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Abstract

Boundary Element Method (BEM) is
employed in this project for three years to
get a dgnificant result about weight
reduction of the rescue robot. First of all we
focus on the circular ring which is the most
popular specimen in the rescue robot to
demonstrate that the location of a crack can
strongly affect the sequence of plastic hinge
development which in turn affects crack
stability of a structure. A specific example
of an eadtic-plastic ring loaded with
diametrically opposite concentrated loads is
employed to investigate these effects. In fact,
thering will collapse if the number of plastic
hinges is up to four. In addition, the stress
analysis in the supporting frame of the
rescue robot is aso finished. The next step is
the weight reduction of the largest portion of
the rescue robot, i.e, the lateral plate
without causing the strength of it by using
the Boundary Element Method. The
dynamica loading conditions are performed
before and after weight reduction. The
numerical results of the stress distribution
and the plastic deformation along the center
line (interface) of the lateral plate show that
the weight of the plate is reduced to two
thirds of the original and the endure limits of
the plate before and after weight reduction
are aimost the same and therefore, will not
lower the strength of the plate. The final step
of the project isto replace the material of the



gears of the rescue robot from Aluminum
Alloy (Young’s modulus 72GPa, density2.7
glem® ) by Polyaceta (POM) (Young’s
modulus 2.5 GPa, density 1.42 g/cm® ) and
therefore, reduce the weight of the rescue
robot to three quarters of the original weight.

Keyword: Boundary Element
Polyacetal (POM).

M ethod,

~ ~ Background

The first step in the BEM solution is to
divide the specimen into two bodies,
referred to below as the interface. The
interaction between the two bodies is
included through boundary conditions
relating the displacements and stresses on
either side of the interface, i.e, the 2
displacement components and the 2 stress
components must be continuous. Thus, at
each pair of points on the interface we have
four conditions involving eight quantities.
Four of those are eliminated agebraicaly
using the boundary condition, thus leaving
four unknowns at each pair. Two coupled
boundary integral equations, written as a
function of position on the boundary of a
body, enforce all of the field equations of
elasticity for that body. The two equations
for each of the two artificially divided
bodies are applied to each discrtized point
on the interface, thus giving four equations
and four unknowns at each pair of interface
points. If the boundary of either of the
artificially divided bodies consists of other
than common interface, then at each of these
boundary points there are four boundary
quantities to be accounted for. The only
condition we have used on these external
boundaries has been prescribed stress, thus
leaving the two displacements as unknowns,
with two equations provided by that body’s
two boundary integral equations. The BEM
consists of the discretization of the boundary
surfaces and the numerical approximation of
the boundary quantities in the set of
equations obtained from boundary integrals
as described above. We model the boundary,
using straight-line elements, centered about
nodes at which the integra equations are

applied in [1]. For straight boundary this
introduces no approximations. We assume
that the stress and displacement are
constants resulting in integrals of the known
2D Green’s function which have been
evaluated in closed form in [1]. The fina
result is a system of simultaneous linear
algebraic equations for the unknowns nodal
displacements and stresses.

It is known theoretically in [2] that the
elastic-plastic  analysis of  daticaly
indeterminate structures of long Sender
members in bending, from first yield to limit
load, involves a sequential formation of
plastic hinges at intermediate loads. The
total member of plastic hinges becomes the
degree of statical indeterminacy plus one at
collapse. The objectives of this research to
demonstrate that the location of the crack
can strongly affect the sequence of plastic
hinge development numerically, as well as
the crack location, affects crack stability.
With these objectives in mind, the analysis
shall proceed to establishing the BEM codes
for development of the first, second, and
third plastic hinges, respectively.

Earthquakes are so frequently in the
world recently which always causing serious
damage of the buildings, properties, and
injury and death of peoples. Rescue robots
with light, thin body are therefore needed in
small space of the disaster scene. During
weight reduction process the strength of the
rescue robot is also evaluated. Severa
papers show the potential applications of the
BEM code to crack problems. Ghorbanpoor
and Zhang [1] point out that the accuracy of
the BEM prediction is satisfactory when it is
compared with results from a finite element
solution with very fine mesh and with the
analytical solution. Tan and Gao [2] show
the powerful application of the BEM in the
analysis of biomaterial interface crack
problem. Lih-jier Young [3] show the
powerful application of the BEM in rough
contact mixed mode with the plastic crack
tip problem and gives the accuracy up to
98.11%. Boundary element method is used
to model the complex resistance to the
applied field of the latera plate of rescue



robot to find the stress distribution along the
interface. The outlook and dimension in mm
of the plate are shown in Fig. 1. Paper in [4]
also shows the potential application of the
BEM determining the effect of crack face
roughness in a redistic experimenta
specimen. The maximum allowable stress of
the plate is defined by both the normal and
the shear stress of first point along the
interface reach the yield stress oy and 7y,

respectively, where ¢ y:cy/\/é. The plastic
displacement of the interface is obtained by
increasing the loading of the plate after the
first point yield. Keep increasing the loading
and we can get the plastic displacement of
the interface.

In fact, the physica and mechanical
properties of Polyacetal (POM) are quiet
excellent. Due to these properties, i.e., low
wear rate and small friction coefficient (0.1
~ 0.3) POM can be effectively applied in the
gear (Figure 10) and bearings in the
occasion to be a high degree of wear. POM
with high rigidity, high strength, and fatigue
resistance has similar properties as of the
soft metal which can be applied occasionally
to replace the soft metal.

= ~ Reaults

The ring and its loading are doubly
symmetric and the crack is located by from
the horizontal asin Fig. 1. The mean radius
of thering is R and its radial thickness is t,
and it is assumed to be of uniform unit
thickness perpendicular to its plane. P is the
load and locates any section around the ring
from the horizontal. It is assumed that the
ring is long and slender, R/t >10, so that
deformation due to in-plane bending is the
only significant deformation. The present
model is discretized into 260 points and 4
regions (11-14) of different types of boundary
conditions for the cracked ring shown in Fig.
2. As mentioned in [1], the cracked body is
divided into two parts by By (y=212)
denote the boundary traction and
displacement components, respectively; and
I; the crack region and I, the ligament region
of the interface. The boundary condition of

I, must satisfy the continuity of the stresses
and displacements on either side of the
interface, i.e., (2t1)|2= —(1t1)|2, and (2t2)|2= -
(1t2)12, (2Un)i2= — (1Ur)i2, @nd (2U2)12= — (1) 12-
The unknowns are (1t1)|2, (1t2)|2, (1U1)|2 and
(1U2)12. The boundary conditions for open
crack 11 and the free surface I, are zero
stress, i.e., (y t)in1a= —(y t2)i14 =0and the

unknowns are (, Ui)iria and (, Uizs,

where y =1,2 depending on whether that
portion is By or B,. The unknowns boundary
components can be obtained by using the
Gaussan  eimination  method  after
converting boundary conditions into the
final matrix form. As a first approximation
of the moments in a cracked elastic ring, the
internal moments, My, in an “uncracked”

ring is used. Table 1 shows the comparison
of the theoretical resultsfor M,/PR inthe

uncracked ring with the numerical one
(BEM modédl). It is quiet clear that the
numerical accuracy M,/PR goes from

91.18% at 0 =60° to 99.13% at 6 =30°. It

is noted that according to [2] for a/t =0.3,

the relaxation of moments caused by the
crack’s elastic stiffness reduction is 4% or

less, but for deeper cracks such as a/t = 0.5,

the relaxation is as much as 30%. We can
get the same result by inspecting Table 2
and comparing it with Table 1 for the BEM
values.

(- ) Development of the first plastic hinge
As mentioned in [2], if we want to find the
load, P, a which the first hinge forms and
its location, it is denoted that the ring can be
analyzed as completely elastic up to that
load. As a first approximation of the
moments in a cracked elastic ring, the
internal moments, My, inan  “uncracked”
ring is used. The eastic solution for the
uncracked ring gives the results for
M,/PR in Table 1. However, the crack

reduced the stiffness of the ring at the
cracked section, causing a redistribution of
the moment in the ring and is analyzed by
the superposition in [2] and the BEM
methods. In finding the first hinge location it



is worthy to be mention that we have to add
one more boundary between the outer and
the inner boundaries of the ring as shown in
Fig. 3. Therefore, we can compute the
resulting moment at each nodal point of the
new boundary and then get the location of
the maximum moment (first hinge). The
model is discretized into 256 points and 4
regions (I;- Is) of different types of
boundary conditions. As described above I
is the crack region and I, Is are the ligament
regions of the interface. The boundary
condition of 1, and Is must satisfy the
continuity of the stresses and displacements
on either side of the interface, i.e,

(2t)izis=— (at)izis and  (at2)izi5= — (1t2)i2;s,

(2U)i215= — (1U1)i2,5, and (2U2)i2,15= — (1U2)i2,i5.

The unknowns are (1t1)i2,5, (1t2)i215, (1U1)i25
and (1U2)12;5. The boundary conditions for
open crack |; and the free surface |4 are zero

stress, i.e., (yt1)|1,|4= —(yt2)|1,|4 =0 and the
unknowns are (, Uiia and (., Uziia,

where y =1,2 depending on whether that
portion is By or B,. The unknowns boundary
components can also be obtained by using
the Gaussian elimination method.

Table 2 shows the comparison between
the theoretical and the BEM values of M/PR
for different a/t and « =0°. It has been seen
that the accuracy is in the range of 93.24%
to 99.99%. It has been assumed in [2] that
the crack is into the inside or outside of the
ring, so that it is on the tension side for each
location. Also notice that the first hinge
occurs at the crack location, when that
location is at arelatively high moment in the
uncracked ring, that is 6=0° to 15°and
0 =75° to 90°. However, for locations with
relatively low moment, the first hinge forms
at the maximum moment location, 6 =90°.
Finally, it is noted that the first hinge load P;,
is affected appreciably only when the first
hinge forms at the crack location. Upon
comparing the values of M/PR in Table 2
with Table 1, the effects of changes of
elastic moment stiffness of the “cracked
element” are also noted to be appreciable
only when the crack is placed at arelatively
high moment position. Of course, this effect

would increase with larger a/t vaues
(a/t=0.3 in Table 2), but for this example it
isreally quite small.
(= )Development of the second plastic hinge
In an uncracked ring, the second hinge
development at the same time as the first
hinge, a the load points or points of
maximum moment. Agan the elastic
superposition in [2] and the BEM methods
can be used even though a first hinge is
already formed. The boundary conditions of
the hinge point are just set the values of the
two stress components which leave the two
displacements unknown. Table 3 has been
prepared theoretically and numerically. The
accuracy is in the range of 70.06% to
99.99%.
(=) Development of the third plastic hinge
Once again, the formation of the full
analysis at the instant of development of the
third plastic hinge can be done using the 2D
BEM method as above. For the border
perspective, it is more relevant to combine
Table 2-4 into a composite of the sequence
of hinge formation as affected by the crack
location. This is given as Table 5. The
notations, 1 through 4, indicate the first
through fourth hinges formed, respectively.
The notations, 2, 3, and 3, 4 indicate
simultaneous formation of two hinges,
symmetric case of no crack. Indeed, the
widely varied pattern of the sequence of
hinge formation in Table 5 is quite
surprising. Simply, the change of the crack
location (for a given crack size, a/t=0.3, and
ring slenderness ratio, R/t=10) causes this
wide variation in the pattern. Moreover,
expect for having the crack at the load point,
a=90 °, the relative loads for hinge
formation do not vary greatly (less than 10%
except for the first hinge fora = 75°0L1, near
the load point). This seems quite surprising
in view of the wide variety of hinge
sequences.
(= )Development of the fourth plastic hinge
Theoretically as in [2], the fourth (last)

hinge forms either 180°Jor 0°[1, which

means that an elastic path connects the load
points up until the fourth hinge forms. Since



this method computes the elastic bending
moments on that elastic path, the relative
load point displacements can easily be
computed for each successive hinge
formation load, including the fourth hinge.
Thus, a compl ete |oad-displacement diagram
may be constructed, since that diagram is
linear between successive hinge formation
loads. Figure 5 shows the supporting frame
of the rescue robot which is discretized into
222 nodal points and 6 regions (I1- 17) of
different types of boundary conditions. As
mentioned before, The boundary conditions
of I are (ot1)i2= — (1t1)i2, and (ot2)i2= — (1t2)i2,
(2ur)iz=— (1U1)12, and (2U2)12=— (1U2)12 and
the unknowns are (it1)i2, (it2)i2, (1U1)i2 and
(1U2)12. The upper and right pins are assumed
fixed. A compressive load is applied through
the lower pin in the positive x; direction by
assuming a uniform distribution of normal
traction over 90° of lower pin hole surface,
I.e., points 214, 215, 216, 217, and 218 (14).
Therefore, the boundary conditions of these

points are (t1)2=pcosB; and (,t2)2=psSiné;.

The unknowns are (2U1)|4 and (2U2)|4, where P
is applied normal stress on the lower hole

and @, is the angle between the direction

normal of each node and x;-axis. The
boundary conditions of the freesurface Is are
(,t)is=—(, s =0, and the unknowns

are(, U1)is and (, U)is. In order to have zero

shear stress on the hole, the horizontal
displacement component of points 110, 111,
98, 99, 220, 137, 138, 139 and 140 (I6) is
taken to be zero and their two traction

componentsare related by tan@,, where6; is

the angle between the direction normal and
Xp-axis, in order to have zero shear stress on
the hole. Hence the boundary conditions for
points on 16 in the upper haf plane

are(1U)is =0, (1t2)is = (at1)istan 82 and the

unknowns are (2U2)is, (2t1)is. Point 97 (17) is
totally fixed point. The boundary conditions
of this point are (1u1);7=(1u2);7=0 and the
unknowns are (1t7)|7, (1t2)|7. This
combination of boundary conditions results
in a free body diagram of the form given in

Figure 5(b). The unknowns boundary
components can be obtained by using the
Gaussian €imination method. Figure 6
shows the displaced position of the interface
of the specimen. The magority of the
displacement shown is norma to the
interface and the motion paralel to the
interface cannot be seen on the scale shown
in this figure. It can be seen, and expected
from Figure 5(b), that the ligament portion
of the interface is rotated about 0.01°
counterclockwise from horizontal.
(7 ) Dynamica Loading Conditions before

Weight Reduction of Lateral Plate

As discussed in [5], the first step in the
BEM solution is to divided the
homogeneous medium into two bodies B,
(y =1,2) dong the center line which we call
the interface as shown in Fig. 8(a). The
interaction between the two bodies included
through boundary conditions relating the
displacements and stresses on either side of
the interface. Let ,t and u; ( y=12
andi =1,2) denote the ith boundary traction
and displacement components, respectively,
on the boundary of B,. The present model is
discretized into 648 nodal points and 4
regions (I, 14, Is, and lg) of different types of
boundary conditions shown in Fig. 8(a). The
interface is denoted by I,. At points on this
region the 2 displacement components and 2
stress components must be continuous.
Therefore, the boundary conditions are

(2t1)|Z = _(1t1)|2 and (2'[2)|2 :_(1t2)|2 .
(2ul)|2 :(1u1)|2 and (2“2)|2 :(1u2)|2 . This
leaves (1t1)|2 ) (1'[2)|2 , (1u1)|2 and (1uz)|2 ,» &5

the unknowns. Compressive loads are
applied through the six pins as in Fig. 9(a)
by assuming a uniform distribution of

norma traction over 90 ° of pin hole
surfaces (lg). Therefore, the boundary
conditions of these points

ae(,t), =pcosd® and (,t,), =psino.
The unknowns are(, u;), and(,u,), , where

p is applied norma stress on the six holes
and 0 is the angle between the direction
normal of each node and x;-axis as in Fig.



8(a). A concentrate load is aso applied
through lower haf plane point 110 (l45) The
boundary conditions are (t,),, =p ,

(zJ[1)|4 :(2t2)|4 :(11:1)|4 =0 and the
unknowns are (,u;),, and (,u,), . The

boundary conditions of the free surfaces (Is)
ae(,t,), =(,t;),, =0, and the unknowns

ae (,u), and (,u,),  , where y=1or 2

depending on whether that portion of Isisin
B; or B,. Once the points on the interface
yield (Ig) in shear direction the boundary

conditionsare(,t,), =ay/\/§,(2t1)|8 ==

O'y/\/5 ' (1t2)|8 = _(2t2)|8 and (1uz)|8 :(2u2)|8 :
The unknowns are(,t,), , (W), , (U),
and (,u), . For the case both the normal
and shear directs yield the boundary
conditions are (;t,), = o/ V3,

G, =— o V3,

(2'[2)|8 =~ Oy.

The BEM consists of the discretization
of the boundary surfaces and the numerical
approximation of the boundary quantities in
the set of equation obtained from the
boundary integrals. We model the boundary,
using straight-line elements, centered about
nodes at which the integrals of the 2D
Green’s function as in [6]. The final system
of simultaneous linear algebraic equations
for the unknown nodal displacements and
stresses, can be obtained by using Gaussian
elimination method.

Figure 10(a) shows the shear stress
distribution along the interface. It can be
seen that the shear stress of point 100
reaches the yielding criteria in (300 MPa)
with the applied load p=-54 MPa

However, the normal stress as shown in Fig.
11(@) is not yield yet. We can Kkeep
increasing the applied load to p=-7.1Mpa
until the normal stress of point 100 reaches
the yielding criteria (520 MPa) as in Fig.
12(a). There are three points, i.e., 100, 99,
and 98 yield in shear direction at this
moment as shown in Fig. 13(a). Both the
shear and normal stresses reach the yielding

(1t2)|8 = O-y and

criteria of points 100, 99, 98, and 97 as in
Figs 14(a) and 15(a), respectively, when
applied load is up to— 7.3MPa. Figures 16(a)
and 17(a) show the plastic displacements
both in shear and normal direction of the
four yielding point mention above.
(= ) Dynamica Loading Conditions after
Weight Reduction of Lateral Plate

The modd for the weight reduction
lateral plate model is discretized into 904
nodal points and 4 regions (2, 14, Is, and le)
of different types of boundary conditions
shown in Fig. 8(b). All boundary conditions
remain the same as described above. In
addition, two rectangular regions with the
size 80x 46mm? have been cut as shown in
Fig. 8(b) which reduce the mass of the plate
from 3 kg to 2 kg. The boundary conditions
of the inner free surface are the same as the
outer one (Is). The fina system of
simultaneous linear algebraic equations can
aso be obtaned by using Gaussian
elimination method.

Figures 10(b) and 11(b) show the stress
distribution along the interface. It can be
seen from 10(b) that the shear stress of point
228 reaches the yielding criteria in (300
MPa) with the applied load p=-4.4MPa.
However, the normal stress as shown in Fig.
11(b) is not yield yet. We can keep
increasing the applied load to p=-5.7 Mpa
until the normal stress of point 111 reaches
the yielding criteria (520 MPa) as in Fig. 12
(b). There are three points, i.e., 111, 112, and
228 yield in shear direction at this moment
as shown in Fig. 13(b). Both the shear and
normal stresses reach the yielding criteria of
points 111, 112, and 228, as in Figs 14(b)
and 15(b), respectively, when applied load is
up to—6.0 MPa. Figures 16(b) and 17(b)
show the plastic displacement both in shear
and normal direction of the four yielding
point mention above.

(=) Stress Anadysis of POM Gear with a
Crack

There are mainly six different kinds of
gear in the rescue robot, i.e., 15T, 22T, 40T,
46T, 65T and 723 mm OT. The results shown
here is the 46T with pitch circle radius, 24
mm addendum circle radius, 11mm root



radius and 20 pressure angle as shown in
Fig. 18. The present model is discretized
into 600 nodal pointsand 4 regions (I4, 12, I3,
and 1s) of different types of boundary
conditions shown in Fig. 19. The interface is
denoted by I,. At points on this region the 2
displacement components and 2 stress
components must be continuous. Therefore,
the boundary conditions are

(2'[1)|2 = _(1t1)|2 and (2'[2)|2 :_(1t2)|2 1
(2ul)|2 :(1u1)|2 and (2'~'|2)|2 :(1U2)|2 . This
leaves (1t1)|2 ) (1'[2)|2 ' (1'~'|1)|2 and (1'~'|2)|2 ,» &5

the unknowns. Compressive load p is action
in the direction of line of action shown in
Fig. 18. Therefore, the boundary conditions
of these points are (i), = pcosoO

and(;t,),, = psin@, wheredis the pressure

angle of the gear. The unknowns
ae (;u),, and (uy),, . The boundary

conditions for open crack 1; and the free
surface s ae zero  stress,  i.e,
(y t1)|;|_,|5= —(y t2)|;|_,|5 =0 and the unknowns

ae (y U1)|;|_,|5 and (y U2)|1,|5, Wherey =1for I

and y =1,2for Isdepending on whether that

portion is By or B,. The unknowns boundary
components can also be obtained by using
the Gaussian elimination method.

Both Figs 20 and 21 show the opening
and shear displacements of the crack of the
gear with different materials, respectively.
It is obviously that the POM displacement
of the crack is much larger than the
Aluminum Alloy. Stress singularity at the
crack tip is clear shown on Figs 22 and 23
for normal and shear stresses, respectively
nevertheless the materials are different.
The mode | and mode Il stress intensity
factors can be calculated according to the

formula
2u G |2
L BSE g

where u(X;) is the displacement of the crack
tip element, G is the shear modulus, X; is
the coordinate of the crack tip element.The
value of kis4(l-v) .for plane strain and

for plane stress, v is the Poisson
1+v

Ratio. The results shown on Figs 24 and 25
show both the values of K, and K, are
much larger for POM gear than Aluminum
Alloy gear even the weight of POM gear is
much lighter.

P ~ Conclusions

The sequence of plastic hinge
formation of a cracked circular ring is
investigated by using 2-D boundary e ement
method as the numerical portion to support
the theoretical one in [2]. In addition, the
stress analysis of the supporting frame of the
rescue robot is aso finished. It can be seen
from the results mentioned above that the
weight of one lateral plate of the robot have
be reduced 1 kg of mass (from 3 kg to 2 kg)
but won’t lower the strength that much.
(alowable stress is reduced from—7.1MPa
to—5.7 MPa). The total mass of one rescue
robot may be reduced at least 2 kg after
weight reduction and therefore, can moves
nimbly during the rescue process. The
specimen made of POM is much lighter than
Aluminum Alloy and of course will provide
a lighter robot. However, the strength of the
specimen may be lowered and therefore,
some portion of the specimen with heavy
loadings will damage very easily. In fact,
how to replace the heavy loading portion of
POM specimen by Aluminum Alloy is the
next topic of this research.
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NUMERICAL APPLICATION IN WEIGHT REDUCTION OF LATERAL
PLATE OF RESCUE ROBOT

Lih-jier Young
Department of Applied Mathematics, Chung Hua University
No. 707 Section Il, Wu Fu Road, Hsin Chu City
Taiwan 30012, R.O.C.
young@chu.edu.tw

Keywords: Boundary Element Method

Abstract. In general, weight reduction will aways lower the strength of the specimen. The
primary purpose of this paper is weight reduction of lateral plate of rescue robot without
causing the strength of it by using the Boundary Element Method (BEM). The dynamical
loading conditions are performed before and after weight reduction. The numerical results of
the stress distribution and the plastic deformation along the center line (interface) of the
lateral plate show that the endure limits of the plate before and after weight reduction are
almost the same and therefore, will not lower the strength of the plate.

Introduction

Earthquakes are so frequently in the world recently which always causing serious
damage of the buildings, properties, and injury and death of peoples. Rescue robots with light,
thin body are therefore needed in small space of the disaster scene. During weight reduction
process the strength of the rescue robot is aso evaluated. Several papers show the potential
applications of the BEM code to crack problems. Ghorbanpoor and Zhang [1] point out that
the accuracy of the BEM prediction is satisfactory when it is compared with results from a
finite element solution with very fine mesh and with the analytical solution. Tan and Gao [2]
show the powerful application of the BEM in the analysis of biomateria interface crack
problem. Lih-jier Young and Tsai [3] show the powerful application of the BEM in rough
contact mixed mode with the plastic crack tip problem and gives the accuracy up to 98.11%.
Boundary element method is used to model the complex resistance to the applied field of the
lateral plate of rescue robot to find the stress distribution along the interface. The outlook and
dimension in mm of the plate are shown in Fig. 1. Young [4] also shows the potential
application of the BEM determining the effect of crack face roughness in a redlistic
experimental specimen. The maximum allowable stress of the plate is defined by both the
normal and the shear stress of first point along the interface reach the yield stress oy and 7 y,

respectively, where r y=c,/ V3. The plastic displacement of the interface is obtained by
increasing the loading of the plate after the first point yield. Keep increasing the loading and
we can get the plastic displacement of the interface.

Dynamical L oading Conditions before Weight Reduction

As discussed in [3], the first step in the BEM solution is to divided the homogeneous
medium into two bodies B, (y =1,2) along the center line which we call the interface as
shown in Fig. 2(a). The interaction between the two bodies included through boundary
conditions relating the displacements and stresses on either side of the interface.
Let t;and u, (y=12 andi=12) denote the ith boundary traction and displacement
components, respectively, on the boundary of B,. The present model is discretized into 648
nodal points and 4 regions (I, 14, Is, and lg) of different types of boundary conditions shown



in Fig. 2(a). The interface is denoted by I,. At points on this region the 2 displacement
components and 2 stress components must be continuous. Therefore, the boundary conditions
ae (2J[1)|2 = _(1t1)|2 and (2'[2)|2 :_(1t2)|2 ' (2'~'|1)|2 :(1U1)|2 and (2'«'2)|2 :(1U2)|2- This leaves

Gt), s (), W), and(u,), , as the unknowns. Compressive loads are applied through

the six pins asin Fig. 3 by assuming a uniform distribution of normal traction over 90° of pin
hole surfaces (I¢). Therefore, the boundary conditions of these points are(, t,), = pcos6 and

(,t2),, = pSin@ . The unknowns are(, u,), and(,u,), , where p is applied normal stress on

the six holes and@is the angle between the direction normal of each node and x;-axis as in
Fig. 2(a). A concentrate load is also applied through lower haf plane point 110 (I;) The
boundary conditions are (it,),, =p , (), =(t,),, =(.,),, =0 and the unknowns

are(,u,),, and(,u,), . The boundary conditions of the free surfaces (Is) are(,t,),. =(,t,),. =0,
and the unknowns are(,u;),_ and(,u,),_, wherey =1or 2 depending on whether that portion of
Is isin By or B,. Once the points on the interface yield (Ig) in shear direction the boundary
conditions are(;t;),, = Gy/\/é (b)), == oy V3, (i), =—(ty),, and ((u,),, =(;U,),, . The
unknowns are(,t,), , (W), , (Uy),, and (,u), . For the case both the normal and shear
directs yield the boundary conditions are(,t,), =oy/v/3, (,t,), =-oy/v/3, (it,), =0y and

(2'[2)|8 = —Oy.

The BEM consists of the discretization of the boundary surfaces and the numerica
approximation of the boundary quantities in the set of equation obtained from the boundary
integrals. We model the boundary, using straight-line elements, centered about nodes at which
the integrals of the 2D Green’s function as in [4]. The final system of simultaneous linear
algebraic equations for the unknown nodal displacements and stresses, can be obtained by
using Gaussian elimination method.

Figure 4(a) shows the shear stress distribution along the interface. It can be seen that the
shear stress of point 100 reaches the yielding criteria in (300 MPa) with the applied
load p = -5.4 MPa. However, the normal stress is not. We can keep increasing the applied
load to p = —7.1Mpa until the normal stress of point 100 reaches the yielding criteria (520
MP4). There are three points, i.e., 100, 99, and 98 yield in shear direction at this moment as
shown in Fig. 5(a). Both the shear and normal stresses reach the yielding criteria of points 100,
99, 98, and 97 as in Figs 6(a) and 7(a), respectively, when applied load is up to— 7.3MPa.
Figures 8(a) and 9(a) show the plastic displacements both in shear and normal direction of the
four yielding point mention above.

Dynamical L oading Conditions after Weight Reduction

The model for the weight reduction lateral plate model is discretized into 904 nodal
points and 4 regions (I, 14, Is, and Ig) of different types of boundary conditions shown in Fig.
2(b). All boundary conditions remain the same as described above. In addition, two
rectangular regions with the size 80x 46mm? have been cut as shown in Fig. 2(b) which
reduce the mass of the plate from 3 kg to 2 kg. The boundary conditions of the inner free
surface are the same as the outer one (Is). The final system of simultaneous linear algebraic
equations can also be obtained by using Gaussian elimination method.

Figures 4(b) and 5(b) show the stress distribution along the interface. It can be seen from
4(b) that the shear stress of point 228 reaches the yielding criteria in (300 MPa) with the
applied load p = -4.4MPa. However, the norma stress is not. We can keep increasing the

applied load to p =-5.7 Mpa until the normal stress of point 111 reaches the yielding criteria



(520 MPa). There are three points, i.e, 111, 112, and 228 yield in shear direction at this
moment as shown in Fig. 5(b). Both the shear and normal stresses reach the yielding criteria
of points 111, 112, and 228, as in Figs 6(b) and 7(b), respectively, when applied load is up
to— 6.0 MPa. Figures 8(b) and 9(b) show the plastic displacement both in shear and normal
direction of the four yielding point mention above.

Conclusions

It can be seen from the results mentioned above that the weight of one latera plate of the
robot have be reduced 1 kg of mass (from 3 kg to 2 kg) but won’t lower the strength that
much. (allowable stressis reduced from—7.1MPato—5.7 MPa). The total mass of one rescue
robot may be reduced at least 2 kg after weight reduction and therefore, can moves nimbly
during the rescue process.
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