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The following report contains two parts: The first part is based on the fault injection approach to verify the 
capability of a fault-tolerant system. In this part, we propose a system-level simulation-based fault injection framework in 
SystemC design platform to assist the dependability assessment. The second part is going to discuss how to analyze the 
error coverage without using the fault injection and fault simulation mechanisms in order to save the development efforts 
and simulation time. Our idea is to devise a high-level abstract model to represent the fault-tolerant systems including the 
interconnection structure of the functional blocks, the propagation tables expressing the relationship between inputs and 
outputs for each functional block and the Petri Net to model the functional behavior of the fault-tolerant systems. 

Abstract (first part) 
This report describes the results achieved in the first year of three-year research proposal. As mentioned in the 

proposal, an important issue in the design of SoC with fault tolerance is how to verify the feasibility of the fault-robust 
design as early in the development phase to reduce the re-design cost. Therefore, a system-level fault-tolerant verification 
platform is required to assist the designers in assessing the dependability of a system with an efficient manner. The first 
part of this study is to propose a system-level simulation-based fault injection framework in SystemC design platform to 
assist the dependability assessment. The proposed fault injection framework is able to inject the faults into the systems 
modeled at the following levels of abstraction: register-transfer level (RTL)/bus-cycle accurate level, untimed functional 
transaction-level modeling with primitive channel sc_fifo, and timed functional transaction-level modeling with 
hierarchical channel. We devise a distributed injection control approach instead of using one centralized control unit to 
control the injection activity. The proposed distributed injection control approach, which consists of the time-triggered and 
event-triggered injection technologies, is capable of injecting single or multiple faults with diverse fault types into 
different abstraction levels. We demonstrate the feasibility of the proposed fault injection framework with the modules 
modeled at different levels of abstraction.  

Another work of this study is to characterize the dependability of fault-tolerant systems modeled at different 
hardware design environments, SystemC and VHDL. For SystemC, we inject errors into the components’ outputs, whereas 
faults into the inside of components for VHDL. The difference of the simulation results between SystemC and VHDL is 
discussed thoroughly through observing two parameters: one is the probability of a fault causing an effective error and 
another is the relationship between fault duration and error duration. The above two parameters dominate the discrepancy 
as seen between the two different design platforms. The experimental results show the effect of the fault attributes on the 
error coverage. This study can promote the fault-tolerant design and verification environment to a higher abstraction level. 
The preliminary results can be found in the appendix. 

Keywords: fault-tolerant design, high-level abstraction modeling, high-level rapid verification, SystemC, system-level 
fault injection, system-on-chip (SoC), transient fault (soft error or SEU). 

I. INTRODUCTION 

As system-on-chip (SoC) becomes more and more 
complicated, and contains a large number of transistors, the 
SoC could encounter the reliability problem due to the 
increased likelihood of faults or radiation-induced soft 
errors especially when the chip fabrication enters the very 
deep submicron technology [1-3]. Thus, it is essential to 
employ the fault-tolerant techniques in the design of SoC to 
guarantee a high operational reliability in critical 
applications. However, due to the high complexity of the 
SoC, the incorporation of the fault-tolerant demand into the 
SoC will further raise the design complexity. Therefore, we 
need to adopt the behavioral level or higher level of 
abstraction to describe/model the SoC, such as using 
SystemC, to tackle the complexity of the SoC design and 
verification [4]. An important issue in the design of SoC 
with fault tolerance is how to validate the feasibility of the 
fault-robust design as early in the development phase to 
reduce the re-design cost. As a result, a system-level 
fault-tolerant verification platform is required to assist the 
designers in assessing the dependability of a system with 
an efficient manner. Normally, the fault injection approach 
is employed to verify the robustness of a fault-tolerant 
system. 

SystemC [5], a system-level modeling language, 
provides a wide variety of modeling levels of abstraction 
and allows us to model a system utilizing one or a mixture 
of various abstraction levels. It is quite common that the 

modules within a fault-tolerant SoC are modeled at 
different levels of abstraction using SystemC design 
language. Therefore, the fault injection framework for 
SystemC design platform must offer the methodologies to 
inject the faults into the different modeling levels.  

Most of the previous fault injection studies focus on the 
VHDL design platform, whereas only a few works [6-9] 
address the fault injection issue in SystemC design 
platform. In our previous paper [9], we proposed a fault 
injection methodology for cycle-accurate register-transfer 
level (RTL) and compared the results of injection 
campaigns with the outcomes derived from the VHDL RTL. 
The comparisons show the accuracy and feasibility of our 
approach. However, the scheme presented in [9] can only 
apply to RTL, which limits the scope of application. In [6, 
7], the authors proposed a fault injection framework that is 
applicable to functional level and transaction layer 1 in 
SystemC [10]. The mechanism presented in [6, 7] is based 
on the insertion of fault injection modules (FIMs) into the 
interconnections of the functional blocks, where a FIM is to 
control the fault injection activity for a selected fault target. 
The injection activity of a fault can be characterized by the 
following attributes: time instant, fault type/value, and fault 
duration. A centralized fault injection control unit is used to 
control the FIMs. So, the centralized control unit is 
responsible for the determination when to inject a fault into 
which target and for what fault value and duration. Once 
the centralized control unit decides to inject a fault, the 
related control signals are sent to the designated FIM. The 



merit of [6, 7] scheme is no need to modify the SystemC 
source code for each fault injection campaign once the 
FIMs have been inserted into the simulation model. The 
only source to be prepared for each injection campaign is 
the fault injection controller that implements the injection 
script commands. 

Several interesting issues deserved to be explored 
further are described as follows. One is the control 
complexity of the centralized injection control 
methodology and its effect on the simulation time. As 
system is getting more complex, the injection control 
complexity rises too. Consequently, the simulation 
performance could be degraded significantly. Another is 
how to inject the faults into the systems modeled using 
mixed levels of abstraction. Since it is rare that all 
modules within a system are modeled at the same level of 
abstraction, the injection approach developed should 
possess the ability to inject the faults into different levels 
of abstraction. Third is how to generate the fault injection 
script file at higher levels of abstraction in SystemC 
design platform, which represents the fault scenario for 
each injection campaign. The last issue is the feasibility of 
fault/error model employed at high level of abstraction. 
The precision of fault/error model will affect the accuracy 
of the results of injection campaign. Paper [9] presents a 
preliminary study of this fault/error modeling issue.  

In this work, we propose an effective system-level 
simulation-based fault injection framework in SystemC 
design platform to assist the dependability assessment. The 
framework of fault injection proposed consists of the 
following modeling levels of abstraction: bus-cycle 
accurate (BCA) level, untimed functional transaction-level 
modeling (TLM) with primitive channel sc_fifo, and timed 
functional transaction-level modeling with hierarchical 
channel. We devise a distributed injection control approach 
instead of using one centralized control unit to control the 
injection activity. The proposed distributed injection 
control approach is capable of injecting single or multiple 
faults with diverse fault types into different abstraction 
levels. Our scheme can inject the faults into a system 
modeled at mixed levels of abstraction in SystemC. As we 
see, the control of injection activity is distributed to the 
fault injection modules (FIMs), which may lower the 
control complexity of fault injection and the simulation 
time compared to the centralized control approach. 
However, our approach needs to construct the source code 
of SystemC simulation model for each fault injection 
campaign because the fault injection script commands are 
distributively implemented in each FIM. The comparison 
of our distributed approach with the centralized control 
method in terms of experiment setup, compiling time, fault 
injection efficiency and simulation time will be discussed 
in the future.  

The remaining report is organized as follows. In 
Section 2, the fault injection framework is presented. We 
demonstrate the feasibility of our fault injection approach 
in Section 3. The conclusions and future work appear in 
Section 4. 

II. FAULT INJECTION FRAMEWORK IN SYSTEMC 

In this section, we consider the fault injection into the 
communication channels at the following abstraction levels. 

The first one is sc_signal at BCA level; the second one is 
the primitive channel sc_fifo at untimed functional 
transaction level and the last on is the hierarchical channel 
[5, 10] at timed functional transaction level. The principal 
idea of our approach is based on the insertion of FIMs into 
the interconnections of the functional blocks, where a FIM 
is to control the fault injection activity for the selected fault 
target. Since we distribute the injection control to each FIM, 
the FIMs are responsible for the determination of the fault 
injection activity including when to inject a fault, what the 
fault value and its duration. The core of the FIM design is 
how to decide when to activate a fault injection.  

A. Fault injection at BCA level 

Fig. 1 shows the fault injection structure for BCA level 
that includes a FIM used for the control of fault injection. 
The FIM contains an injection list of the faults, which 
depicts the injection activity for each fault collected in the 
injection list. Since the BCA level is clock-cycle accurate, 
the FIM can use the sc_simulation_time ( ) to get the time 
instant of the beginning of each clock cycle. Then, the FIM 
checks the current time instant obtained with the injection 
time list of the faults pre-specified in the FIM. If the time 
instant is equal to the injection time of a fault, FIM will 
activate the fault injection by generating the desired fault 
type/value to the ‘MUX’ input port and keep the fault 
stayed active for a pre-defined length of time; otherwise, 
the original signal is delivered.  

 
Fig. 1. Fault injection structure for BCA level. 

B. Fault injection at untimed functional transaction level 

As no clock exists in this level of abstraction, the 
event-driven method is utilized to trigger the FIM as 
illustrated in Fig. 2. An event is used to represent a 
condition that may occur during the course of simulation 
and to control the triggering of fault injection. We create 
the ‘Event Check’ module to monitor the occurrence of a 
specific event to control the FIM when to trigger the fault 
injection. The event could be, for example, a particular 
instruction address or a counter whose value reaches to a 
specific count. When the declared event occurs, the ‘Event 
Check’ module will send a trigger signal ‘Enable’ to FIM to 
activate the fault injection. 

Fig. 2(b) exhibits the circuit diagram of ‘Event Check’ 
block. The ‘Data Check’ module can check the data-related 
events, such as a particular address and data. The ‘Count 
Check’ can check, for example, whether the number of data 
read out from the FIFO channel has reached to a specific 
count. Table I presents the operation of ‘Event Check’. 
‘Event Check’ is expandable if more types of events need 
to check.  



 
(a) 

 
(b) 

Fig. 2. (a) Fault injection structure for channel sc_fifo. (b) 
The circuit diagram of ‘Event Check’ 

TABLE I THE OPERATION OF ‘Event Check’. 

0                      0                    0 
Error data2   Duration2     Enable2
Error data1   Duration1     Enable1
Error data1   Duration1     Enable1

0             0
0             1
1             0
1             1

Data             Duration         Enable
Data        Count
Enable1 Enable 2

0                      0                    0 
Error data2   Duration2     Enable2
Error data1   Duration1     Enable1
Error data1   Duration1     Enable1

0             0
0             1
1             0
1             1

Data             Duration         Enable
Data        Count
Enable1 Enable 2

 

C. Fault injection at timed functional transaction level 
 

Fig. 3 shows the transaction-level channel structure. 
Fault injection structure for transaction-level hierarchical 
channel is illustrated in Fig. 4. We note that a redundant 
channel is inserted between FIM and Slave modules. It is 
because the port of Slave module is the connection type for 
channel. To keep the original source code unchanged, we 
add one more channel to connect the FIM and Slave 
modules. This redundant channel is injection-induced 
component. Apparently, the input port and output port of 
FIM are slave port and master port for channel connection. 
Here, the concept of FIM is similar to that of sc_fifo. 

In next section, we will exploit a popular hierarchical 
channel: AMBA bus to demonstrate the fault injection 
platform displayed in Fig. 4. We use the AMBA bus library 
[12] and AMBA bus API (Application Programming 
Interface) [13] provided by CoWare Platform Architect to 
implement the FIM as shown in Fig. 4. 

 
Fig. 3. Transaction-level channel structure. 

 
 

Fig. 4. Fault injection structure for transaction-level 
hierarchical channel. 

 

III. FAULT INJECTION DEMONSTRATION 

The following experimental studies were performed to 
validate the feasibility of our fault injection framework 
proposed in Section II. Fig. 5 shows a common circuit 
structure used in fault injection experiments. In Fig. 5, 
‘Driver’ module is responsible for generating the augend 
and addend to the adder; ‘Monitor’ module is for printing 
out the results of adder. We employ the CoWare Platform 
Architect v2005.1.1 to build up the experimental 
environment. 

A. Experiment at BCA level 

Fig. 6 illustrates the fault injection structure of Fig. 5 
circuit, where the modeling level of this experiment is BCA 
style. The clock cycle is 5 ns in this fault injection 
experiment. ‘Driver’ module sends out the augend and 
addend to the adder every 5 ns, where we assign zero to 
augend all the time and one to eight in sequence to addend. 
Two faults are injected into the augend through FIM at 
different simulation time. The first fault is injected at 15 ns. 
At that time, FIM delivers the fault value twelve to ‘MUX’ 
input port and sets ‘select’ signal to pass the fault value to 
the input port of ‘Adder’. The duration of this fault is two 
clock cycles. The second fault is injected at 30 ns with fault 
value twenty and lasts one clock cycle. Fig. 7 presents the 
simulation results of fault-free and fault injection 
experiments. As can be seen from Fig. 7, it is evident that 
the first fault appears at time 15 ns and sustains two clock 
cycles. Another fault happens at time 30 ns and lasts one 
cycle. The injection capability of our approach at BCA 
level is justified from the results of fault injection 
campaign as shown in Fig. 7. 

B. Experiment at untimed functional transaction level 

Fig. 8 illustrates the fault injection structure at untimed 
functional transaction level. Table II lists a fault scenario 
for the injection campaign. From Table II, we see that the 
‘Count Check’ will activate the fault injection while the 
‘Count’ event , i.e. the number of augend data read out 
from the FIFO channel, has reached to a particular count, 1, 
4 and 7, respectively. In this experiment, the augend values 
are (0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16) and the 
addend values are (1, 0, 3, 0, 5, 0, 7, 0, 9, 0, 11, 0, 13, 0, 15, 
0). Fig. 9 shows the results of the fault-free and fault 
injection experiments. From Fig. 9, it is easy to see that the 



first three faults are count-triggered faults and sustain one, 
two and three transactions, respectively. The last fault is 
data-triggered fault and maintains two transactions long. 
The simulation outcomes of Fig. 9 confirm the feasibility 
of event-triggered injection approach for untimed 
functional transaction level. 

C. Experiment at timed functional transaction level 

In this experiment, we employ the AMBA bus to 
demonstrate the injection of faults into the hierarchical 
channels modeled at timed functional transaction level. 
Since hierarchical channel plays an important role in SoC, 
offering the injection capability of faults into the 
hierarchical channels is imperative in SystemC design 
platform. We utilize the AMBA bus library [12] and AMBA 
bus API [13] furnished by CoWare Platform Architect to 
implement the circuit diagram shown in Fig. 10. The 
‘Driver (master)’ and ‘Display (slave)’ modules in Fig. 10 
are responsible for sending data to AHB and receiving plus 
printing data from AHB respectively. The concept of FIM 
module is like ‘AHB to AHB Bridge’ except FIM is able to 
pollute the bus data during the fault injection campaign. 
The count of data transaction in AHB is used in FIM to 
decide the injection time of faults. In this demonstration, 
two faults are injected into the AHB channel. The first fault 
occurs at the second data transaction and lasts the length of 
two data transactions. The second fault happens at the tenth 
data transaction and sustains one data transaction. The 
simulation results of fault-free and fault injection 
experiments are exhibited in Fig. 11. 

D. Experiment at mixed levels of abstraction 

SystemC, as a system-level design platform, employs 
the concepts of intellectual property (IP) reuse and 
hierarchical channel to reduce the SoC design complexity, 
effort and time. However, the provided IP modules may be 
modeled at various levels of abstraction such that a system 
is often modeled at mixed abstraction levels. Therefore, the 
inclusion of fault injection at mixed levels of abstraction is 
important in the development of system-level fault 
injection framework. The goal of this experiment is to 
show the feasibility of our fault injection framework, which 
is capable of injecting the faults into a system modeled at 
mixed levels of abstraction.  

Fig. 12 demonstrates a fault injection structure at 
mixed levels of abstraction. In Fig. 12, ‘Driver_1’ module 
modeled at RTL provides the augend data for ‘Adder’; 
‘Driver_2’ module modeled at timed functional transaction 
level offers the addend data through the AHB channel to 
‘Adder’, and right part of Fig. 12 including ‘Adder’ and 
‘Monitor’ modules is modeled at untimed functional 
transaction level with primitive channel sc_fifo. ‘Driver_1’ 
sends out an augend every 5 ns following the data sequence 
0 ~ 14. ‘Driver_2’ sends out an addend every 10 ns 
following the data sequence 0 ~ 14. The ‘Adder’ module 
synchronizes the input sequences of augend and addend, 
and therefore, the results of ‘Adder’ are .14  to0    ,2 =× ii  
The fault scenario for this experiment is as follows: ‘FIM’ 
in ‘Driver_1’ part injects faults into augend at time 15ns 
and 25 ns; ‘FIM’ in ‘Driver_2’ part injects faults into 
addend at transaction count 6 and 9; ‘FIM’ in ‘Monitor’ 
part injects faults into ‘Monitor’ input at transaction count 
11 and 12, and at ‘Adder’ output data equal to 28. Fig. 13 

illustrates the simulation results of fault-free and fault 
injection experiments. As can be seen from Fig. 13(a), a 
situation of multiple faults occurs when augend is 55 and 
addend is 200. This confirms the multiple fault injection 
ability of our mechanism. 

 
Fig. 5. A common circuit structure for injection 

experiments. 

Driver Adder Monitor

select
FIM

MUX

 
Fig. 6. Fault injection structure of Fig. 5 circuit modeled at 

BCA level. 

 
Fig. 7. Simulation results of fault-free (left side) and fault 

injection (right side) experiments at BCA level. 

 
Fig. 8. Fault injection structure at untimed functional 

transaction level. 

 

 

 



TABLE II FAULT EVENTS, VALUES AND DURATION 

Count check Fault value Fault duration 

1 11 1 

4 44 2 

7 77 3 
 

 
Data check Fault value Fault duration 

12 222 2 

Fig. 10. Fault injection structure at timed functional 
transaction level. 

 
 

Fig. 11. Simulation results of the fault-free and fault 
injection experiments at timed functional transaction level. Fig. 9. Simulation results of the fault-free and fault 

injection experiments at untimed functional transaction 
level. 
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Fig. 12. Fault injection structure at mixed levels of abstraction. 

 
(a) 



 
(b) 

 Fig. 13. (a) Fault injection scenario. (b) Simulation results of fault-free and fault injection experiments. 

IV. CONCLUSIONS AND FUTURE WORK 

In this report, a system-level fault injection framework 
in SystemC design platform is presented. The proposed 
fault injection framework provides the methodologies for 
injecting the faults into various levels of abstraction. Three 
modeling levels considered in the framework are BCA 
level, untimed functional transaction level, and timed 
functional transaction level. The experiments based on 
CoWare Architect Platform were conducted to validate the 
feasibility of our fault injection approach. Contributions of 
this work are first to present the idea of distributed fault 
injection control to lower the control complexity of the 
fault injection compared to the centralized fault injection 
control; to develop the methodologies, including the 
time-triggered and event-triggered concepts, to inject the 
faults into different abstraction levels, and importantly to 
provide a solution for injection of faults into a system 
modeled at various levels of abstraction.  

In the future, we will further explore the approach of 
distributed control of fault injection and compared to the 
method of centralized control of fault injection in terms of 
the complexity of experiment setup, compiling time, fault 
injection efficiency and simulation time. In addition, we 
will implement the proposed fault injection framework in 
the EDA tool of CoWare Architect Platform.  

REFERENCES 

[1] C. Constantinescu, “Impact of Deep Submicron 
Technology on Dependability of VLSI Circuits,” IEEE 
Intl. Conf. On Dependable Systems and Networks 
(DSN), pp. 205-209, 2002. 

[2] P. Shivakumar et al., “Modeling the Effect of 
Technology Trends on the Soft Error Rate of 
Combinational Logic,” DSN, pp. 389-398, 2002. 

[3] T. Karnik, P. Hazucha, and J. Patel, “Characterization 
of Soft Errors Caused by Single Event Upsets in 
CMOS Processes,” IEEE Trans. on Dependable and 

Secure Computing, Vol. 1, No. 2, pp. 128-143, 
April-June 2004. 

[4] A. Fin, F. Fummi and G. Pravadelli, “AMLETO: a 
Multilanguage environment for functional test 
generation”, 2001 International Test Conference, pp. 
821-829, Nov. 2001. 

[5] Grotker Thorsten et al., “System Design with 
SystemC,” Kluwer Academic Publishers, 2002. 

[6] K. Rothbart et al., “High Level Fault Injection for 
Attack Simulation in Smart Cards,” 13th Asian Test 
Symposium, pp. 118-121, Nov. 2004. 

[7] K. Rothbart et al., “A Smart Card Test Environment 
Using Multi-Level Fault Injection in SystemC”, 6th 
IEEE Latin-American Test Workshop, pp. 103-108, 
March-April 2005. 

[8] K. Rothbart et al., “Power Consumption Profile 
Analysis for Security Attack Simulation in Smart 
Cards at High Abstraction Level,” EMSOFT, pp. 
214-217, Sept. 2005. 

[9] Kuen-Long Leu, Yung-Yuan Chen, and Jwu-E Chen, 
“A Comparison of Fault Injection Experiments under 
Different Verification Environments”, IEEE Fourth 
International Conference on Information Technology 
and Applications, pp. 582-587, Jan. 2007. 

[10] Open SystemC Initiative (OSCI), “SystemC 2.0 
Language Reference Manual,” Revision 1.0, 
www.systemc.org, 2003. 

[11] Bhasker Jayaram and J. Bhasker, “A SystemC 
Primer,” Star Galaxy Publisher, 2004. 

[12] CoWare Model Library, “AMBA Bus Library,” 
Product Version V2005.2.2. 

[13] CoWare Model Library, “TLM API Manual,” Product 
Version V2005. 

 
 

http://www.systemc.org/


Abstract (second part) 
This report describes the results achieved in the first year of three-year research proposal. As mentioned in the 

proposal, an important issue in the design of SoC with fault tolerance is how to verify the feasibility of the fault-robust 
design as early in the development phase to reduce the re-design cost. Therefore, a system-level fault-tolerant verification 
platform is required to assist the designers in assessing the dependability of a system with an efficient manner. The second 
part is going to discuss how to analyze the error coverage without using the fault injection and fault simulation 
mechanisms in order to save the development efforts and simulation time. Our idea is to devise a high-level abstract model 
to represent the fault-tolerant systems including the interconnection structure of the functional blocks, the propagation 
tables expressing the relationship between inputs and outputs for each functional block and the Petri Net to model the 
functional behavior of the fault-tolerant system. The fault-tolerant verification platform proposed here can save the time of 
detailed hardware implementation, benchmark program development, and fault injection campaigns. As a result, it is 
efficient to reduce the implementation and validation efforts. However, since our approach employs a high level of 
abstraction to model the fault-robust systems, the accuracy of the simulation results will decrease. A fault-tolerant VLIW 
core developed by our team is used to demonstrate the feasibility of our approach by comparing the results obtained from 
this approach with the results derived from the simulation-based fault injection technique by VHDL.
 
Keywords: error propagation path, high-level abstraction modeling, high-level rapid verification, Petri Net, 
system-on-chip (SoC), transient fault (soft error or SEU). 

INTRODUCTION 

Due to the high complexity of the system-on-chip (SoC), 
the behavioral level or higher abstraction level are used to 
model the SoC so as to tackle the complexity of the SoC 
design. It is well known that the rate of radiation-induced 
soft errors increases rapidly especially in combinational 
logic while the chip fabrication enters the deep submicron 
technology [1-3]. Such influences raise the urgent need to 
incorporate the fault tolerance into the high-performance 
systems [4-7]. However, the incorporation of the 
fault-tolerant demand into the SoC will further complicate 
the design problem. Importantly, we need to verify the 
feasibility of the fault-robust design as early in the 
development phase to reduce the re-design cost. Therefore, 
a system-level fault-tolerant verification platform is 
required to assist the designers in assessing the 
dependability of a system with an efficient manner. 

We can validate the dependability of fault-tolerant 
systems by fault injection campaigns [8-10]. In general, 
the verification process of system robustness is performed 
by injecting the faults into the system and monitoring 
whether the faults are detected/recovered or cause the 
system failure, etc. The fault injection techniques 
presented in the previous literature can be classified as 
physical [11], software-implemented [12] and 
simulation-based [13, 14] fault injection approaches. The 
different classes of fault injection approaches provide a 
compromise between implementation efforts, simulation 
time and the accuracy of the experimental results. A major 
limitation of physical and software-implemented 
approaches is that dependability evaluation is performed 
after physical systems have been built. While 
dependability evaluation is necessary after systems have 
been built, the costs of re-designing systems due to 
inadequate dependability can be prohibitively expensive. 
The simulation-based fault injection uses the simulation to 
inject faults in simulation models of systems. The 
simulation model of systems can be described in hardware 
description language like VHDL. The advantage of 
simulation-based mechanism is that the system 
dependability can be assessed as early in the design phase, 
and if necessary to re-design the system, the cost of 
re-design is reduced significantly. Although the 

simulation-based approach shows a valuable means to 
support the validation of the fault-tolerant systems, it still 
requires considerable efforts to model the system 
implementation at different abstraction levels, to develop 
the benchmark programs as well as the fault injection tools, 
and to perform the fault injection campaigns. The goal of 
this study is to propose a new fault-tolerant verification 
approach that can significantly reduce the validation 
efforts compared to the simulation-based approach.  

As discussed before, several issues should be 
addressed in the fault-tolerant verification process: First is 
the way of faults/errors injected; second is the paths of 
faults/errors propagated and third is the outcomes of 
faults/errors processed and analyzed. It is clear that the 
verification efficiency can be enhanced if we can more 
effectively cope with the above issues. For this purpose, 
we devise a high-level abstract modeling methodology to 
modeling the fault-tolerant systems where the emphasis of 
system modeling is more on the error propagation and 
error handling, and less on the details of the 
implementation of the functional units. Since the proposed 
modeling methodology focuses on the function of 
fault-robust validation only, the complexity of system 
models will decrease. Therefore, it reduces the efforts to 
modeling the systems and the time to performing the fault 
injection campaigns and error coverage analysis. However, 
since our fault-tolerant verification approach employs a 
high level of abstraction to modeling the systems, the 
accuracy of the simulation results could be hurt.  

The rest of the report is organized as follows: In 
Section 2, the methodology to modeling the fault-robust 
systems is proposed. Section 3 uses a fault-tolerant VLIW 
core to demonstrate the proposed fault-tolerant verification 
approach. In Section 4, the simulation results are provided 
and compared with the results derived from the 
simulation-based fault injection approach by VHDL. The 
conclusions appear in Section 5.  

FAULT-ROBUST SYSTEM MODELING 
METHODOLOGY 

The goal of the modeling methodology is to lower the 
complexity of the modeling, simulation and analysis of the 
fault-tolerant systems. The basic idea is to find out the 
data flow paths of each system operation. Then, locate all 



possible errors which could occur in the data flow paths 
for a particular operation under a specific error model. For 
each operation, we can inject the desired errors from the 
error model into the corresponding data flow paths and 
check whether the detection and recovery schemes 
embedded in the system can tolerate the errors or not. To 
support the validation of system robustness, the proposed 
system model must have the capability to propagate the 
errors while the system is executed. 

Based on the above discussion, we develop a 
high-level abstract model to modeling the fault-robust 
systems. The simulation model of systems comprises the 
following three parts:  
1. the interconnection structure of the functional units; 
2. the propagation tables expressing the relationship 

between inputs and outputs for each functional unit; 
3. the Petri net structure [15] to model the functional 

behavior of the fault-tolerant systems.  
More specifically, the propagation tables can be 

utilized to propagate the errors from the inputs to the 
outputs of each functional unit. And through the 
interconnections of the functional units, the effect of errors 
will be propagated. An abstract error model is exploited to 
generate the desired error patterns for the system under 
validation. The function of Petri net model is to control the 
operations of the system. For each operation represented 
by a place in the Petri net graph, we also need to store its 
control signals for the corresponding functional units 
which are responsible for the execution of the operation. 
We can count on the Petri net model and the control 
signals for each operation to derive the corresponding data 
flow paths for a particular operation. Then, all possible 
errors which could happen in those data flow paths for a 
specific operation can be located. In that way, we can 
generate the error list for each operation. In other words, 
our verification approach can produce the propagation 
paths for each error to see whether the paths of error 
propagation have the detection and recovery protection or 
not. Therefore, we can examine the error patterns one by 
one for a particular operation to acquire the dependability 
data for robustness validation. Finally, the error coverage 
of a system can be derived from the detailed analysis of 
the error coverage related to each operation. In addition to 
the error coverage evaluation, the analysis can also 
discover the single failure points or weak points of the 
systems that can be utilized to improve the system 
dependability further.  

CASE STUDY 

A fault-tolerant VLIW core [16] is used to demonstrate the 
concept of our approach. For simplicity of demonstration, 
we adopt the portion of the execution stage of VLIW core 
as shown in Figure 1 to illustrate the modeling 
methodology and the fault-robust verification process. In 
Figure 1, ‘CP’ and ‘TMR_MV’ denote the ‘comparator’ 
and ‘triple modular redundancy majority voter’, 
respectively. The fault-tolerant scheme employed in [16] is 
briefly described as follows: 

while (not end of program) 
{switch (Number of instructions in an execution packet 

for ALU.)  
{case ‘1’: TMR_MV(ALU_1, ALU_2, ALU_3); if 

(TMR_MV detects more than one ALU 
failure) then the “Error-recovery process” 
is activated to recover the failed 
instruction. 

case ‘2’: the execution packet contains two 
instructions: I1 and I2. 
I1: CP1(ALU_1, ALU_2);  
I2: CP2(ALU_3, ALU_4); 
if (I1 fails) then the “Error-recovery 
process” is activated to recover I1. 
if (I2 fails) then the “Error-recovery 
process” is activated to recover I2. 

case ‘3’:the packet is divided to two packets and 
executed sequentially.  

}} 

Error-recovery process: 
1←i ; 

While (number of retries ) 0_ >nor
{TMR_MV(ALU_i, ALU_ , ALU_1+i 2+i ); 

  if (TMR_MV succeeds) then the error recovery 
succeeds Æ exit;  

  else { 1__ −← nornor ; 1+← ii ; if 
( ) then 3≥i 1←i ;}} 

recovery failure and the system enters the fail-safe 
state. 

Figure 2 exhibits the simulation model of the system 
illustrated in Figure 1, where . In this case 
study, there are two normal system operations: an 
execution packet containing one ALU instruction or two 
ALU instructions. As can be seen from Figure 2(b), these 
two operations termed as target operations are notated by 
the places of ‘P1inst’ and ‘P2inst’, respectively. The other 
places are used to model the operations/functions of the 
fault-tolerant scheme presented above. We now exploit 
Figure 2 to explain the modeling methodology and 
fault-robust verification approach. 

2_ =nor

Modeling methodology:  

1. The interconnection description of the functional units; 
we create a file to describe the interconnection 
relationship among the functional units. 

2. Figure 2(a) shows the propagation tables for the 
functional units, where ‘eq’ and ‘neq’ represent 
‘equal’ and ‘not equal’, respectively. 

3. Figure 2(b) shows the Petri net graph created to model 
the system as exhibited in Figure 1. The control 
signals for target operation ‘P1inst’ and its associated 
operations ‘Prc1’ and ‘Prc2’ are provided in the 
control table as displayed in Figure 2(c). For example, 
when the operation ‘P1inst’ is executed, the control 
table is employed to produce the corresponding 
control signals, such as Sch_control = ‘000’ and 
mux_a = ‘0’, to perform the execution of one ALU 
instruction with TMR protection. Figure 2(d) gives 
the conditions for firing the transition from the input 
place to the output place.  
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In the following, the target operation ‘P1inst’ is 

employed to explain our fault-tolerant verification 
approach.  

Step 1: The current place in Figure 2 (b) is ‘P1inst’. The 

data flow paths of this operation can be generated by 
applying the required control signals offered in Figure 2(c), 
i.e. Sch_control = ‘000’ and mux_a = ‘0’. The procedure 
of path generation is briefly depicted below (note that the 
interconnections of the functional units are implicitly 

Figure 1. Fault-robust case study. 

 
(c). Control table 

 
(d). Transition fire condition table 

(a). Propagation tables 

 
(b). Petri net system modeling 

Figure 2. The simulation model of the system illustrated in Figure 1, where . 2_ =nor
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applied in the following demonstration of path 
generation).  
z Schedule: Since Sch_control = ‘000’, according to the 

propagation table of Schedule, I1_in1 (data1) is 
propagated to Sch_A1_Out, Sch_B1_Out and 
Sch_C1_Out, and I1_in2 (data2) is propagated to 
Sch_A2_Out, Sch_B2_Out and Sch_C2_Out. 

z ALU: Based on the propagation table of ALU, 
ALU_A_Out, ALU_B_Out and ALU_C_Out are all 
equal to ‘data1 op data2’. 

z Mux: mux_a = ‘0’, and therefore, ‘data1 op data2’ is 
propagated to Mux_Out1, Mux_Out2 and Mux_Out3. 

z TMR_MV: According to the propagation table of 
TMR_MV, TMR_Out is ‘data1 op data2’ and 
TMR_Error is 0. 

Step 2: In Step 1, we have collected the data flow paths for 
the operation ‘P1inst’. Then, find out all possible errors 
which could occur in the data flow paths for ‘P1inst’ under 
a selected error model. Here, we adopt the following error 
model to generate the error patterns that will be used to 
check the system robustness while ‘P1inst’ operation is 
executed.  
Error model: To simplify the modeling complexity and 
reduce the simulation time, we omit the details of the 
functional units in the system modeling. However, there is 
no way to inject the faults into the inside of the functional 
units. Therefore, the errors only can be injected in the 
outputs of the units. We consider the errors either 
occurring in a single output port or in the two different 
output ports.  

According to the above error model, we can create the 
possible errors, which could happen in the data flow paths 
of the operation ‘P1inst’. So, if an error occurs in the 
‘P1inst’ paths and meanwhile the system is executing the 
operation of ‘P1inst’, then this error could affect the 
execution result. For each operation, we can inject the 
possible errors from the error model into the 
corresponding data flow paths and investigate whether the 
detection and recovery schemes built in the system can 
tolerate the errors or not.  
Case 1: A single output port error; an error is injected into 
the Sch_A1_out port as shown in Figure 2(a), propagation 
table of Schedule unit. As can be seen from Step 1, ‘data1’ 
is changed to ‘wrong_data’. Clearly, the error will be 
propagated to Mux_Out1, then TMR1. So, TMR1 
becomes ‘wrong_data op data2’. In the meantime, TMR2 
and TMR3 contain the expression ‘data1 op data2’. As a 
result, TMR_Out is ‘data1 op data2’ and TMR_Error is 0. 
It means that the error can be overcome. Next, there are 
two output places, ‘Prc1’ and ‘Ptmrs’, for input place 
‘P1inst’, where the outcome of TMR_Error decides which 
transition will be enabled. Since TMR_Error is 0, from 
Figure 2(d), the transition ‘Ttmrs’ is fired and the place is 
transited from ‘P1inst’ to ‘Ptmrs’. There is no more 
transition when the place is in ‘Ptmrs’. Record the result 
and activate the next error injection. 
Case 2: Two output port errors; an error is injected into the 
Sch_A1_out port and the other into Sch_B1_out port. 
Similarly, the errors will be propagated to TMR_MV 
inputs, and they are ‘wrong_data1 op data2’, 
‘wrong_data2 op data2’, and ‘data1 op data2’, respectively. 

Consequently, TMR_MV fails to produce the correct 
answer, and sets TMR_Error is one. Next, the transition 
‘Ttmrf’ is fired and the place ‘Prc1’ is executed. The 
operation ‘Prc1’ is the first error recovery, and if it 
succeeds, then the transition ‘Trc1s’ is fired; else, the 
operation of second recovery ‘Prc2’ will be activated. 
Finally, if error recovery succeeds, then the system enters 
the place ‘Prc2s’; else, the system goes into the fail-safe 
state. 
Figure 3 illustrates the complete fault-robust verification 
process. A platform based on the verification process is 
developed and used to evaluate the error coverage of the 
fault-tolerant systems.  

 
Figure 3. The complete fault-robust verification process. 

SIMULATION RESULTS 

In this section, we use the proposed verification platform 
to assess the error coverage of system as shown in Figure 
1. The design metrics as described below are exploited to 
justify our approach: 
z : Error-detection coverage, i.e. probability of 

errors detected; 
det−eC

z : Error-recovery coverage, i.e. probability of 
errors recovered given errors detected; 

receC −

z : Error coverage, i.e. probability of errors detected 
and recovered; 

eC

z : Probability of system entering the 
fail-unsafe state; 

unsfP −

z : State transition probability from 
‘detected’ state to ‘fail-safe’ state. 

sftP −−− det

Table 1 presents the simulation results of the design 
metrics. The data shown in Model1 are derived from the 
assumption that the occurring probability is the same for 
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each error in the error model. As shown in [2], the 
fault/error rate is proportional to the circuit area. Therefore, 
the occurring probability for the errors located at various 
functional units should not be identical. The data shown in 
Model2 take the area effect on the error rate into account. 
However, the proposed high-level modeling methodology 
is for the verification purpose of the system robustness. It 
cannot be used to estimate the area of the functional units. 
The VHDL design flow is adopted to obtain the area of the 
units as displayed in Figure 1. To justify the feasibility of 
our approach and the accuracy of the simulation results, 
we also conduct the simulation-based fault injection 
campaigns at RTL level by VHDL design language. Table 
2 lists the experimental results. 

Table 1. The simulation results based on our method. 

 Ce-det Ce-rec Ce Pt-det-f-s Pf-uns

Model1 0.9269 0.8710 0.8073 0.0358 0.1595
Model2 0.9971 0.9187 0.9160 0.0390 0.0450

Table 2. Results from simulation-based approach. 
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Three workloads are developed for the experiments. 
For fair comparison, three workloads have the various 
ratios of one and two ALU instructions in an execution 
packet. According to Table 2, we confirm that the area 
factor plays an important role in the evaluation of the error 
coverage. The comparison results between VHDL and our 
approach with area consideration are summarized as 
follows (represented by the percentage of the difference): 
-0.17 ~ 0.05% for error-detection coverage, -7.24 ~ 
-6.64% for error-recovery coverage, and -7.4 ~ -6.64 % for 
error coverage.  

CONCLUSIONS 

A new fault-tolerant verification platform has been 
proposed to drastically reduce the validation effort and 
time compared to the previous methodologies. Our 
fault-tolerant verification platform does not require the 
detailed hardware implementation, benchmark program 
development, and fault injection campaigns. However, 
since our verification approach employs a high level of 
abstraction to model the fault-robust system, the accuracy 
of the simulation results will decrease. The preliminary 
results show that the accuracy of our approach is 

acceptable, and the verification flow can achieve a rapid 
dependability assessment. Such a verification flow can 
significantly decrease the iteration time between different 
design levels. 
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Self-Evaluation of Research Results: 
z The above report summarizes the first-year 

results accomplished from this three-year 
research project. It is evident that 99% of the 
work has been achieved and the preliminary 
results have been published. The extended 
versions of the results will be submitted to be 
considered for journal publication. However, the 
subjects described in our proposal are big and 
deserve to be further explored. We definitely 
achieve the first-year goals set in the proposal. 

z We are going to develop a system-level 
fault-injection tool, which exploits the 
simulation-based fault injection scheme proposed 
in this research and can be installed in the 
CoWare Architect Platform. The tool takes the 
fault scenario description from the user and then 
automatically generates the system platform 
supplemented with the fault injection capability. 
This kind of fault injection tool can not only 
facilitate the failure mode and effect analysis 
(FMEA) and the fault-tolerant validation process, 
but raise the validation efficiency. The embedded 
fault-tolerant systems have found fertile ground 
in intelligent system applications, such as 
intelligent driver assistance system or intelligent 
robot system, which require a stringent 
dependability while the systems are in operation. 
Since more works depend on the intelligent 
machines, the reliability issue becomes more 
important than ever. The fault-tolerant 
verification platform developed from this 
research can be applied to the design and 
analysis of the fault-tolerant systems modeled at 
high level of abstraction to enhance the overall 
system dependability. The previous study for the 
fault injection approach mainly focuses on the 
VHDL modeling level and rarely discusses the 
fault injection in system-level design. We want to 
fulfill this lack. 

Publications associated with this research: 
z Kuen-Long Leu, Yung-Yuan Chen and Jwu-E 

Chen, “A Comparison of Fault Injection 
Experiments under Different Verification 
Environments”, IEEE Fourth International 
Conference on Information Technology & 
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z Yung-Yuan Chen and Geng-Wei Wu, 
“Fault-Tolerant Verification Platform for 
Systems Modeled at High Level of Abstraction”, 
1st IEEE Systems conference, pp. 1-7, April 2007. 
(EI) 

z Kun-Jun Chang and Yung-Yuan Chen, 
“System-Level Fault Injection in SystemC 

Design Platform,” 8th International Symposium 
on Advanced Intelligent Systems, pp. 354-359, 
Sept. 2007. 
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Abstract--The main work of this paper is to characterize the 
dependability of fault-tolerant systems by using two different 
hardware design environments (SystemC and VHDL). For 
SystemC, we inject errors into the components’ outputs, whereas 
faults into the inside of components for VHDL. The difference of 
the simulation results between SystemC and VHDL is discussed 
thoroughly through observing two parameters: one is the 
probability of a fault causing an effective error and another is 
the relationship between fault duration and error duration. The 
above two parameters dominate the discrepancy between the 
two different platforms. The experimental results show the 
effect of the parameters on the error coverage. This study can 
promote the fault-tolerant design and verification environment 
to a higher abstraction level. 
Index Terms--Error/fault injection, fault-tolerant verification 
platform, hardware design language, SystemC. 

I. INTRODUCTION 

cA 
s system-on-chip (SoC) becomes more and more 
omplicated, and contains a large number of transistors, the 

SoC could encounter the reliability problem due to the 
increased likelihood of faults or radiation-induced soft errors 
especially when the chip fabrication enters the deep 
submicron technology [1]-[3]. Thus, it is essential to employ 
the fault-tolerant techniques in the design of SoC to guarantee 
a high operational reliability in critical applications. Recently, 
the reliability issue in high-end processors is getting more and 
more attention [4]-[7]. For example, the Intel Itanium 
processor provides fault-tolerant features [7], such as 
enhanced machine check abort (MCA) architecture with 
extensive error correcting code (ECC), to maximize system 
reliability and availability. 

Generally, there are two kinds of methodologies used to 
verify the dependability of fault-tolerant systems. One is 
physical fault injection [2] that injects the faults at the IC 
pin-level, by heavy-ion radiation, by interference with the IC 
power supplies, or by mutating code and corrupting program 
state variables. The other is simulated fault injection [8]-[10] 
that uses the simulation to inject faults in simulation model of 
systems. We can describe the simulation model of systems by 
hardware description language like VHDL and SystemC. The 
advantage of simulated fault injection mechanism is that the 
system dependability can be assessed as early in the design 
phase, and if necessary to re-design the system, the cost of 
re-design is reduced significantly.  

Recently, the development and verification environment is 
gradually promoted from RTL to behavioral or system level 
due to the complexity of SoC design. Two popular hardware 

description languages, Verilog and VHDL, are not adequate 
to support the system-level design in more abstract 
description. The SystemC comes to fill the need of system 
design [11]-[14]. Because each component developed by 
SystemC may only contain its behavioral description, the 
detailed hardware structure is not definite at this level. 
Therefore, it is impossible to inject a fault into the inside of 
components. Instead, only the errors can be injected into the 
components’ outputs. The pity is that previous literatures 
seldom mention the relationship between the fault and error. 
So designers who want to develop a fault-tolerant system 
upon higher level of abstraction have no idea about how to 
link the error scenario to fault scenario. For above reason, this 
paper wants to propose some practical suggestions to help 
designers derive more actual simulation results when they are 
verifying their fault-tolerant systems.  

The remaining sections are organized as follows. We 
briefly introduce the existing error injection methodologies in 
Section 2 and present ours in Section 3. In Section 4, we 
discuss and compare the fault injection results derived from 
the VHDL and SystemC simulation models of a 32-bit 
fault-tolerant VLIW processor. Finally we propose some 
valuable conclusions in Section 5 to help derive more 
accurate experimental results of error simulation at higher 
abstraction levels. 

II. RELATED WORK 
There are only a few approaches of error injection at high 

abstraction level based on SystemC. Rothbart et al. [12] 
inserted fault injection modules (FIM) into the 
interconnection of the function blocks and fault injection 
ports (FIP) in the Memory. A fault-injection control unit 
(FICU) to accomplish the fault simulation at high abstraction 
level controls the FIM and FIP. Although this methodology 
will not modify the component description, the FICU will 
become very complicated if the tested system contains many 
functional blocks. Fin et al. [13] performed the error injection 
into SystemC models by presenting a multi-language 
environment for functional test generation, but they did not 
observe the behavior of the faulty system. Reference [14] 
proposed an automated synthesis of single-event upset (SEU) 
Tolerant architecture based on SystemC environment. 
Moreover, a tool is provided to allow performing error 
injecting at behavioral level to validate the SEU tolerant 
circuits. However, the error injection targets only focus on the 
storage elements. 

A Comparison of Fault Injection Experiments 
under Different Verification Environments 

1Kuen-Long Leu, 2Yung-Yuan Chen and 1Jwu-E Chen 
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III. ERROR INJECTION METHODOLOGY IN 
SYSTEMC 

A basic simulation model of SystemC involves three 
blocks including “Stimulus”, “HW/SW” and “Monitor” [11]. 
The “Stimulus” is responsible for reading the test input file 
and passing the test patterns at each clock cycle to “HW/SW” 
which contains the system description and the “Monitor” 
records systems’ outputs. Because all of the three blocks are 
established upon the C/C++ platform, every signal and 
input/output port in real hardware can be viewed as a variable 
in high-level language. If a certain signal is selected to be the 
fault or error injection target, its value can be altered 
arbitrarily by declaring its scope as global. According to this 
principle, we append another block called “Error injection 
file” to construct our error simulation model as shown in Fig. 
1. This file specifies the information for each error injection 
including the injection time instant, injection target, error 
type and the error duration. Once the simulation time reaches 
the injection time of an error, the erroneous value will replace 
the content of the corresponding port or signal. 
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Fig. 1: Error simulation model. 

A. Timing Model of SystemC 
In SystemC, each process will be triggered by certain 

events. Each event is assigned to a virtual time delay ∆. 

10ns 30ns20ns 40ns 50ns
1Δ

2Δ
1Δ

10ns 30ns20ns 40ns 50ns
1Δ

2Δ
1Δ

 
Fig. 2: Virtual timing model and ∆ delay of SystemC. 

The ∆ is used to illustrate the relation between cause and 
effect of real hardware components. As Fig. 2 depicts, there is 
an event triggered at 20ns, and this event will activate the 
second event at 20+1∆ ns. Then the second event further 
activates the third event at 20+2∆ ns, and so on. Such ripple 
effect will persist until no more events happen for current 
iteration.  

Due to the ∆ delay, the following situation will result in 
the error injection fail: Assume an error is injected into an 
ALU output at 20 ns and this error will be propagated to the 
next stage at 30 ns. However, ALU is triggered until 20+2∆ 
ns such that the error injected at 20 ns will be overwritten by 
the new result. Thus, the error injected becomes ineffective. 
To solve this problem, each component that could be an 
injection target needs modifying as illustrated in Fig. 3. 
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flagALU_in_A

ALU_in_B ALU M
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X

Erroneous 
value

aluout

flag

 
Fig. 3: A modified ALU block for error injection. 

We declare the ‘flag’ and ‘Erroneous value’ in Fig. 3 as 
global variables so that we can control their values easily. Fig. 
4 is an error injection file with flag insertion. Once the 
simulation time reaches 90 ns, the flag will be set to one, and 
the multiplexer will choose the erroneous value as the output. 
The flag will return to zero at 110 ns and at that time the ALU 
block restores to its normal operation. In this case, the error 
duration is 20 ns. 
#include “error_injection_file.h"
#include “system_top.h"
extern systemc_top S1 ;
void Error_in::prc_error_in() {

run_time = sc_simulation_time() ;
switch(run_time) {
case 90 : {
S1.ALU_top_unit->ALU->flag.write(1) ;
S1.ALU_top_unit->ALU->erroneous_value = 1001987144 ;

} break ;
case 110 : {
S1.ALU_top_unit->ALU->flag.write(0) ;

} break ;
}

}
 

Fig. 4: An error injection file example. 

Although this methodology will modify the original 
component description, the modification is very slight. 
Furthermore, the insertion of flags and multiplexers can be 
performed automatically due to its regularity, thus there is no 
additional burden to designers. In addition, this methodology 
can apply to not only ALU but also any other functional 
blocks and storage elements. We have integrated this error 
injection process into our development and verification 
framework for the validation of the fault-tolerant systems. We 
describe the framework next.  

B. Development and Verification  framework  
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Fig. 5: Development and Verification framework. 

Fig. 5 shows the framework to develop and validate the 
fault-tolerant systems based on SystemC platform. After the 
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original design has been verified to meet its functional 
specification, the failure sensitivity analysis will generate a 
report providing which components with the higher 
probability of causing the system failure due to the errors. 
According to this report, designers can add the protection 
mechanisms to those vulnerable components to re-build an 
enhanced design with fault-tolerant capability. Next, the 
fault-tolerant design is analyzed to determine which 
components should be inserted the error-injection-assisted 
flag and multiplexer to facilitate the fault simulation. To 
generate the error injection file mentioned earlier, we have 
developed an error injection tool to produce the error 
injection file automatically. By giving four parameters 
including the total number of errors injected, error duration, 
simulation time and quantity of experiments, designer can use 
this tool to not only generate the error injection files but also 
derive the analysis about the degree of error overlapping as 
shown in Fig. 6. The Weibull distribution is utilized for 
determining the occurring time of each error. Numbers on the 
top of Fig. 6 represent how many errors overlap over a certain 
time fraction.  The various degrees of error overlapping 
represent the different error environments. Designers can 
alter the parameters stated above to generate the desired error 
environment. 

Next, the error-free simulation and error simulation can be 
performed with the specified workloads. Both simulation 
results are used for error coverage analysis. The designer 
should revise his/her fault-tolerant algorithm and re-run the 
implementation and simulation iteration until the error 
coverage reaches the desired level. After that, the design can 
be synthesized to RTL for further process. 
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Fig. 6: Error overlapping degree. 

The VHDL platform-based framework is similar to the 
SystmeC except that flag and multiplexer are not required. 

IV. EXPERIMENTAL RESULTS 

A. Fault-Tolerant VLIW Data Path Design 
To validate the proposed approach, an experimental 

fault-tolerant VLIW architecture is developed [15]. This 
experimental architecture as displayed in Fig. 7 can issue at 
most three ALU and three load/store instructions per cycle. 
For simplicity of demonstration, the concurrent error 
detection and recovery do not apply to the load/store units. 
The fault-tolerant VLIW processor is briefly described as 
follows: 
1. For only one ALU instruction executed in current clock 

cycle, the ‘Dispatch’ circuit will duplicate this 
instruction to three ALUs simultaneously. Then, the 

TMR_MV will check the consistency of the ALUs’ 
outputs.  

2. For two ALU instructions in current execution slot, the 
‘Dispatch’ circuit will duplicate the first instruction to 
ALU_1 and ALU_2 and the second to ALU_3 and 
ALU_4, respectively, and then the CP1 and CP2 will 
check the consistency of ALUs’ outputs, respectively. 

3. For three ALU instructions in an execution slot, they 
will be partitioned into two execution slots. At the first 
slot, two instructions will be processed like case 2 and 
then the remaining slot will be processed like case 1 at 
the second cycle. 

4. If there is any inconsistency, the recovery mechanism is 
activated. The consistency will be checked again by 
TMR_MV. If the inconsistency disappears, then VLIW 
can continue to process the next instruction(s); else the 
whole VLW idles. 

Note that the ‘Error Analysis’ block in execution stage, 
which was created only to facilitate the measurement of the 
error coverage during the fault and error injection campaigns, 
is not a component for the VLIW processor displayed in Fig. 
7.  

The fault-tolerant VLIW processor based on the 
architecture of Fig. 7 was realized in VHDL and SystemC, 
respectively. 

B. Fault-tolerant design metrics 
The design metrics as described below are exploited to 
justify our fault-tolerant approach: 
� : Probability of system entering the fail-unsafe 

state; 
unsfP −

� : Error-detection coverage, i.e. probability of errors 
detected; 

det−eC

� : Error-recovery coverage, i.e. probability of errors 
recovered given errors detected; 

receC −

� : Error coverage, i.e. probability of errors detected and 
recovered; 

eC

� : Probability of system entering the fail- safe state; sfP −

� : State transition probability from ‘detected’ 
state to ‘fail-safe’ state. 

sftP −−− det

� : State transition probability from 
‘detected’ state to ‘fail-unsafe’ state. 

unsftP −−− det

� : Probability of system entering the 
fail-unsafe state due to the detection defects; 

det−− unsfP

� : Probability of system entering the 
fail-unsafe state due to the recovery defects; 

recunsfP −−

� : Probability of a fault causing an effective error. etofP −−

The following parameters  Ne, Ne-det, Ne-esc-det, 
Ne-rec, Ne-nrec-f-s and Ne-nrec-f-uns (called the 
error-related parameters) represent the total number of errors 
occurred, the number of errors detected, the number of errors 
escape being detected, the number of errors recovered, the 
number of errors not recovered and system enters the 
‘fail-safe’ state and the number of errors not recovered and 
system enters the ‘fail-unsafe’ state, respectively. The design 
metrics can be expressed as follows: 
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Fig. 8: Predicate graph of fault-tolerant mechanism.     Fig. 9: Fault duration and error duration for an ALU example. 

 
Fig. 8 illustrates the error handling process in our 

fault-tolerant system. From Fig. 8, if errors occur, the system 
could enter one of the following states: ‘correct’, ‘fail-safe’ 
and ‘fail-unsafe’ states. 

C. Experimental Setup 
Three benchmarks including N! (N = 10), 5×5 matrix 

multiplication, and  have been applied to generate 

the testbench by copying each benchmark program four times 
and then combine the twelve programs in random sequence. 
We first perform the fault simulation based on VHDL 
simulation platform comprising a simulated fault injection 
tool, ModelSim VHLD simulator and data analyzer. The 
common rules of fault injection campaigns are: 1) value of a 
fault is selected randomly from the s-a-1 and s-a-0; 2) 
injection targets cover the entire ‘EXE’ stage as shown in Fig. 
7. The common data of fault injection parameters are: α=1 
(useful-life), failure rate (λ) = 0.001, probability of permanent 
fault occurrence = 0, fault duration = 5 clock cycles. To 
generate various fault scenarios, we inject 100, 500, 1000, 
1500 and 2000 faults for each injection campaign to represent 
from slight to serious fault environments. Likewise, various 
error scenarios are also generated similarly. There are still 
two parameters required to be determined; one is the 

 and the other is error duration. For the former we 
give an initial value 0.6. For the latter, each error will choose 
one value between one and four clocks. The reason is 
described as follows: 

∑
=

×
5

1
2

i
ii BA

etofP −−

Fig. 9 shows an ALU waveform and the notations ｀A＇, 
｀B＇ and ｀F＇ represent the inputs involving two 
operands and specified operation respectively, and ｀Out＇ 
represents the operating result. As exhibited in Fig. 9, a fault 
is injected into the adder at 30 ns; therefore, the operating 

result is incorrect because the addition operation is affected 
by this fault. However, the OR operation is still correct 
because no fault is injected into the logical operator. This 
situation causes the un-equivalence between the fault duration 
and error duration. It is worthy to note that the error duration 
will be always equal to or smaller than the fault duration. 
That’s why we don’t apply the error duration to a constant.  

D. Analysis and Discussion of Simulation Results 
Table 1 illustrates the difference in error coverage between 

VHDL and System C simulation results. The difference is 
represented as the deviation calculated by the following 
expression: 

%100(%) ×
−

=
VHDL

VHDLSystemCDeviation    (4) 

Table 1: The deviation between SystemC and VHDL design 
environments. 
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43.6794432.3378113.6472518.9976812.36416Deviation (%)
0.0248960.0134270.0129830.0076610.0069VHDLPf-uns

0.0357710.0177690.0147550.0091170.007753SystemC
63.5822914.69876-32.6439-50.6293Deviation (%)
0.0176690.0116760.0035640.001790VHDLPf-s
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-2.30919-0.62142-0.06188-0.05546-0.08591Deviation (%)
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Several notable points are observed from Table 1; firstly, 

the deviations of ,  and  are all very 
small and the maximum is only about 2.3%. This means that 
the simulation results based on the fault and error injections 
are quite similar. Nevertheless, the deviations of  and 

 are very large. It is because the value itself is too 
small, so a slight difference can cause a serious influence to 
the deviation; secondly, the deviation rises as the number of 
injected faults and errors increases especially when the 
number of faults is greater than 1000.  To further understand 
the influence of error duration and  on deviation, 
we conduct two additional experiments. One focuses on the 
former and the other focuses on the latter.   

det−eC receC − eC

sfP −

unsfP −

etofP −−

E. Error Simulation with Various Error Durations 

Table 2: Error duration from 2 to 5 based on 300 errors 
injected using SystemC platform. 
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Table 3: Error duration from 2 to 5 based on 900 errors 

injected using SystemC platform 
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Tables 2 and 3 illustrate the influence of error duration 

under slight (300 errors injected) and serious (900 errors 
injected) error scenarios on the error coverage. We observe 
that values in the Max diff. (maximal difference) field of 
Table 2 are all smaller than those in Table 3. This means that 

the influence of the error duration becomes higher when the 
error environment becomes worse. 

F. Error Simulation with Various  etofP −−

Table 4: Pf-to-e = 0.5, 0.55, and 0.6 based on 500 faults 
experiments. 
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Table 5: Pf-to-e = 0.5, 0.55, and 0.6 based on 1500 faults 

experiments. 
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Tables 4 and 5 illustrate the influence of various 

 on the error coverage. From Tables 4 and 5, we 
observe the similar phenomenon as shown in Tables 2 and 3. 

etofP −−

Summarizing the four tables, we derive an important 
conclusion: error duration and are two key factors, 
which lead to the difference between fault and error 
simulation results. Furthermore, the influence of error 
duration on the simulation results is greater than . 

etofP −−

etofP −−

V. CONCLUSIONS 
From the simulation results, we recommend the following 

experimental rules during the fault/error injection campaigns: 
1. Do not assign the error duration to a constant value. 

The error duration for each error should be a random 
value selected from a range of values, for example, one 
to four clock cycles for our injection campaigns. 
Normally, the error duration should be equal to or less 
than the fault duration. 

2.  won’t be a constant. It should be adjusted as 
the degree of fault or error overlapping varies. 

etofP −−

3. The various fault/error environments will affect the 
deviation between different platforms. Worse 
environment will cause a greater deviation between 
VHDL and SystemC. 

With these rules, designers can set the suitable error duration 
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and  for their own error simulation to gain a better 
quality of simulation results.  

etofP −−
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Abstract. In this paper, a general fault-tolerant framework adopting a more rigid 
fault model for VLIW data paths is proposed. The basic idea used to protect the 
data paths is that the execution result of each instruction is checked immediately 
and if errors are discovered, the instruction retry is performed at once to 
overcome the faults. An experimental architecture is developed and implemented 
in VHDL to analyze the impacts of our technique on hardware overhead and 
performance degradation. We also develop a comprehensive fault tolerance 
verification platform to facilitate the assessment of error coverage for the 
proposed mechanism. A paramount finding observed from the experiments is 
that our system is still extremely robust even in a very serious fault scenario. As a 
result, the proposed fault-tolerant VLIW core is quite suitable for the highly 
dependable real-time embedded applications.  

1   Introduction 

In recent years, VLIW processor has become a major architectural approach for 
high-performance embedded computing systems. Several notable examples of VLIW 
are Intel and HP IA-64 [1], TI TMS320C62x/67x DSP devices and Fujitsu FR500. As 
processor chips become more and more complicated, and contain a large number of 
transistors, the processors have a limited operational reliability due to the increased 
likelihood of faults or radiation-induced soft errors especially when the chip fabrication 
enters the deep submicron technology [2]. Also indicated specifically in [3], it is 
expected that the bit error rate in a processor will be about ten times higher than in a 
memory chip due to the higher complexity of the processor. And a processor may 
encounter a bit flip once every 10 hours. Thus, it is essential to employ the fault-tolerant 
techniques in the design of high-performance superscalar or VLIW processors to 
guarantee a high operational reliability in critical applications. Recently, the reliability 
issue in high-end processors is getting more and more attention [3-9].  

The previous researches in reliable microprocessor design are mainly based on the 
concept of time redundancy approach [3-9] that uses the instruction replication and 
recomputation to detect the errors by comparing the results of regular and duplicate 
instructions. The instruction replication, recomputation schedule and result comparison 
of regular and duplicate instructions can be accomplished either in software level − 
source code compilation phase to generate redundant code for fault detection [4], [7], 
[8] or in hardware level [3], [5], [6], [9]. In [7], [8], the authors adopted software 
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techniques for detecting the errors in superscalar and VLIW processors respectively. 
The compiler-based software redundancy schemes have the advantage of no hardware 
modifications required, but the performance degradation and code growth increase 
significantly as pointed out in [3], [5]. The hardware redundancy approach requires 
extra hardware and architectural modification to manage the instruction replication, 
recomputation and comparison to detect the errors.  

The deficiencies in previous studies are summarized as follows. First, most of the 
studies in the literature focus only on the aspect of error detection and neglect the issue 
of error recovery; thereby, those designs are incomplete so that we have difficulty in 
investigating the effectiveness of the error detection scheme without considering the 
error recovery jointly. Second, they lack the precise evaluation of the hardware 
overhead caused by the incorporation of fault tolerance; therefore, it is hard to justify 
the soundness of the approaches. Thirdly, the performance degradation due to the error 
detection and error recovery is significant during program execution. Moreover, the 
performance analysis only takes the performance degradation resulting from the fault 
detection into account. They are short of the analysis of error recovery time demanded 
to overcome the transient faults. The error recovery time mainly depends on the 
error-detection latency, which can be calculated from the time of regular instruction 
execution to the time of duplicate instruction recomputation. Owing to variable latency, 
the analysis of latency effect on performance is quite involved, and therefore, it 
complicates the analysis of the impact of error recovery on performance. Further, the 
latency may be unacceptably long. If an error cannot be detected in a short time, it will 
increase the error recovery time as well as program execution time. Such a lengthy 
recovery may be detrimental to the real-time applications. Last but not least, the 
previous studies rarely perform the quantitative evaluation of error coverage and the 
probability of common-mode failures [10] for the systems in various fault 
environments. Thus, it is hard to validate the fault tolerance ability of the schemes due 
to lack of the measures of error coverage.  

This work is going to address the issues stated above. In Section 2, a fault-tolerant 
approach concentrating on the dependable data path design of VLIW processors is 
proposed. The approach proposed is quite comprehensive in that it comprises the error 
detection and error recovery. Hardware architecture and the measurements of hardware 
overhead and performance degradation are presented in Section 3. In Section 4, a 
thorough error coverage analysis is conducted to validate our scheme. The conclusions 
appear in Section 5. 

2   Fault-Tolerant Data Path Design 

Two types of faults described below are addressed in the error detection and error 
recovery: 1. Correlated transient faults [11] (e.g., a burst of electromagnetic radiation) 
which could cause multiple module failures. 2. Near-coincident faults [12] – recovery 
can be affected by this kind of faults. It is evident that the adopted fault model in this 
study is more rigid and complete compared to the single-fault assumption commonly 
applied before. Besides the concern of the fault model, an important goal for the design 
of error-recovery process is to simplify its complexity and meanwhile achieve the time 
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efficiency to recover the errors. Overall, the design concern here is to propose a 
fault-tolerant VLIW core for the highly dependable real-time embedded applications. 
However, we note that due to the more rigid fault model and severe fault situations 
considered, it requires developing a more powerful fault-tolerant scheme to raise the 
system reliability to a sound level. 

A VLIW processor core may possess several different types of functional modules in 
the data paths, such as integer ALU and load/store units. A couple of identical modules 
are provided for a specific functional type. We assume that the register file is protected 
by an error-correcting code. In the following, we present the main ideas employed in 
our scheme to detect and recover errors occurring in the data paths and then use three 
identical modules to demonstrate our fault-tolerant approach.  

2.1   Concurrent Error Detection and Real-Time Error Recovery 

We note that the length of error recovery time mainly depends on the error-detection 
latency. Hence, the error-detection scheme has a significant impact on the efficiency of 
the error recovery. Most of the previous studies may suffer the lengthy error recovery 
because the execution results of each instruction cannot be checked immediately. 
Therefore, to achieve the real-time error recovery, the execution results of each 
instruction must be examined immediately and if errors are found, the erroneous 
instruction is retried at once to overcome the errors. So, the error-detection problem can 
be formalized as how to verify the execution results instantly for each instruction, i.e. 
how to achieve no error-detection latency. We develop a simple concurrent 
error-detection (CED) scheme, which combines the duplication with comparison, 
henceforth referred to as comparison, and majority voting methodologies to solve the 
above error-detection problem. 

CED Scheme. The following notations are developed 

 n : Number of identical modules for a specific functional type (we call it type x). n  
is also the maximum number of instructions that can be executed concurrently in the 
modules of type x; 

 s : Number of spare modules added to the type x, s ≥ 0; 
 m : Number of instructions in an execution packet for type x, m ≤ n . 

An execution packet is defined as the instructions in the same packet can be 
executed in parallel. There are sn +  modules for type x. As we know, if 

snm +>× 2 then it is clear that the system won’t have the enough resources to check 
the instructions of an execution packet concurrently. Under the circumstances, the 
current execution packet needs to be partitioned into several packets that will be 
executed sequentially. Given an execution packet, there are three cases to consider: 

Case 1: snm +=× 2 . In this case, each instruction can be checked by the comparison 
scheme.  
Case 2: snm +<× 2 . We can divide the instructions into two groups: G(1) and G(2). 
There are 1m instructions and 2m  instructions in G(1) and G(2) respectively, where 

mmm =+ 21 , 0, 21 ≥mm . Each instruction in G(1) and G(2) can be examined by the 
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triple modular redundancy (TMR) scheme and duplication with comparison, 
henceforth referred to as comparison, scheme respectively. It is worth noting that to 
deal with the correlated transient faults, which may cause the multiple module failures, 
the TMR scheme is enhanced to have the ability to detect the multiple module errors. 
The following equations and criterion are used to decide 1m and 2m . The equations 
are snmm +≤×+× 23 21 ; mmm =+ 21 ; 0, 21 ≥mm . There may have several solutions 
derived from the equations. Since TMR can tolerate and locate one faulty module 
compared to the comparison, the criterion employed is to choose a solution which has 
the maximal value of m1 among the feasible solutions. In other words, TMR has the 
benefit to avoid activating the procedure of error recovery while only one faulty module 
occurs. In contrast to TMR, comparison scheme needs to spend time for error recovery. 
The concern here is again the consideration of real-time applications.  
Case 3: snm +>× 2 . Due to limited resources, m instructions cannot be all checked 
at the same cycle by TMR and/or comparison schemes. Therefore, we need to partition 
m  instructions into several sequential execution packets such that the instructions in 
each packet can be examined concurrently. However, some extra cycles are required to 
guarantee that each instruction can be verified while it is executed. This implies that the 
performance of program execution will be degraded. The degree of performance 
degradation depends on the occurring frequency of the Case 3 during the program 
execution. The compromise between hardware overhead and performance degradation 
can be accomplished by choosing a proper s .  

In general, the performance degradation for program execution in our dependable 
VLIW processor stems mainly from two sources: first is the extra cycles demanded for 
detecting the errors; second is the time for error recovery in order to overcome the 
effect of errors in the system. The error-recovery scheme is presented next. 

Error-Recovery Scheme. Since each instruction is executed and verified at the same 
time, the instruction retry can be adopted to overcome the errors in an effective manner. 
When control unit of data paths receives the abnormal signals from the detection 
circuits, the procedure of error recovery will be activated immediately to recover the 
erroneous instructions. The following notations are used to explain the proposed 
error-recovery scheme: 

 mx(i): The ith  module of type x, where sni +≤≤1 ; 

 TMR(mx(i), mx(j), mx(k)): TMR using mx(i), mx(j), mx(k), where kji ≠≠ . In the 

following, the term of TMR(mx(i), mx(j), mx(k)) is abbreviated to TMR_x(i, j, k); 

 r_no: Number of retries permitted for an incorrect instruction, where 0_ >nor . 

During the error recovery, each erroneous instruction is retried individually with the 
TMR scheme. We allow performing r_no retries for an instruction to conquer the errors 
before declaring fail-safe. Since TMR scheme represented as TMR_x(i, j, k) is 
employed for the instruction retry, an issue arises as how to determine the (i, j, k) for 

each retry. As we know, there are ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
3

sn
 combinations of (i, j, k). Let S_TMR be a set 

that contains ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
3

sn
 combinations of TMR_x(i, j, k). Hence, S_TMR can be 
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represented as {TMR_x(1, 2, 3), …, TMR_x(1, 2, sn + ), …, TMR_x(1, 1−+ sn , 
sn + ), TMR_x(2, 3, 4), …, TMR_x(2, 1−+ sn , sn + ), …, TMR_x( 2−+ sn , 

1−+ sn , sn + )}, where 3≥+ sn . It is clear that selecting the TMR_x(1, 2, 3) 
constantly for each retry, for example, is the simplest approach, which has the 
advantage of simple implementation but can only tolerate one faulty module during  
the recovery process. In contrast to that, selecting elements one by one based on the 
element sequence in S_TMR for the retries is the highly complicated approach. Such an 
approach suffers from the high implementation cost, but on the other hand it can 

tolerate 2−+ sn  faulty modules if we set ≥nor _ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
3

sn
. The remaining question in 

the design of selection policy for TMR retry is how to compromise between the 
implementation complexity and the number of faulty modules being tolerated. A sound 
selection policy for TMR retry is presented next. 

Selection Policy. On the basis of the above discussion, a set named SS_TMR, a subset 
of S_TMR, is created to guide the instruction-retry process. SS_TMR is given below: 
SS_TMR= {TMR_x( i , 1+i , 2+i ), where 21 −+≤≤ sni }. As seen from 
SS_TMR, the proposed retry process possesses a high regularity in its selection policy. 
So, it is easy to implement the SS_TMR policy compared to the S_TMR. 

After the analyses for some values of n and s, we decide to adopt the SS_TMR 
selection policy due to the following reasons: first, we note that the probability of three 
or more modules failed concurrently should be low; second, most of the faults are 
transient type, which may disappear during the recovery process; and last one is the low 
implementation complexity compared to the S_TMR policy. From the first two 
reasons, we can infer that both selection policies have the similar fault tolerance 
capabilities. It is evident that the SS_TMR selection policy can utilize the module 
resources efficiently so as to recover the errors in a short time. Thus, the program 
execution can continue without lengthy error-recovery process. In summary, our 
error-recovery scheme can provide the capability of real-time error recovery, which is 
particularly important for the applications demanding the reliable computing as well as 
real-time concern. 

2.2   Reliable Data Path Design: Case Study 

In the following illustration, without loss of generality, we assume only one type of 
functional module, namely ALU, in the data paths. In this case study, the original 
VLIW core contains three ALUs ( 3=n ) and therefore, three ALU instructions can be 
issued at most per cycle. A spare ALU ( 1=s ) is added to prevent the severe 
performance degradation as explained below. From CED scheme described in Section 
2.1, we note that if no spare is added then 2=m  or 3 execution packets will fall into 
Case 3. Consequently, the performance may be degraded significantly. Hence, the cost 
of a spare is paid to lower the performance degradation. Clearly, adding three spares in 
order to eliminate the performance degradation completely is not a feasible choice.  

According to CED scheme with 3=n  and 1=s , 1=m  falls into Case 2. The 
( 21,mm ) can be (1, 0) or (0, 1). Clearly, (1, 0) is selected as the final solution. So, if an 
execution packet contains only one ALU instruction then it will be checked by TMR 
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scheme. For 2=m , it is Case 1. Each instruction will be checked by comparison 
scheme. For 3=m , it is Case 3. The three concurrent ALU instructions need to be 
scheduled to two sequential execution packets where one packet contains two 
instructions and the other holds the rest one; and therefore, one extra ALU cycle is 
required to complete the execution of three concurrent ALU instructions for 
error-detection purpose.  

CED Process. Given 3=n  and 1=s , the notation CMP_ALU(i, j) is used to denote an 
instruction executed with the comparison scheme using the ith and jth ALUs. 

while (not end of program) 
{switch (m )  
{case ‘1’:  

TMR_ALU(1, 2, 3); if (TMR_ALU detects more than one 
ALU failure) then the “Error-recovery process” is 
activated to recover the failed instruction. 

case ‘2’:  
the execution packet contains two instructions:      I1 
and I2. 
I1: CMP_ALU(1, 2); I2: CMP_ALU(3, 4); 
if (I1 fails) then the “Error-recovery process” is 
activated to recover I1. 
if (I2 fails) then the “Error-recovery process” is 
activated to recover I2. 

case ‘3’:  
the packet is divided to two packets and executed 
sequentially.  

}} 

Error-recovery process: 
1←i ; 

While ( 0_ >nor ) 

{TMR_ALU(i, 1+i , 2+i ); 
  if (TMR_ALU succeeds) then the error recovery succeeds 

 exit;  

  else { 1__ −← nornor ; 1+← ii ; if ( 3≥i ) then 

1←i ;}} 
recovery failure and the system enters the fail-safe 
state.     

3   Hardware Implementation and Performance Evaluation 

To validate the proposed approach, an experimental fault-tolerant VLIW architecture 
based on the scheme presented in Section 2.2 is developed. Figure 1 illustrates the 
architecture implementation, where 3=n , and 1=s  for ALUs. The features of this 
32-bit VLIW processor are stated as follows: • the instruction set is composed of 
twenty-five 32-bit instructions; • each ALU includes a 32x32 multiplier. For simplicity 
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of demonstration, the proposed approach does not apply to the load/store units; • a 
register file containing thirty-two 32-bit registers with 12 read and 6 write ports is 
shared with modules and designed to have bypass multiplexors that bypass written data 
to the read ports when a simultaneous read and write to the same entry is commanded; • 
data memory is 1K x 32 bits. The structure consists of five pipeline stages: ‘instruction 
fetch and dispatch’, ‘decode and operand fetch from register file’, ‘execution’, ‘data 
memory reference’ and ‘write back into register file’ stages. This experimental 
architecture can issue at most three ALU and three load/store instructions per cycle. 
Note that the ‘Error Analysis’ block in execution stage, which was created only to 
facilitate the measurement of the error coverage during the fault injection campaign, is 
not a component for the VLIW processor displayed in Figure 1.  

A fault-tolerant VLIW processor based on the architecture of Figure 1 and the 
features mentioned previously was realized in VHDL. The implementation data by 
UMC 0.18μm process are shown in Table 1. The area does not include the instruction 
memory as well as the ‘Error Analysis’ block. For performance consideration, we 
require that the clock frequency of the fault-tolerant VLIW processor must retain the 
same as that of non fault-tolerant one. It is worth noting that the overhead of 
‘ALU_Control’ unit is only 0.26 percent compared to the area of the non fault-tolerant 
VLIW core. This implies that the control task of our scheme is simple and easy to 
implement. The performance degradation caused from the CED demand is between 
0.6% and 34.3% for eight benchmark programs, including heapsort, quicksort, FFT, 
5×5 matrix multiplication and IDCT (8×8) etc.. 
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Fig. 1. Fault-tolerant VLIW architecture 
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Table 1. Comparing our approach with non fault-tolerant VLIW core 

 Area (μm2) Overhead ALU_Control(μm2) System clock (MHz) 
Non fault-tolerant 

VLIW 
9319666   128 

Our approach 10708296 14.9% 24215 128 

4   Error Coverage Analysis 

In this section, the error coverage analysis based on the fault injection [13] is conducted 
to validate our scheme. A comprehensive fault tolerance verification platform 
comprising a simulated fault injection tool, ModelSim VHDL simulator and data 
analyzer has been built. It offers the capability to effectively handle the operations of 
fault injection, simulation and error coverage analysis. The core of the verification 
platform is the fault injection tool that can inject the transient and permanent faults into 
VHDL models of digital systems at chip, RTL and gate levels during the design phase. 
The tool adopts the built-in commands of VHDL simulators to inject the faults into 
VHDL simulation models. Injection tool can inject the following classes of faults: ‘0’ 
and ‘1’ stuck-at faults, ‘Z’: high-impedance and ‘X’: unknown faults. Weibull fault 
distribution is employed to decide the time instant of fault injection. 

Our tool supports a fault injection analysis, which can provide us the useful statistics 
for each injection campaign. The statistical data for each injection campaign represents 
a fault scenario. We can exploit the injection tool to produce a variety of fault scenarios 
such that the fault-tolerant systems can be thoroughly validated. The injection tool can 
assist us in creating the proper fault environments that can be used to effectively 
validate the capability of a fault-tolerant system and examine the strength of a 
fault-tolerant system under various fault scenarios. Therefore, the proposed verification 
platform helps us raise the efficiency and validity of dependability analysis. 

4.1   Fault-Tolerant Design Metrics 

Figure 2 illustrates the error handling process in our fault-tolerant system. CED scheme 
uses the comparison and TMR to detect the errors. Hence, the following types of errors 
will escape being detected and such detection defects will result in the unsafe failures 
(or called common-mode failures [10]): one is the two ALUs produce the same, 
erroneous results to comparator; another is two or three of ALUs produce the identical, 
erroneous results to TMR. Once errors are detected and need to be recovered, the 
error-recovery process is activated. Three possible outcomes could happen for each 
instruction retry using TMR scheme. One possibility is that the recovery is successful; 
another is retry fails and the system enters the fail-safe state; the last possibility is two 
or three of ALUs produce the identical, erroneous results to TMR such that the system 
encounters the fail-unsafe hazard. From Figure 2, if errors happen, the system could 
enter one of the following states: ‘successful recovery and restore the normal 
operation’, ‘fail-safe’ and ‘fail-unsafe’ states. 
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The design metrics as described below are exploited to justify our approach: 

 unsfP − : Probability of system entering the fail-unsafe state; 

 det−eC : Error-detection coverage, i.e. probability of errors detected; 

 receC − : Error-recovery coverage, i.e. probability of errors recovered 
given errors detected; 

 eC : Error coverage, i.e. probability of errors detected and recovered; 

 sfP − : Probability of system entering the fail- safe state; 

 sftP −−− det : State transition probability from ‘detected’ state to 

‘fail-safe’ state. 
 unsftP −−− det : State transition probability from ‘detected’ state to 

‘fail-unsafe’ state. 
 det−− unsfP : Probability of system entering the fail-unsafe state due to the 

detection defects stated earlier; 
 recunsfP −− : Probability of system entering the fail-unsafe state due to the 

recovery defects stated earlier; 

The parameters eN , det−eN , det−− esceN , receN − , sfnreceN −−−  and 

unsfnreceN −−−  (called the error-related parameters) represent the total number of 

errors occurred, the number of errors detected, the number of errors escape being 
detected, the number of errors recovered, the number of errors not recovered and 
system enters the ‘fail-safe’ state and the number of errors not recovered and system 
enters the ‘fail-unsafe’ state, respectively. The design metrics can be expressed as 
follows 
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Fig. 2. Predicate graph of fault-tolerant mechanism 
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4.2   Simulation Results and Discussion 

We have conducted a huge amount of fault injection campaigns to validate the 
proposed fault-tolerant VLIW scheme under various fault situations. We performed a 
comprehensive experiment to explore a particular fault-related parameter, namely 
fault-occurring frequency, to see its impact on the fault-tolerant metrics. By adjusting 
the fault-occurring frequency, we can create a variety of fault scenarios, which can be 
used to measure how robust can our fault-tolerant system reach under the different fault 
environments? The common rules of fault injection campaigns are: 1) value of a fault is 
selected randomly from the s-a-1 and s-a-0; 2) injection targets cover the entire ‘EXE’ 
stage as shown in Figure 1. The common data of fault injection parameters are: α=1 
(useful-life), failure rate (λ) = 0.001, probability of permanent fault occurrence = 0, 
fault duration = 5 clock cycles. In addition, the number of retries r_no is set to four. 
Next, we discuss the outcomes obtained from the experiments. 

Fault-Occurring Frequency. The goal of this experiment is to observe the effect of 
the fault-occurring frequency on the design metrics depicted in Section 4.1. In this 
experiment, we copy each of the following benchmark programs: ‘N! (N=10)’, ‘5×5 

matrix multiplication’, ‘ ∑
=

×
5

1
2

i
ii BA ’, four times and then the twelve programs are 

combined in random sequence to form a workload for the fault simulation. The length 
of workload is equal to 4384 (clocks) ×30 (ns/clock). 

Note that if workload and fault duration are constant, the quantity of faults injected, 
i.e. fault-occurring frequency, will influence the degree of fault overlap. For instance, 
while the quantity of faults injected increases, the degree of fault overlap will become 
more serious. In other words, the various fault-occurring frequencies will lead to the 
different fault environments. Hence, in order to investigate the effect of the 
fault-occurring frequency on error coverage, we conduct five fault injection campaigns 
with various numbers of faults injected. The statistical analysis of an injection 
campaign is able to disclose the fault activity within the simulation. Clearly, the larger 
the number of faults injected (i.e. higher fault-occurring frequency), the worse of fault 
environment will be due to a higher occurring frequency of multiple faults including 
correlated, mutually independent and near-coincident transient faults. Therefore, the 
statistical analysis helps designers choose a set of desired fault scenarios to test the 
ability of fault-tolerant systems. As a result, the proposed fault-tolerant verification 
platform can furnish more comprehensive and solid error coverage measurements. 

Figure 3 characterizes the effect of fault-occurring frequency on the fault-tolerant 
design metrics. The experimental results obtained have 95% confidence interval of 
±0.138% to ±0.983%. The outcomes shown in Figure 3 reveal the fault tolerance 
capability of our scheme in the various fault environments. It is evident that the error 
coverage decreases with the increase of fault-occurring frequency. Meanwhile, the 
system has a higher chance to enter the fail-safe and fail-unsafe states when  
the probability of occurrence of multiple faults rises. The safe failure occurs once the 
error-recovery process cannot overcome the errors due to a serious fault situation. 
Overall, the results presented in Figure 3 are quite positive and sound those declare the 
effectiveness of our fault-tolerant scheme even in a very bad fault environment.  
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Fig. 3. Fault-tolerant metric analysis. (a) coverage. (b) probabilities of fail-safe and fail-unsafe. 

5   Conclusions 

This paper presents a new fault-tolerant framework for VLIW processors that focuses 
mainly on the reliable data path design. Based on a more rigid fault model, a CED and 
real-time error recovery scheme is proposed to enhance the reliability of the data paths. 
Our approach provides the design compromise between hardware overhead, 
performance degradation and fault tolerance capability. This framework is quite useful 
in that it can give the designers an opportunity to choose an appropriate solution to meet 
their need. Several significant contributions of this study are: 1. Integrate the error 
detection and error recovery into VLIW cores with reasonable hardware overhead and 
performance degradation. It is worth noting that the proposed fault-tolerant framework 
can achieve no error-detection latency and real-time error recovery. Consequently, our 
scheme is suitable for the real-time computing applications that demand the stringent 
dependability. 2. Conduct a thorough fault injection campaigns to assess the 
fault-tolerant design metrics under a variety of fault environments. Importantly, we 
provide not only the error-detection and error-recovery coverage, but also the fail-safe 
and fail-unsafe probabilities. Acquiring the fail-unsafe probability is crucial for us to 
understand how much possibility the system could fail without notice once the errors 
occur. Moreover, a couple of fault environments, which represent the various degrees of 
fault’s severity, were constructed to validate our scheme so as to realize the capability of 
our scheme in different fault scenarios. So, such experiments can give us more realistic 
and comprehensive simulation results. The effectiveness of our mechanism even in a 
very severe fault environment is justified from the experimental results.  
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