermotaxis in C. elegans. The chemical synapses and gap
junctions are represented in directed and undirected edges respectively. The self undirected
edge of a neuron class correspond to gap junctions between left and right neurons within this
neuron class. Sensory neurons, interneurons and motor neurons are represented by triangles,
squares and circles respectively. (e) Chemosensation/Egg-laying modules: neurons enclosed
by green, orange and purple lines are members of Chemotaxis-Egg laying, tail motion, and
ventral motion modules respectively. Neurons in blue shadowed region 1, 2, 3 are mechanical
sensory, vulva motor and ventral motor neurons respectively. The neurons enclosed by green
dashed lines is the submodule at threshold 0.4, which suggests previously unknown pathways
of how signals are conveyed from amphid receptors to motorneurons HSNL, HSNR, VC5
and VC4 which innervate vulval muscles and modulate the egg-laying rate. (f) Head and
body mechanosensory modules: neurons located within the light blue shadow are the 30
mechanoreceptor neurons in hermaphrodite[39]. (g) Locomotion modules: three modules
corresponding to head, ventral and tail motion which cooperate to perform locomotion in

C. elegans.
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Modularity approach to decipher functional organization
of neural system in C. elegans

Jiun-Yan Huanql(:F‘:[[ fa) |, Pik-Yin Laiz(ffff@?ﬁé?f)

! Department of Bioinformatics, Chung Hua University, Hsin Chu 300,
Taiwan, R.O.C
2 Department of Physics, Graduate Institute of Biophysics
and Center for Complex Systems, National Central University,
Chung-Li 320, Taiwan, R.O.C

C. elegans is a primitive model organism for neural system study. There are
302 neurons distributed from head to tail in C. elegans. The connectivity data had
been assembled by J.G White et al. in 1986[1]. In the past ten years, the rapidly
developed of complex network theory helps one to analyze subcellular molecular
networks and neuronal networks. This connectivity data of C. elegans was
analyzed via complex network approach by Lav R. Varshney et al.[2]. From
connectivity to functionality becomes one of the most challenging and important
issues in C. elegans neuroscience. However, a satisfactory method to unravel
hierarchically modular structure of neuronal network is still lacking.

Here, we developed an evolution-based method to detect modular structure for
C. elegans neuronal network. Our theory could detect overlapping modules at
multi-scale in a network, which is appropriate to apply to hierarchically organized
neuronal network system. From our results, functions of several modules can be
recognized, e.g sensory, nerve ring motor, locomotion, chemosensation /egg-laying,
mechanosensation, etc.. Furthermore, higher level organization of physiological
behaviors, such as how chemosensation affects egg-laying rate, thermotaxis
physiological behavior, were successfully resolved by interactions of these
modules. Hence, our theory offers a systems way to decipher functional
organization of neural system from connectivity data.
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