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摘要 

隨著 3D 形狀模組化、數位化、以及視覺化等技術快速發展，導致了一個 3D 模型爆炸的

時代，在網路上或是特定領域的資料庫中到處都充斥著可以利用的 3D 模型。因此如何建立

一個有效的 3D 模型搜尋系統，讓使用者可以利用此一系統快速地找到在大型 3D 模型資料

庫中符合使用者個人期待的相同或相似 3D 模型是本計畫的首要目標。因此在本計畫中提出

一個全新以形狀為基礎的 3D 模型特徵擷取演算法，六立面圖特徵（elevation descriptor）擷

取法。 

 

一. 報告內容 

 

1. 前言 

因為 3D 模型在數位圖書館中的數量逐漸暴增，我們是很迫切需要一個搜尋系統去幫助人

們找到他們所要的 3D 資料。因此在本計畫中提出一個全新的 3D 模型檢索系統的特徵方法，

以六立面圖特徵（elevation descriptor）擷取法。它的關鍵就在於如何以 3D 模型本身的內容

（content）搜尋出符合使用者需求的 3D 模型。 

 

2. 研究目的與研究方法 

我們提出了六立面圖特徵（elevation descriptor），主要概念為收集 3D 模型在六個不同的

視角下的立面形狀分布，這六個立面圖分別為：正立面圖、背立面圖、右側立面圖、左側立

面圖、俯視圖與底視圖。首先，將這多邊形模型分割成 2R×2R×2R 的網格（Voxel grid），如

圖一(b)。在這網格 (m, n, h)中如果有 3D 模型中多邊形的面存在則 1=mnhVoxel ，反之

0=mnhVoxel 。這方法可以過濾物體的外型的雜訊，也可充分表現該物體的外型。為了能夠正

規化此系統，移動 3D 模型的質量中心到（R, R, R）的位置，然後縮放 3D 模型(注意！並非

縮放網格）讓非零網格到達中心的平均距離必須為 R/2 ，如圖二(b)。在本計劃中此 R 將設

定為 32。以這方法來對整個 3D 模型做取樣(sampling)的動作。 

接下來擷取這網格的六個立面圖，分別為：正立面圖、背立面圖、右側立面圖、左側立

面圖、俯視圖與底視圖的高度分部的資訊，並顯示這些立面圖為灰階。我們將以灰階值代表

模型在該立面圖的高度分布，其中越靠近觀察者的灰階值越高，反之則越低。其中正立面圖

二維灰階影像 1F  中的每個像素的灰階值定義為 

})63max{(1
mnhmn Voxelhf −= ， 
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其中 64 , ... ,2 ,1=m 、 64 , ... ,2 ,1=n 、 64 , ... ,2 ,1=h 。同理，其他五個立面圖之二維灰階影像

則分別定義為 kF ，k = 2, 3, …,6，k 是立面圖的編號，如圖三。 

 

 
 
 

 

 

圖一 3D 模型及其網格座標 (a)3D 吉普車模型，(b)網格座標。 

 

   

圖二 利用網格正規化 3D 模型 (a)正規化 3D 模型前，(b)正規化 3D 模型後。 

 
在收集這些立面圖的高度資訊上，本計劃採用不同半徑的同心圓來分割立面圖，如圖四。其

中正立面圖一個半徑 1−r  與 r 之間的環狀圖形的灰階值總合 1
rg 定義為 

( ) ( )∑ ∑ ⎟
⎠
⎞⎜

⎝
⎛ <−+−≤−=

m n
mnr rRnRmrfg 2211 1 ， 

其中 32 , ... ,2 ,1=r 。同理，其他五個立面圖之環狀圖形的灰階值總合則分別定義為 k
rg ，

6 , ... 3, ,2 =k ，k 是立面圖的編號， 32 , ... ,2 ,1=r 。為了正規化這些數值，將定義整張立面圖

的灰階值總合為 ∑
=

=
32

1r

k
r

k gG ，其中 6 , ... ,2 ,1=k 。則六立面圖特徵向量 x 定義為： 

[ ]TTTT  ), ,) ,) 621 (x(x(xx K= , 

其中 [ ]Tkkkk xxx 3221  , , , K=x 且 

m 

h 

n 

(a) (b) 

(a) (b) 
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其中 6 , ... ,2 ,1=k ， 32 , ... ,2 ,1=r 。 

 

 

 

圖三 3D 吉普車_1 模型的原圖及其六立面圖，正立面圖(K=1)、背立面圖(K=4)、 
    右側立面圖(K=3)、左側立面圖(K=6)、俯視圖(K=2)與底視圖(K=5)。 

 

 

圖四 立面圖上不同半徑的同心圓示意圖。 

 

再來就是本計畫中所提出六立面圖特徵向量的比對方法。為了比較兩個模型的相似程

度，必須計算兩個模型的六立面圖特徵向量的差異值，基於六立面圖特徵向量是擷取 3D 模

型的六個角度視角的關係，在計算兩模型的差異值不能僅僅只計算兩個向量的差值，則必須

考慮每一個面與其他的面的差異值。如圖五，理論上，模型 q 與模型 s 的比對將有 720 種（6

階層）種排列組合，因此計算模型 q 與模型 s 的六立面圖特徵向量差異值必須取其中一種使

得差異值為最小的排列方式。 

為了減少計算量，我們將模型六個面彼此的關係也考慮進去，減少兩模型六個面比對時

的排列組合。基於一個概念，模型的面必須跟其背對的面相對應，以圖七，的模型 q 為例子，

模型 q 的面 1 必須與模型 q 的面 4 相對應、模型 q 的面 2 必須與模型 q 的面 5 相對應、模型

q 的面 3 必須與模型 q 的面 6 相對應。因此在計算模型 q 與模型 s 的差異值時，模型 q 的面

1 與模型 s 的面 1 計算差值的話，則模型 q 的面 4 就必須與模型 s 的面 4 計算差值；如果模

型 q 的面 2 與模型 s 的面 6 計算差值的話，則模型 q 的面 5 與模型 s 的面 3 計算差值。若加

K=2 

K=1=1 K=3 K=4 K=6

K=5 
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以考慮鏡射的情況，當模型 q 的面 1 與模型 s 的面 1 相比較時，在模型 q 的面 3 可能會與模

型 s 的面 3 或面 6 發生對應，如此可以將其原本六個面的排列組合 720 種大幅縮減為 48 種，

如表一所列，我們希望找到一組排列組合使得六立面圖特徵向量的差異值為最小。 

 

         

圖五 兩個模型的六個面作比對的排列組合。 

    

當 1=d 時，模型 q 的六立面圖特徵向量為 x，模型 s 六立面圖特徵向量為ｙ， 則兩模

型的特徵向量差異值為 

∑∑∑
= ==

−=−=
6

1

32

1

)(
6

1

)(1
,_

k r
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r

k
r

k

kmk
sq yxTempDis yx ， 

其中 6 5, ,4, 3 2, 1,)( =km 當 6 5, ,4, 3 2, 1,=k 。如果當 2=d 時，模型 q 與模型 s 的特徵向量差

異值變為 

∑∑∑
= ==

−=−=
6

1

32

1
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1
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,_

k r

km
r

k
r

k
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其中 )(km 5 6, 4, ,2 3, ,1= 當 6 5, ,4, 3 2, 1,=k 。以此我們定義搜尋模型 q 與資料庫中欲比對之模

型 s 的六立面圖特徵向量差異值為 
d

sqdsq TempDisDis ,, _min=  

其中 48 , ... ,3 ,2 ,1=d 。即兩個模型的特徵向量差異值越小，則其相似程度就越大。如圖六，

上面兩個模型的特徵向量差異值比較小，則此兩模型的相似程度就較大；反之，下面兩個模

型的特徵向量差異值比較大，則此兩模型的相似程度就較小。 

 

3. 實驗結果與討論 

將介紹我們所採用的資料庫以及所做的實驗。實驗裡使用的量測標準為Recall與 Precision 

[1]，定義為 

模型 s模型 q 

1 

2 

3 

5 

6 

4 

1 

2 

3 

5 

4 
6 
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T
Nrecall =  與 

K
Nprecision =  

其中 N 是檢索結果中與搜尋目標有相關的個數，T 是全部與搜尋目標相關的個數，K 是所有

被檢索出的 3D 模型個數。 

實驗所採用的資料庫是「普林斯頓形狀基準資料庫（Princeton Shape Benchmark）」[2, 3]，

此資料庫是提供給對 3D 模型檢索研究有需求的使用者免費使用，大部分的 3D 模型特徵擷

取[4-11]都有用此資料庫來做檢索研究。此資料庫含有 1814 個 3D 模型，包含 161 個不同的

類別，如圖七。 

 

表一 六個面比對時的 48 種排列組合。 

 
使用的特徵向量有以下五種：六立面圖特徵（ED）擷取法改良式 D2（AD2）[12]、球型

諧波（SH）[13]、MPEG-7 的 3D 形狀頻譜描述（SSD）[5]、3D 幾何形狀分佈的 D2[ 6 ]。首

先的實驗是五種特徵向量之間對不同類別的 3D 模型之正確率的比較，我們挑選普林斯頓形

狀基準資料庫中的一些類別來做檢索，挑選的類別都是包含 15 個模型以上的類別，有

barren、biplane、city、commercial、dining_chair、enterprise_like、face、fighter_jet、handgun、

head、helicopter、human、human_arms_out、military_tank、potted_plant、rectangular、sedan、

shelves、ship、sword、two_story_home 與 vase 以上幾個類別，如圖七。將以上類別的每個

k 1 2 3 4 5 6 k 1 2 3 4 5 6 k 1 2 3 4 5 6
1p (k) 1 2 3 4 5 6 17p (k) 2 1 3 5 4 6 33p (k) 3 2 1 6 5 4

2p (k) 1 3 2 4 6 5 18p (k) 2 3 1 5 6 4 34p (k) 3 1 2 6 4 5

3p (k) 1 5 3 4 2 6 19p (k) 2 4 3 5 1 6 35p (k) 3 5 1 6 2 4

4p (k) 1 3 5 4 6 2 20p (k) 2 3 4 5 6 1 36p (k) 3 1 5 6 4 2

5p (k) 1 2 6 4 5 3 21p (k) 2 1 6 5 4 3 37p (k) 3 2 4 6 5 1

6p (k) 1 6 2 4 3 5 22p (k) 2 6 1 5 3 4 38p (k) 3 4 2 6 1 5

7p (k) 1 5 6 4 2 3 23p (k) 2 4 6 5 1 3 39p (k) 3 5 4 6 2 1

8p (k) 1 6 5 4 3 2 24p (k) 2 6 4 5 3 1 40p (k) 3 4 5 6 1 2

9p (k) 4 2 3 1 5 6 25p (k) 5 1 3 2 4 6 41p (k) 6 2 1 3 5 4

10p (k) 4 3 2 1 6 5 26p (k) 5 3 1 2 6 4 42p (k) 6 1 2 3 4 5

11p (k) 4 5 3 1 2 6 27p (k) 5 4 3 2 1 6 43p (k) 6 5 1 3 2 4

12p (k) 4 3 5 1 6 2 28p (k) 5 3 4 2 6 1 44p (k) 6 1 5 3 4 2

13p (k) 4 2 6 1 5 3 29p (k) 5 1 6 2 4 3 45p (k) 6 2 4 3 5 1

14p (k) 4 6 2 1 3 5 30p (k) 5 6 1 2 3 4 46p (k) 6 4 2 3 1 5

15p (k) 4 5 6 1 2 3 31p (k) 5 4 6 2 1 3 47p (k) 6 5 4 3 2 1

16p (k) 4 6 5 1 3 2 32p (k) 5 6 4 2 3 1 48p (k) 6 4 5 3 1 2
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3D 模型都當成檢索目標在普林斯頓形狀基準資料庫中做檢索，並計算其正確率，圖八為實

驗結果。可以很明顯的看出六立面圖特徵（elevation descriptor）擷取法特徵向量在大部分的

類別擁有最好的正確率，而只有少部分的類別是別的特徵向量較好。由此驗證不同類別使用

某些特徵擷取演算法將得到較好的結果。故本計畫以此論點採用六立面圖特徵（elevation 

descriptor）擷取法，以期達到較好的效果。接下來進行的實驗是五種不同的特徵向量之正確

率的比較，將普林斯頓形狀基準資料庫中的每個 3D 模型都當成檢索目標在資料庫中做檢

索，並計算其正確率，表二與圖九為實驗結果。以上，我們所提出的六立面圖特徵（elevation 

descriptor）擷取法在普林斯頓形狀基準資料庫中都有很不錯的檢索效果，並更加符合使用者

的需求，且提高了檢索的正確率，所以由此實驗可說明本計畫所提出的方法是非常有成效的。 

 

圖六 三個模型的六立面圖特徵向量。 

 

天線接受器 

直升機 1 

直升機 2 
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圖七 普林斯頓形狀基準資料庫中的一些類別。 
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圖八 不同類別的模型之正確率的實驗結果。 

表二 不同特徵向量之間正確率的比較。 
 Recall 
六立面圖特徵（ED） 0.337000  

改良式 D2（AD2） 0.2576262804 
球型諧波（SH） 0.2451209359 
MPEG-7 的 3D 形狀頻譜描述符（SSD） 0.2010285473 
3D 幾何形狀分佈的 D2 0.1745288704 
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圖九 不同特徵向量之間正確率的比較。 
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三. 計畫成果自評 

我們把六立面圖特徵（elevation descriptor）擷取法運用到 3D 模型檢索的領域，並且提升

了 3D 模型檢索上的正確性。此六立面圖特徵（elevation descriptor）擷取法，在 3D 模型檢

索系統方面有一定的研究價值。未來我們計畫要加大 3D 模型資料庫，且我們深信某些特別

類別的 3D 模型，用某些特徵會有較好的效果，所以未來還可以加入其他檢索效果也不錯的

特徵擷取方法，讓其檢索結果更佳。 

尤其在最近幾年 3D 模型設計主要因為軟、硬體技術上的進步，導致 3D 模型設計上的簡

單，使得 3D 模型被廣泛應用，也因此我們認為“3D 模型檢索系統＂在學術界及業界裡有相

當的研究價值，目前我們已發表五篇與 3D 模型檢索系統相關的論文，包括三篇期刊論文及

一篇研討會論文。相關論文如下 ： 

期刊論文 (Journal Papers) ： 
[1] 王建棠 石昭玲, “具有相關性回饋演算法之智慧型 3D 模型搜尋引擎,＂ Chung Hua 

Journal of Science and Engineering, Vol. 2, No. 1. pp. 53-61 , March 2004. 
[2] Jau-Ling Shih, Chang-Hsing Lee, and Jian Tang Wang, “3D Object Retrieval System Based 

on Grid D2,” Electronics Letters Vol. 41 No. 4 2005 pp23-24. (SCI) 
[3] J. L. Shih, C. H. Lee, and J. T. Wang, “A New 3D Model Retrieval Approach Based on the 

Elevation Descriptor,” accepted by Pattern Recognition. (SCI) (見附件三) 
研討會論文 (Conference Papers) ： 
[1] Jian Tang Wang and Jau-Ling Shih, “Shape-Based 3D Model Retrieval System based on 

Elevation Descriptor,” Proceeding of The CVGIP, August 2004. 
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國科會補助計畫

計畫名稱：以六立面圖為基礎之 3D 模型搜尋引擎 

計畫主持人：石昭玲         

計畫編號：NSC 94-2213-E-216-018-    學門領域：影像處理

技術/創作名稱 3D 模型搜尋引擎 

發明人/創作人 石昭玲副教授 

中文：我們利用六立面圖特徵（elevation descriptor）來計算每

一個 3D 模型的特徵，主要概念為收集 3D 模型在六個不同的視角下

的立面形狀分布，這六個立面圖分別為：正立面圖、背立面圖、右

側立面圖、左側立面圖、俯視圖與底視圖。做法為擷取每個立面圖

的高度分布顯示這些立面圖為灰階圖，並且以灰階值代表模型在該

立面圖的高度分布，其中越靠近觀察者的灰階值越高，反之則越

低。且我們提出一個新的特徵比對方法去計算兩個 3D 模型的相似

程度，在資料庫中找出與使用者想搜尋的 3D 模型相似度較高的模

型回應給使用者。 

技術說明 英文：We proposed a novel feature, elevation descriptor, for 

3D model retrieval. First, a 3D model is represented by six 

gray-level images which describe the altitude of a 3D model 

from six viewing angles including front, left, right, rear, 

top and bottom. Then each gray-level image, called elevation, 

is partitioned into several concentric circles to extract the 

altitude information as the elevation descriptor. Since, 

there are six elevations for each 3D model, a specially 

designed similarity measure is then provided to find the best 

match of two models.  

可利用之產業 

及 

可開發之產品 

可應用於網際網路之線上 3D 模型搜尋系統。 

技術特點 
利用六面體的六個面很快的將 3D 模型的特徵向量擷取出來，以立

面的想法來代表 3D 模型的高度資訊搜尋速度及效率極為優異。 

推廣及運用的價值
3D 模型搜尋引擎 

※ 1.每項研發成果請填寫一式二份，一份隨成果報告送繳本會，一份送 貴單位研

發成果推廣單位（如技術移轉中心）。 

※ 2.本項研發成果若尚未申請專利，請勿揭露可申請專利之主要內容。 
3.本表若不敷使用，請自行影印使用。 
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A NEW 3D MODEL RETRIEVAL APPROACH BASED ON THE ELEVATION 

DESCRIPTOR 

 

Jau-Ling Shih*, Chang-Hsing Lee, and Jian Tang Wang  

Department of Computer Science and Information Engineering, 

Chung Hua University, Hsinchu, Taiwan, R.O.C 

 

Abstract 

The advances in 3D data acquisition techniques, graphics hardware, and 3D data modeling and 

visualizing techniques have led to the proliferation of 3D models. This has made the searching for 

specific 3D models a vital issue. Techniques for effective and efficient content-based retrieval of 

3D models have therefore become an essential research topic. In this paper, a novel feature, called 

elevation descriptor, is proposed for 3D model retrieval. The elevation descriptor is invariant to 

translation and scaling of 3D models and it is robust for rotation. First, six elevations are obtained 

to describe the altitude information of a 3D model from six different views. Each elevation is 

represented by a gray-level image which is decomposed into several concentric circles. The 

elevation descriptor is obtained by taking the difference between the altitude sums of two 

successive concentric circles. An efficient similarity matching method is used to find the best 

match for an input model. Experimental results show that the proposed method is superior to other 

descriptors, including spherical harmonics, the MPEG-7 3D shape spectrum descriptor, and D2. 

Keywords: 3D model retrieval, Elevation descriptor 

附件三
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 1. Introduction  

The development of image, video, and 3D model archives has made multimedia retrieval 

become a popular research topic. Most of the commercial multimedia retrieval systems employ 

keyword search to assist users to find desired multimedia data. To facilitate search accuracy, the 

managers of the multimedia database must empirically annotate well-chosen keywords for all 

multimedia data. If the database is very large, the task is laborious and time consuming. Moreover, 

the appropriate keywords differ from person to person. In general, the simplest approach is to 

extract keywords from  filenames, captions, or context (e.g., Google). However, this approach 

fails when the filenames are not well annotated (e.g., “c0033.jpg”) or unspecified filenames are 

defined (e.g., “jeffrey.gif” or “circle.bmp”). Thus, the demand for an automatic and efficient 

content-based multimedia retrieval system has become a crucial issue. 

With the proliferation of computer graphics and computer animations, 3D models are as 

plentiful as images and video. The primary challenge to a content-based 3D model retrieval system 

[1] is to extract proper features for discriminating the diverse shapes of 3D models for efficiently 

indexing similar ones. The 3D model retrieval methods can be roughly classified into three 

categories: low-level feature based methods, high-level structure based methods, and view based 

methods. The low-level feature based methods try to represent the shape of 3D models by their 

geometric and topological properties. The features can be a single vector consisting of a fixed 

number of feature values or distributions of a set of feature values. The high-level structure based 

methods try to decompose a 3D model into a set of key parts and capture the geometric 

relationships of the key parts. The view based methods project the shape of a 3D model on a 

number of 2D projections from different views. 

The rest of the paper is organized as follows: The related work is described in Section 2. In 

Section 3, the proposed elevation descriptors are introduced. Section 4 gives the experimental 

results to show the effectiveness of the proposed elevation descriptor. Finally, conclusions are 

given in Section 5. 
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2. Related Work 

In this section, some related work for 3D model retrieval is described. The 3D model retrieval 

methods are classified into three categories: low-level feature based methods, high-level structure 

based methods, and view based methods. 

 

2.1 Low-Level Feature Based Methods 

In 3D model retrieval systems, low-level feature descriptors are usually extracted to describe 

the geometric properties [2, 3], spatial properties [4-9], and shape distributions [10-16] of 3D 

models. The similarity between two 3D models can be measured by comparing their features. 

Zhang and Chen [2] proposed methods to efficiently calculate features such as area, volume, 

moments, and Fourier transform coefficients from mesh representation of 3D models. Paquet et al. 

[3] employed moments to describe symmetries of 3D objects, cord-based descriptors to represent 

shape information in fine details, and wavelet transform descriptors to describe the density 

distribution through a volume. 

Vranic et al. [4] performed Fourier transform on the sphere with spherical harmonics to get the 

feature vectors. This method requires pose normalization to be rotation invariant. A modified 

rotation invariant shape descriptor based on the spherical harmonics without pose normalization 

has been proposed by Funkhouser et al. [5, 6]. First, a 3D model is decomposed into a collection of 

spherical functions by intersecting the model with concentric spheres of different radii. Each 

spherical function is decomposed into a set of harmonics of different frequencies. The sum of 

norms of each frequency component at each radius forms the shape descriptor. The reason for the 

descriptor being rotation invariant is that rotating a spherical function does not change the energies 

in each frequency component. Novotni and Klein [7] used 3D Zernike moments for 3D shape 

retrieval. It is naturally an extension of spherical harmonics based descriptors. The 3D Zernike 

moments is a 2D histogram indexed by radius and frequency. The benefits of the 3D Zernike 

moments are that they are rotation invariant and less sensitive to geometric and topological 
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artifacts. Yu et al. [8] generated a surface penetration map in which the number of surfaces that the 

ray emitted from the center of the sphere penetrates is counted. Fourier transform of the map are 

used for retrieval or comparison purpose. Ankerst et al. [9] proposed shape histograms to 

characterize the area of intersection of a 3D model with a collection of concentric shells and 

sectors. Quadratic form distance measure is employed to compute the distance between the 

histogram bins. 

Osada et al. [10] tried to represent each 3D model by the probability distributions of geometric 

properties computed from a set of randomly selected points located on the surface of the model. 

These geometric properties, including distance, angle, area, and volume, are employed to describe 

the shape distribution. Among these distributions, the most effective is D2, which measures the 

distribution of distances between any two randomly selected points. Ip et al. [11, 12] refined the 

D2 descriptor by classifying the D2 distance into three categories: IN distance if the line segment 

connecting the two points lies completely inside the model, OUT distance if the line segment lies 

completely outside the model, and MIXED distance if the line segment passes both inside and 

outside the model. The dissimilarity measure is a weighted distance of D2, IN, OUT, and MIXED 

distributions. However, it is difficult to do the classification task, if a 3D model is represented by 

polygon meshes. Ohbuchi et al. [13, 14] combined the absolute angle-distance histogram (AAD) 

with the D2 descriptor for 3D model retrieval. AAD measures the distribution of angles between 

the normal vectors of two surfaces on which the two randomly selected points locate. In their 

experimental results, AAD outperforms D2 at the expense of about 1.5 times computational cost. 

In typical mesh-based representation of 3D models, many polygonal meshes are required to finely 

represent the complex components of a 3D model. As a result, an area weighted defect will occur 

since the random sampling of surface points is greatly affected by the complex components. 

Therefore, Shih et al. [15] proposed a new descriptor called grid D2 (GD2) to alleviate this 

problem. In GD2, a 3D model is first decomposed into a voxel grid. Rather than on random points, 

the random sampling operation is performed on voxels within which some polygonal surfaces are 
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located. The shape spectrum descriptor (SSD) [16] is adopted in the MPEG-7 standard for 3D 

model retrieval. SSD represents the histogram of  curvatures of all points on the 3D surface. The 

advantages of SSD are that it can match two 3D models without first aligning the 3D objects, and 

that it is robust to the tessellation of the 3D polygonal model. 

 

2.2 High-Level Structure Based Methods 

The low-level feature based methods discussed above only take the geometric or topological 

properties of 3D models into consideration. On the other hand, high-level structure based methods 

describe the relationship between model components.  Hilaga et al. [17] used multi-resolution 

Reeb graphs (MRG) to describe the skeleton structure of a 3D model. Mathematically, the Reeb 

graph is defined as the quotient space of a shape and a quotient function. The Reeb graph used by 

Hilaga et al. is based on a quotient function defined by an integral geodesic distance. Bespalov et al. 

[18] applied the Reeb graph for description of solid models. One major advantage of using the 

Reeb graph to measure the distance between two 3D models is that it is robust to 3D shape 

deformation. However, computation of the Reeb graph is time consuming and very sensitive to the 

fine components of 3D models. 

 

2.3 View Based Methods 

The main idea of view based methods is to represent a 3D model using a number of binary 

images. Therefore, a set of 2D features can be used to index similar 3D models. Each binary image 

is obtained from the boundary contour of the 3D model from different views. Several methods 

provide a 2D query interface to facilitate view based retrieval of 3D models [5, 19]. Super and Lu 

[20] exploited 2D silhouette contours for 3D object recognition. Curvature and contour scale space 

are extracted to represent each silhouette. Chen et al. [21] introduced the lightfield descriptor to 

represent 3D models. The lightfield descriptor is computed from ten silhouettes. Each silhouette is 

represented by a 2D binary image. Zernike moments and Fourier descriptors are used to describe 
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each binary image. Since a 3D model may be rotated or deformed, the number of 2D silhouettes 

must be large enough to represent a 3D model. On the other hand, the retrieval time increases as 

the number of silhouettes increases. 

In fact, 2D silhouettes represented by binary images do not describe the altitude information of 

the 3D model from different views well. Therefore, a new descriptor, called the elevation 

descriptor, is proposed for 3D model retrieval. Six elevations are obtained to represent a 3D model. 

Each elevation is represented by a 2D gray-level image which describes the altitude information of 

a 3D model from different views. In addition, an effective way for extracting features from each 

gray-level image is employed in order to make them less sensitive to rotations. In the following 

section, the proposed method is described in detail. 

 

3. The Proposed Elevation Descriptor for 3D Model Retrieval 

In this section, the proposed elevation descriptor is described. Since the features are extracted 

from six elevations representing 2D projections from different views, a similarity matching method 

is used to find the best match for an input model as efficiently as possible. 

 

3.1 Elevation Representation 

Initially, the tightest bounding box circumscribing the 3D model is constructed (see Fig. 1(a)). 

The bounding box is then decomposed into a LLL 222 ×× voxel grid (see Fig. 1(b)). A voxel 

located at (m, n, h) is regarded as an opaque voxel, notated as Voxel(m, n, h) = 1, if there is a 

polygonal surface located within this voxel; otherwise, the voxel is regarded as a transparent voxel, 

notated as Voxel(m, n, h) = 0. Based on the decomposition process, the area weighted defect is 

greatly reduced since each opaque voxel is weighted equally irrespective of the number of points 

located within this voxel. Secondly, the model’s mass center is moved to location (L, L, L) and the 

average distance from all opaque voxels to the mass center is linearly scaled to be L/2 so that the 

elevation descriptor is invariant to translation and scaling, as shown in Fig. 1(c). In this paper, L is 
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set to be 32, which provides adequate resolution for discriminating objects and the fine-detail noise 

in complex components of a 3D model can be filtered out.  

Next, six elevations are extracted to indicate the altitude information of 2D projections from 

six different views: front, top, right, rear, bottom, and left. Each elevation is represented by a gray 

level image in which the gray values denote the altitude information. Let the front, top, right, rear, 

bottom, and left elevations be notated successively as Ek, .6 , ... ,2 1, =k The gray value of each 

pixel on these elevations is defined as 

64, ,1for  },641 ) , ,()65{() ,(1 ≤≤≤≤−= nmhhnmVoxelhnmf max

64, ,1for  },641 ) , ,()65{() ,(2 ≤≤≤≤−= hmnhnmVoxelnhmf max

64, ,1for  },641 ) , ,({ ) ,(3 ≤≤≤≤= hnmhnmmVoxelhnf max

64, ,1for  },641 ) , ,({) ,(4 ≤≤≤≤= nmhhnmhVoxelnmf max

64, ,1for  },641 ) , ,({) ,(5 ≤≤≤≤= hmnhnmnVoxelhmf max

64. ,1for  },641 ) , ,()65{() ,(6 ≤≤≤≤−= hnmhnmVoxelmhnf max  

Fig. 2 shows the six elevations of three example 3D models. From these figures, we can see 

that the two 3D jeep models exhibit similar elevations, whereas the jeep and ship models differ. 

 

3.2 Feature Extraction 

To extract the elevation descriptor from these six elevations, each elevation is decomposed 

into L concentric circles around the center point (see Fig. 3). The region within the j-th concentric 

circle is denoted as jC : 

{ }jLcLrcrC j <−+−= 22 )()(  ) ,( ,  

for .32 , ... ,2 ,1=j For the k-th elevation, the sum of gray values of all pixels located within the j-th 

circle, ,C j is defined as 

∑
∈

=
jCcr
kk crfjg

 ),(

),()( , 

where .32 , ... ,2 ,1=j  Let ,0)0( =kg the difference between the sums of gray values within two 

successive concentric circles is then derived: 
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),1()()( −−= jgjgjd kkk  

for 32. , 2, ,1 K=j Furthermore, every dk(j) value is normalized by using the following equation:  

∑
=

= 6

1

)(

)()(

k

k
k

kD

jdjx , 

where )(kD is the sum of all dk(j) values for the k-th elevation: 

∑
=

=
32

1

)()(
j

k jdkD . 

The elevation descriptor x is defined as 

,]), ,) ,)[( 621
TTTT (x(xxx K=  

where 

.)]32( , ),2( (1),[ T
kkkk xxx K=x  

Fig. 4 shows the elevation descriptors for the three 3D models shown in Fig. 2. It is evident 

that these two jeep models exhibit similar elevation descriptors whereas the jeep and ship models 

have totally different ones. 

In general, the elevation descriptor is less sensitive to rotation if a 3D model is rotated by a 

small degree. Assume a 3D model is rotated by a small degree θ (see Fig. 5), the 

increment/decrement nΔ of the altitude value of a voxel located at radius j is: 

θtanjn =Δ . 

However, the altitude value of a voxel located on the other side will decrease/increase the same 

value .nΔ On average, the sum of the gray values on the j-th concentric circle of the rotated 

elevation is similar to the original one (see Fig. 6). 

 

3.3 Similarity Computations 

Since each 3D model is represented by six elevations, it requires 720 (6!) elevation matching 

operations to compute the similarity between two models. To reduce the matching time, an 
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efficient similarity computation is provided to find the best match for a given query model. 

The matching operations can be greatly reduced if the relative positions of the elevations are 

taken into account. In practice, the front elevation E1 and the rear elevation E4 locate on opposite 

sides. Similarly, the right elevation E3 and the left elevation E6 as well as the top elevation E2 and 

the bottom elevation E5 also locate on opposite sides. Let the six elevations of the query model q 

and the matching model s be respectively defined as q
kE and ,s

kE for .6 , ... ,2 ,1=k The six 

elevations of a query model q can be divided into three pairs: ), ,( 41
qq EE ), ,( 52

qq EE and ). ,( 63
qq EE  

Similarly, the six elevations of a matching model s can be divided into three 

pairs: ), ,( 41
ss EE ), ,( 52

ss EE and ). ,( 63
ss EE To calculate the difference between q and s, 

if q
1E matches ,s

iE q
4E must match [ ]

s
i 1  6 mod 2)( ++E according to the topological relationship 

between q
1E and .4

qE Similarity, if q
2E matches ,s

iE q
5E must match [ ] ,1  6 mod 2)(

s
i ++E and 

if q
3E matches ,s

iE q
6E must match [ ] .1  6 mod 2)(

s
i ++E In summary, the number of elevation matching 

operations that need to be performed is ,482  !3 3 =×  instead of 720 matching operations. Table 1 

lists these 48 matching operations. In this table, for i-th permutation ,ip q
kE will match 

( ),
s

kpi
E .61 ≤≤ k  

Let TTTT ]), ,) ,)[ 621 (x(x(xx K= and TTTT ]), ,) ,)[ 621 (y(y(yy K= denote the elevation 

descriptors of q and s, respectively. For the matching operation corresponding to the i-th 

permutation pi, 48, 1 ≤≤ i the distance between x and y is defined as: 

∑∑∑
= ==

−=−=
6

1

32

1
)(

6

1
1)(, )()(

k r
kpk

k
kpk

i
sq ryrxDis

ii
yx , 

where )(kpi denotes the k-th value for the i-th permutation, 6 1 ≤≤ k . The distance between the 

query model q and the matching model s is defined as 

. ,48  1,
i

sqisq DisDis  min
≤≤

=  



21 

Then, the similarity measure between q and s is defined as the inverse of the distance: 

.1

,
,

sq
sq Dis

Sim =
 

Note that the larger the similarity value, the more similar a matching model is to the query. 

Therefore, the retrieved models similar to a query can be determined by taking those with larger 

similarity values. 

 

4. Experimental Results 

To demonstrate the effectiveness of the proposed elevation descriptor for different 3D models, 

experiments have been conducted on two test databases. Three other features, including spherical 

harmonics (SH) [5], the MPEG-7 3D shape spectrum descriptor (SSD) [16], and D2 [10], are 

implemented to compare the retrieval results. The performance is measured by recall and precision. 

The recall value, Re, and the precision value, Pr, are defined by the following equations: 

TNRe /= ,  

and  

KNPr /= , 

where N is the number of relevant models retrieved, T is the total number of relevant models in the 

database, and K is the total number of retrieved models. 

 

4.1 Experiment on Database 1 

Database 1 is established to test the performance of invariance to deformations. To derive 

Database 1, 20 models are selected as the seed models. Then, each seed model is deformed by 14 

kinds of transformations, including 4 geometric deformations, 2 scalings, 3 rotations, and 5 various 

resolutions (see Fig. 7). Thus, there are in total 300 models in Database 1. 

Fig. 8 shows some 3D models and their deformed models representing geometric deformation, 

rotation, scaling, and various resolution as well as the corresponding elevation descriptors. The 

similarities between these pairs of models are 0.9702, 0.9304, 0.9999, and 0.9691, respectively. We 
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can see that even though the model is deformed, the similarity value is still large enough.  

In the previous section, it is shown that the elevation descriptor of a rotated 3D model is similar 

to the original if the rotation degree is small. In our simulation results, the elevation descriptor is 

also robust if a 3D model is rotated by a large degree. Table 2 shows the distance between a rotated 

query model and all seed models in Database 1. The query model q is a dragon, the seed model of 

class 3 on Database 1 (see Fig. 7). The query dragon model is rotated about the m-axis and n-axis 

by different degrees mθ and :nθ ,20° ,40° ,60 ° and .80 ° We can see that even though the dragon 

model is rotated by various degrees, the one with the smallest distance is still the original dragon 

model. That is, the proposed elevation descriptor is robust to rotations.  

In our experiments, each model in Database 1 is presented as a query. Table 3 shows the 

average recall values for all query models using the proposed elevation descriptor (ED), spherical 

harmonics (SH), 3D shape spectrum descriptor (SSD), and D2. From Table 3, we can see that the 

elevation descriptor outperforms other descriptors. The detailed comparison of the average recall 

value for each class is shown in Fig. 9. The elevation descriptor has the best performance for most 

classes.  To see what kind of deformations will dramatically affect the retrieval result, a detailed 

performance comparison for each kind of deformation is shown in Fig. 10. From this figure, we 

can see that the elevation descriptor always get the best performance. 

 

4.2 Experiment on Database 2  

The second database, Database 2, is derived from the Princeton Shape Benchmark database [22] 

which contains 1814 models (161 classes) and is used for evaluating shape based retrieval and 

analysis algorithms. Note that in this database each class contains a different number of models. 

The 22 classes that have the largest number of models are selected as queries. Each of them 

contains at least 15 models. These 22 classes are shown in Fig. 11. 

The performance is also measured by recall and precision. Since the number of models in each 

class is different, the recall value and the precision value for the j-th query model within the i-th 
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class are defined as: 

i
j

i
j TNRe

i
/= , 

and 

,/ KNPr j
i

j
i
=  

where j
iN is the number of relevant models retrieved, iT is the total number of relevant models in the 

database, and K is the total number of retrieved models. The average recall and precision are 

defined by the following equations: 

∑∑
= =

=
22

1 1

1
i

T

j

j
i

S

i

Re
T

Re , 

and  

∑∑
= =

=
22

1 1

1
i

T

j

j
i

S

i

Pr
T

Pr , 

where .2221 TTTTS +++= L  The overall performance of the proposed method is still better than 

others (see Table 4 and Fig. 12). Table 5 compares the average query time. We can see that the 

query time when using ED is slightly larger than when using SH, but the retrieval accuracy is 

much better than SH.  

 

5. Conclusions 

In this paper, a novel descriptor, called elevation descriptor (ED), for 3D model retrieval is 

proposed. First, a 3D model is represented with six gray-level images which describe the altitude 

information of 2D projections from six different views including front, left, right, rear, top and 

bottom. Each gray-level image, called an elevation, is then decomposed into a set of concentric 

circles. The sum of the altitude information within each concentric circle is calculated. The 

elevation descriptor is obtained from the difference of the altitude sums between two successive 

concentric circles. Since there are six elevations, an efficient similarity matching method is 

provided to find the best match for a given query model without exhaustively matching all possible 

720(6!) elevation permutations. The experimental results show that for most types of 3D models, 
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the proposed ED outperforms other descriptors including spherical harmonics (SH), the MPEG-7 

3D shape spectrum descriptor (SSD), and D2.  
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Table 1  48 permutations for elevation matching between a query model and a matching model. 

 

k 1 2 3 4 5 6 k 1 2 3 4 5 6 k 1 2 3 4 5 6
1p (k) 1 2 3 4 5 6 17p (k) 2 1 3 5 4 6 33p (k) 3 2 1 6 5 4

2p (k) 1 3 2 4 6 5 18p (k) 2 3 1 5 6 4 34p (k) 3 1 2 6 4 5

3p (k) 1 5 3 4 2 6 19p (k) 2 4 3 5 1 6 35p (k) 3 5 1 6 2 4

4p (k) 1 3 5 4 6 2 20p (k) 2 3 4 5 6 1 36p (k) 3 1 5 6 4 2

5p (k) 1 2 6 4 5 3 21p (k) 2 1 6 5 4 3 37p (k) 3 2 4 6 5 1

6p (k) 1 6 2 4 3 5 22p (k) 2 6 1 5 3 4 38p (k) 3 4 2 6 1 5

7p (k) 1 5 6 4 2 3 23p (k) 2 4 6 5 1 3 39p (k) 3 5 4 6 2 1

8p (k) 1 6 5 4 3 2 24p (k) 2 6 4 5 3 1 40p (k) 3 4 5 6 1 2

9p (k) 4 2 3 1 5 6 25p (k) 5 1 3 2 4 6 41p (k) 6 2 1 3 5 4

10p (k) 4 3 2 1 6 5 26p (k) 5 3 1 2 6 4 42p (k) 6 1 2 3 4 5

11p (k) 4 5 3 1 2 6 27p (k) 5 4 3 2 1 6 43p (k) 6 5 1 3 2 4

12p (k) 4 3 5 1 6 2 28p (k) 5 3 4 2 6 1 44p (k) 6 1 5 3 4 2

13p (k) 4 2 6 1 5 3 29p (k) 5 1 6 2 4 3 45p (k) 6 2 4 3 5 1

14p (k) 4 6 2 1 3 5 30p (k) 5 6 1 2 3 4 46p (k) 6 4 2 3 1 5

15p (k) 4 5 6 1 2 3 31p (k) 5 4 6 2 1 3 47p (k) 6 5 4 3 2 1

16p (k) 4 6 5 1 3 2 32p (k) 5 6 4 2 3 1 48p (k) 6 4 5 3 1 2
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Table 2 Distance between a rotated query model and all 3D seed models in Database 1. The rotated 

query model q is derived from the seed model of class 3 in Database 1 with rotation about the 

m-axis and n-axis by degrees mθ and nθ to be ,20° ,40° ,60° and .80° The values shown in this table 

are multiplied by 10000. 

Rotated degree The class number of matching model s  
mθ  nθ  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 0 55 32 0 42 36 44 26 41 42 40 44 61 30 31 32 29 28 30 35 33
0 20 57 33 6 43 34 45 25 45 47 44 43 63 33 31 29 30 28 30 33 35
0 40 58 35 9 44 35 48 24 44 48 45 45 66 34 34 29 29 30 29 34 36
0 60 56 35 12 45 39 50 23 41 46 43 49 67 33 38 33 29 33 31 36 35
0 80 55 32 12 45 40 47 23 41 44 41 51 65 31 38 34 28 32 32 37 33
20 0 58 34 8 41 36 46 29 44 47 44 45 64 33 33 32 31 28 31 36 37
20 20 59 34 10 41 36 46 29 46 49 45 45 64 36 33 33 31 27 31 35 38
20 40 60 35 12 43 35 48 27 47 50 46 48 66 37 35 33 30 27 30 35 40
20 60 59 37 13 44 38 51 25 46 50 47 49 68 36 38 33 32 30 31 36 38
20 80 56 34 14 43 40 49 26 43 47 44 52 65 34 39 35 30 32 32 38 34
40 0 63 36 14 40 36 47 32 46 51 47 49 64 36 38 36 34 28 35 37 42
40 20 63 35 14 40 35 46 34 48 53 49 48 63 38 35 35 36 27 35 37 43
40 40 66 37 17 41 34 47 34 51 55 51 49 64 41 37 35 35 26 35 36 46
40 60 65 38 17 42 35 49 31 50 55 52 50 66 40 37 35 37 27 35 36 44
40 80 62 36 17 41 38 48 30 47 52 48 53 66 37 40 37 34 30 36 39 41
60 0 61 34 11 40 35 46 31 45 50 47 47 64 35 36 33 33 27 32 37 40
60 20 66 38 17 39 38 49 36 49 56 54 51 65 40 39 37 38 29 37 39 47
60 40 69 40 21 39 34 49 39 51 56 55 50 64 41 42 36 39 27 37 37 50
60 60 69 41 22 40 33 49 40 53 58 56 51 64 42 42 37 40 27 37 38 51
60 80 64 38 16 39 34 47 34 49 53 50 48 64 38 36 36 36 28 34 37 44
80 0 57 33 5 41 35 45 28 41 44 43 44 63 30 32 31 31 29 31 35 36
80 20 64 39 15 39 38 49 37 45 52 51 49 65 37 36 37 36 30 37 38 44
80 40 69 41 20 39 34 49 41 51 56 54 50 63 41 42 37 40 26 38 37 49
80 60 67 41 22 37 32 46 43 52 57 55 48 60 43 42 38 39 26 34 36 50
80 80 64 39 18 37 32 45 39 49 53 51 45 61 38 37 37 36 26 33 36 46

 
Table 3 Comparison of the retrieval results of the proposed ED with other descriptors on Database 
1.  

 Re (K=15) Re (K=30) 
ED 0.9722 0.9869 
SH 0.9391 0.9700 

SSD 0.8840 0.9358 
D2 0.8733 0.9222 
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Table 4 Overall performance of the proposed ED method and other methods on Database 2. 

 Re (K = iT ) Re (K = 2 iT ) Re (K = 3 iT ) Re (K = 4 iT ) 
ED 0.3370 0.4364 0.4945 0.5371 
SH 0.2451 0.3159 0.3607 0.3931 

SSD 0.2010 0.2395 0.2705 0.2977 
D2 0.1745 0.2216 0.2596 0.2902 
 

Table 5 Comparison of average query time of the proposed ED method and other methods in 

Database 2. 

 query time(sec) 
ED 3.148 
SH 2.946 

SSD 1.656 
D2 1.661 

 

 

 

 

            

 

            

  

             

 

Fig. 1  Original and decomposed 3D jeep model. (a) The 3D jeep model circumscribed by a 

bounding box. (b) The bounding box of the 3D jeep model is decomposed into a 

LLL 222 ×× voxel grid. (c) The normalized 3D jeep model. 
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(c) 
Fig. 2  3D models and their six elevations including front ( 1=k ), top ( 2=k ), right ( 3=k ), 

rear ( 4=k ), bottom ( 5=k ), and left ( 6=k ) elevations. (a) 3D jeep model and its six elevations 

(b) Another 3D jeep model and its six elevations. (c) 3D ship model and its six elevations. 
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Fig. 3 Top elevation of the 3D jeep model shown in Fig. 2(a) segmented by several concentric 

circles. 
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(c) 
Fig. 4   Elevation descriptors for the three models shown in Fig. 2. The vertical axis 

represents xk(j). The horizontal axis represents j ( 321 ≤≤ j ) for each k = 1, 2,…, 6 successively. (a) 

The elevation descriptors for the jeep model shown in Fig. 2(a). (b) The elevation descriptors for 

another jeep model shown in Fig. 2(b). (c) The elevation descriptors for the ship model shown in 

Fig. 2(c). 
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Fig. 5 3D model rotated by degreeθ . 
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(c) 
Fig. 6 Elevation descriptors for the rotated models. (a) The elevation descriptors for the dragon 

model. (b) The elevation descriptors for the rotated dragon model with rotation 

degrees mθ = °10 and nθ °=10 . (c) The elevation descriptors for another rotated dragon with rotation 

degrees with °= 20mθ and .20°=nθ  

m 

h 

n n 

nΔ θ
 

nn Δ+

θ

nn Δ−

nΔmodel surface 

Rotated model surface

j 

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 

xk(j) 

j j j j j j 

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 

xk(j) 

j j j j j j 

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 

xk(j) 

j j j j j j 



32 

 

 

 

 
(a) 
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Fig. 7 Database 1. (a) 20 seed models. (b) 15 deformed models for the cat class. 
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Fig. 8 Deformed 3D models and their corresponding elevation descriptors. (a) Geometric deformation 

(b) Rotation (c) Scaling (d) Various resolution. 
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Fig. 9 Comparison of the average recall (Re) for each class on Database 1(K = 15). 
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Fig. 10 Recall (Re) for various deformations in Database 1 (K = 15).
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(a) 

 

(b) 

Fig. 11  Query models in Database 2 derived from the Princeton Shape Benchmark database. (a) 

The 22 query classes in Database 2. (b) All models belong to the tank class. 
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Fig. 12  Precision vs. recall curves on Database 2. 


