
行政院國家科學委員會專題研究計畫 成果報告

在叢集電腦上進行演化樹之建構與實作(II)

計畫類別：個別型計畫

計畫編號： NSC93-2213-E-216-037-

執行期間： 93 年 08 月 01 日至 94 年 07 月 31 日

執行單位：中華大學資訊工程學系

計畫主持人：游坤明

共同主持人：唐傳義

計畫參與人員：周嘉奕、陳啟修、黃立明

報告類型：精簡報告

報告附件：出席國際會議研究心得報告及發表論文

處理方式：本計畫可公開查詢

中 華 民 國 94 年 10 月 31 日

行政院國家科學委員會補助專題研究計畫
■ 成 果 報 告
□期中進度報告

在叢集電腦上進行演化樹之建構與實作(II)

計畫類別：■ 個別型計畫 □ 整合型計畫

計畫編號：NSC 93－2213 －E －216－037

執行期間： 93年8月1日至94年7月31日

計畫主持人：游坤明

共同主持人：唐傳義

計畫參與人員：周嘉奕、陳啟修、黃立明

成果報告類型(依經費核定清單規定繳交)：■精簡報告 □完整報告

本成果報告包括以下應繳交之附件：

□赴國外出差或研習心得報告一份

□赴大陸地區出差或研習心得報告一份

■出席國際學術會議心得報告及發表之論文各一份

□國際合作研究計畫國外研究報告書一份

處理方式：除產學合作研究計畫、提升產業技術及人才培育研究計畫、

列管計畫及下列情形者外，得立即公開查詢

□ 涉及專利或其他智慧財產權，□一年□二年後可公開查詢

執行單位：中華大學資訊工程系

中 華 民 國 94 年 8 月 30 日

在叢集電腦上進行演化樹之建構與實作(II)

游坤明

1
、唐傳義

2,

1中華大學資訊工程系
2清華大學資訊工程系

摘要:
將各個物種間的演化關係透過一個距離矩陣的方式來建立最佳的演化樹，以得知物種間的

演化相似程度如何，在生物計算學中是一個相當重要的課題。本計畫的主要目的為針對距

離矩陣提供一個有效率且富使用者親和力的建構最佳等距演化樹的平行系統。在此計畫執

行的第一年中，我們已進行探討以分支與界定演算法來建構最佳演化樹的平行化策略與方

法，尋求一個適合在叢集電腦上執行的平行分支與界定方法來建構等距演化樹，並已獲得

不錯的結果。在本計劃執行的第二年，我們進行更快速的近似最佳解的策略與方法之研究，

並實際發展出一個利用緊湊集合(Compact Set)關係的演化樹平行建構演算法，以提供生物

學家選擇較適合的演化樹作實際的應用，並且已整理成論文 (A Fast Technique for
Constructing Evolutionary Tree with the Application of Compact Sets)在 PaCT 2005 國際研討
會中發表，同時亦收錄於 Lecture Notes in Computer Science, Vol. 3606, pp. 346-354,
Springer-Verlag (SCI Expanded)中。
關鍵詞：演化樹、分支與界定、等距演化樹、緊湊集合、叢集電腦

Abstract:
Bioinformatics has becoming one of the major research topics in the 21st century. The
constitution of computer technology and molecular biology technology is evidently essentially in
the future. The problem of constructing evolutionary tree from distance matrix is an important
issue in Bioinformatics. In the first year of this project, we have proposed an effective parallel
algorithm for constructing an optimal ultrametric tree from a given distance matrix by using
Branch-and-Bound technique. In the second year of the project, we have proposed a heuristic
algorithm to shorten the revolutionary tree’s construction time. Also, we have developed an
efficient algorithm for near-optimal ultrametric tree’s construction by applying the compact set
technique.
Keyword : Evolutionary tree 、Branch and Bound、Ultrametric Tree、Compact set、PC Cluster

一、前言

近年來由於 DNA序列的定序與分子生物學技術的進步，因此生物學家對於未知的遺傳因子

與訊息有更進一步的瞭解，一些相關的研究也如火如荼的展開。其中將各個物種間的演化

關係透過一個距離矩陣（Distance Matrices）的方式來建立最佳的（Optimal）演化樹
(Phylogenetic Trees)，得知物種間的演化相似程度如何，在生物計算學中是一個相當重要的

課題，演化樹的建構是依據物種(objects)所具有的生物特徵來建立距離矩陣，進而分辨物種

之間的親疏遠近，以建立其相對應之演化樹，在一些相關的研究中（[3]，[8]，[9]，[10]），
雖然提出了各種的策略與方法，但這些方法卻無法提供良好的執行效率以讓生物學家廣為

使用。Ultrametric Tree亦是由距離矩陣所建構出來的，它是一棵有根樹（Rooted Tree），其
樹葉（Leaf）代表了某一個物種，內部節點（Internal Node）代表在其下面物種的共同祖先
（Ancestor），並且假設每個物種的演化速率相等。如此於 Ultrametric Tree的演化假設下，
所建立出的樹由其各內部節點至其所屬的 leaf 距離為等距。但同樣地，給一群物種間的距

離矩陣建立最小的 Ultrametric Tree（Minimum Size Ultrametric Tree，MUT）已被證明是 NP
的問題[1]。因此，許多的研究都是利用 approximation algorithms或 heuristic algorithms去求
得近似解，但跟 MUT 畢竟還是有一些誤差。在[5]中提出一個演算法來建立最小演化樹，

其物種數目只能達到 11個。而在[14]中則提出了新的演算法，在合理的時間範圍內，以及

輸入的距離矩陣不同的限制下，能夠算到 12至 20個物種。

目前用來建構演化樹所使用到的演算法大都是使用『分支與界定』（Branch and Bound）的
方式[14,15,16]。當處理的資料量不大時，單一處理器（即 Sequential Processing）尚能負荷
其計算量；但是，當處理的資料量太多或太大時，則單一處理器的計算模式便會出現記憶

體不足或無法在有效的時間內給出答案的窘境。這意謂著以目前的技術而言，想要在單一

處理器上發展一個有效率的演算法是不大可行的。[14]提出了一個以分支與界定演算法來建

構MUT。但是其結構與設計上是適合於單機運作，然而要於合理的時間內得到答案的條件

要求下，可以計算的物種數目會被系統硬體效能所限制而無法實際的應用。在第一年的計

畫執行中，我們已提出一個有效率的平行化的分枝與界定演算法，在我們所設計的平行化

分枝與界定演算法中，所有計算節點同時對他們所擁有的候選樹做分枝 (branch) 的動作，
當計算節點發現候選樹符合界定(bound) 的條件時便不再對此候選樹做分枝的動作。而當計

算節點得到更好的 upper bound 值時便會將此值傳遞給其他所有計算節點，其他所有計算

節點得到新的 upper bound 值便可以界定掉(除掉)更多的候選演化樹。基於這個原因，在平
行化系統的解集合會少於單一處理器的系統，亦可以讓演算法的效率大幅提昇，所以我們

提出的平行化分枝與定界演算法在效率提昇 (speedup) 上在一些例子上可能會達到

super-linear 的速度。在此平行化演算法中， 我們同時使用了 global pool 及 local pool 做
為一種負載平衡的機制，讓計算節點不至於有閒置的情況發生。在此研究中我們採用 master
/ slave 的架構來建構平行化最小等距演化樹的系統，運算資料是在執行期間由 master 指
派。

因此，在本計畫執行的第二年的主要目的便是針對 MUT 平行化的建構，發展出更有效率

的平行化 MUT 建構的模式及策略，有效地加速演算法在處理 MUT 的物種個數及執行速

度，並且探討近似最佳解的可能演算法。

二、研究目的

本計畫的主要目的為針對距離矩陣提供一個有效率且富使用者親和力的建構最佳演化樹的

平行系統，在此計畫中，我們在叢集電腦的架構下探討以分支與界定的平行化演算法來建

構最佳演化樹的平行化策略與方法，尋求一個適合在叢集電腦上執行的分支與界定方法來

建構最佳演化樹，並且進行近似最佳解的演算法，並且實際發展一套有效率的演化樹平行

建構軟體工具系統，以提供生物學家選擇較適合的演化樹作實際的應用，最後我們將此套

工具系統透過Web介面，提供給從事此研究領域的專家學者使用。

三、文獻探討

[17]本計畫第一年的執行成果之一，在[17]我們提出了平行化的分支與界定演算法來建構

Minimum Size Ultrametric Tree的演算法，在此演算法，中我們主要是利用兩兩物種間之距

離關係計算出距離最大的兩個物種將其放在樹的最左右兩側，以建立芻型樹(只有兩個 leaf
的 binary tree，Branch-and-Bound Tree），再將剩餘的物種一一插入在中間，並用 UPGMM
（從 UPGMA演算法改良而來）演算法計算權重值，當節點 v 產生的的 LB （Lower Bound）
大於 UB（Upper Bound）時，表示後面產生的樹其結果比前述 UB還差而不符合要求，則

將節點 v 都刪除掉，以獲得最後的最小代價的MUT。

在平行處理進行運算過程中，其影響整體效能（Efficiency）的重要因素乃為負載平衡（Load
Balance）。若各運算單元負載不均，則會浪費很多寶貴的計算資源於閒置的運算處理單元。

而利用分支與界定演算法進行解決問題的重點在於分支（Branch）與界定（Bound）的方法
選擇決定上。於平行分散式系統中，往往會將原始問題分成數個可行解（Feasible solution）
的子問題（Subproblem），而分支後的一個或數個可行解分配給數個運算處理單元計算，因

此分支的動作將會影響負載平衡問題。因此，我們在研究的進行中使用了 global pool 及
local pool 做為一種負載平衡的機制，讓計算節點不至於有閒置。而在我們的系統架構中，

我們用的是 master / slave 的架構，並且資料是在執行期間由 master 來指派，以提高系統
整體運算效率。

四、計畫成果自評

本計畫之執行之成果將能於較短的時間內建構出MUT，不但能夠增進執行效率，還能夠大

幅提昇 ultrametric tree的正確性與結果的可讀性，本年度的計畫執行不但順利完成第

二年度預期的計畫目標，亦已將第二年度所獲得的研究成果整理成論文並且發

表了二篇國際研討會論文 (一篇為 SCI Extended，另ㄧ篇為 IEEE 研討會)，一
篇國內研討會論文 (NCS 2005) ，並且亦已將所得之成果整理成期刊論文形式

(Title : Efficient Parallel Branch-and-Bound Algorithm for Constructing
Minimum Ultrametric Tress from Distance Matrices)投稿至 IEEE TPDS special issue
on High Performance Biology，本年度的計畫執行成果可說是相當豐碩。

參考文獻

[1] W.H.E Day, Computational complexity of inferring phylogenies from dissimilarity matrices,
Bulletin of Mathematical Biology,Vol.49, No.4, pp. 461-467, 1987.

[2] M. Farach, S. Kannan and T. Warnow, A Robust Model for Finding Optimal Evolutionary
Trees, Algorithmica, 13 (1995), pp. 155-179.

[3] J.S. Farris, Estimating phylogenetic trees from distance matrices, Am. Nat. ,106, pp.645-668
[4] J. Felsenstein, Evolutionary trees from DNA sequences: a maximum likelihood approach.

ournal of Molecular Evolution, 17:368-376, 1981.
[5] M.D. Hendy and D. Penny,Branch and bound algorithms to determine minimal evolutionary

trees, Mathematical Biosciences, 59:277-290, 1982

[6] Chia-Mao Huang and Chang-Biau Yang. Approximation Algorithms for Constructing
Evolutionary Trees. In Proc. of National Computer Symposium, Workshop on Algorithm and
Computation Theory, pages A099-A109, Taipei, Taiwan, Dec. 20-21, 2001.

[7] P. Kearney, R.B. Hayward, R. B. and H. Meijer, Inferring Evolutionary Trees from Ordinal
Data, Proc. 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA97), 1997, pp.
418-426.

[8] N. Saitou and M. Nei, The neighbor –joining method: A new method for reconstructing
phylogenetic trees, Molecular Biology and Evolution, 4 (1987), pp.406 – 425

[9] P.H.A. Sneath and R.R. Sokal, Numerical Taxonomy, (Freeman, San Francisco, CA), 1973, pp
230-234.

[10] R. Sokal and P. Sneath, Numerical Taxonomy, San Francisco: Freeman, 359.,1963
[11] M. Steel, The Complexity of Reconstructing Trees from Qualitative Characters and Subtrees,

Journal of Classification, 9 (1992), pp. 91-116.
[12] L. Wang and T. Jiang, On the Complexity of Multiple Sequence Alignment, Journal of

Computational Biology, 1 (1994), pp. 337-348.
[13] M. S. Waterman, T. F. Smith, M. Singh, and W. A. Beyer. “Additive evolutionary trees.”

Journal of Theoretical Biology, 64:199-213, 1977.
[14] Wu, B.Y., Chao, K.M., and Tang, C.Y. (1999), “Approximation and exact algorithms for

constructing minimum ultrametric trees from distance matrices”, Journal of Combinatorial
Optimization, vol. 3, pp. 199-211.

[15] B.Y. Wu, G. Lancia, V. Bafna, K.M. Chao, R. Ravi and C.Y. Tang, A polynomial time
approximation scheme for minimum routing cost spanning trees”, SIAM J. Computing, 29
(1999), pp. 761-778.

[16] B.Y. Wu and C.Y. Tang, An O(n) algorithm for finding an optimal position with relative
distances in an evolutionary tree, Information Processing Letters, 63 (1997), pp. 263-269.

[17] Jia-Yi Zhou, Kun-Ming Yu, Chun-Yuan Lin, and Chuan Yi Tang, “Efficient Parallel Algorithm for
Constructing Evolutionary Trees of Human Mitochondrial DNA from Distance Matrices,”
The 2004 International Conference of Bioinformatics (InCoB 2004), pp. 35 (Sep. 3-6, 2004,
Auckland, New Zealand). (NSC92-2213-E-216-011)

[18]蔡京甫、游坤明,“一個具有兩階段動態負載平衡機制之高效能計算環境,＂二００四

數位生活與網際網路科技研討會 (2004 Symposium on Digital Life and Internet
Technologies), pp. 5, 2004. (NSC92-2213-E-216-011)

附錄一: 研討會論文

國際研討會論文

1. “A Fast Technique for Constructing Evolutionary Tree with the Application of Compact Sets,”
PaCT 2005- Lecture Notes in Computer Science, Vol. 3606, pp. 346-354, Springer-Verlag,
Sep. 2005. (PaCT'05), (SCI Expanded), (NSC-93-2213-E-216-037)

2. “Parallel Branch-and-Bound Algorithm for Constructing Evolutionary Trees from Distance
Matrix,” The 8th International Conference and Exhibition on High-Performance Computing
in Asia-Pacific Region (HPCAsia2005),Accepted, (NSC-93-2213-E-216-037).

3. Chun-I Chen, Chang Wu Yu, Ching-Hsien Hsu, Kun-Ming Yu, and C.-K. Liang, “Irregular
Redistribution Scheduling by Partitioning Messages,” Computer Systems Architecture -
Lecture Notes in Computer Science, Vol. 3740, pp. 295-309, Springer-Verlag, Oct. 2005.
(ACSAC’05) (Oct. 24-26, 2005, Singapore). (SCI Expanded)

國內研討會論文

1. 游坤明、徐蓓芳、賴威廷、謝一功、周嘉奕、林俊淵、唐傳義, “應用網格建立一

個高效能演化樹平行建構環境 ,” 九十四年全國計算機會議 , NCS2005, Accepted,
(NSC-93-2213-E-216-037).

附錄二: 出席國際學術會議心得報告

V. Malyshkin (Ed.): PaCT 2005, LNCS 3606, pp. 346 – 354, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Fast Technique for Constructing Evolutionary Tree
with the Application of Compact Sets*

Kun-Ming Yu1,**, Yu-Wei Chang1, YaoHua Yang2, Jiayi Zhou1, Chun-Yuan Lin3,†,
and Chuan Yi Tang4

1 Department of Computer Science and Information Engineering, Chung Hua University
2 Department of Information Management, Chung Hua University

3 Institute of Molecular and Cellular Biology, National Tsing Hua University
4 Department of Computer Science, National Tsing Hua University

Hsinchu, Taiwan 300, R.O.C.
yu@chu.edu.tw

Abstract. Constructing an evolutionary tree has many techniques, and usually
biologists use distance matrix on this activity. The evolutionary tree can assist
in taxonomy for biologists to analyze the phylogeny. In this paper, we specifi-
cally employ the compact sets to convert the original matrix into several small
matrices for constructing evolutionary tree in parallel. By the properties of
compact sets, we do not spend much time and do keep the correct relations
among species. Besides, we adopt both Human Mitochondrial DNAs and ran-
domly generated matrix as input data in the experiments. In comparison with
conventional technique, the experimental results show that utilizing compact
sets can definitely construct the evolutionary tree in a reasonable time.
Keywords: computational biology, evolutionary tree, compact sets, branch-and-
bound.

1 Introduction1

An evolutionary tree is a model of evolutional histories for a set of species. It is an
important and fundamental model in bioinformatical field to observe livening species.
A meaning evolutionary tree enhances biologists to evaluate the relationship of a set
of species in taxonomy. Hence, many methods have been proposed to construct the
evolutionary tree.

The majority of these methods are all based on two models, i.e., the sequences and
a distance matrix. In the sequences model, they do multiple sequence alignment
(MSA) for a set of species with corresponding DNA sequence first. Then an evolu-
tionary tree is constructed according to the MSA result. However, the MSA problem
is NP-hard. In a distance matrix model, they determine the distance as the edit dis-
tance for any two of species first. Then these distances are formed as a distance ma-
trix. Finally, an evolutionary tree is constructed according to a distance matrix. Unfor-

* This work was supported in part by the NSC of ROC, under grant NSC93-2213-E-216-037.
** Corresponding author.
† Post doctor fellowship is supported by NSC under contract NSC92-3112-B-007-002 and

NSC93-3112-B-007-008.

 A Fast Technique for Constructing Evolutionary Tree

347

tunately, it is also an NP-hard problem to construct a minimum cost evolutionary tree
from a distance matrix.

A category of evolutionary tree called ultrametric tree (UT) assumes that the rate of
evolution is constant. An UT is a rooted and edge weighted binary tree in which every
internal node has the same path length to all the leaves in its sub tree. The minimum
UT for a distance matrix is an UT that the distance between any pair of leaves on the
tree is no less than the given distance and the total weight on the tree edges is mini-
mized.

In the distance matrix, shown in figure 1, each value represents the distance be-
tween two species. The distance matrix D is symmetric, i.e. for all 0 ≤ i ≤ n, D[i,i] =
0. Also, the matrix D follows the triangle inequality, i.e. for all 1 ≤ i, j, k ≤ n, D[i,j]
+ D[j,k] ≥ D[i,k].

V 1

V 1

V 2

V 2

V 3

V 3 V 4

V 4

V 5

V 5

V 6

V 6

0 3 1 1 2 6 1 3
0 7 9 5 1 6

0 1 1 4 1 5
0 1 4 2

0 8
0

Fig. 1. An example of distance matrix

Some studies on constructing optimal evolutionary tree have been proven to be an
NP-hard problem [3, 4, 6, 8, 9, 15]. The scientists could use the branch-and-bound
technique to construct optimal evolutionary tree in a reasonable time [12] when the
number of species is small. Although the branch-and-bound algorithm would detect
an optimal solution, such capacities cannot effectively support the optimal evolution-
ary tree construction when the number of species exceeds 26.
 In this paper, we specifically utilize the compact sets to convert the distance matrix
into several small matrices for constructing an UT in parallel. We can not only obtain
nearly optimal evolutionary tree but also keep the precise relations among species
through compact sets by the property - the least common ancestor [14]. Of such an
advantage, our work might contribute to the findings on the phylogeny.

The rest of the paper is organized as follows: section 2 proposes some preliminar-
ies. Section 3 describes the methods for constructing the ultrametric tree in detail. The
experimental results are presented in section 4. Finally, the conclusion is placed in
section 5.

2 Preliminaries

An ultrametric tree is a rooted, leaf labeled binary tree, and each edge associates with
a distance cost. The length from root to any leaf is equal. We can construct an UT
through a distance matrix D representing a complete, weighted and undirected graph
G. The graph G = (V, E) includes vertices V and edges E. We give some definitions
below:

K.-M. Yu et al.

348

Definition 1. Assume that P is a given topology and i, j∈L(P). LCA(i,j) represents
the lowest common ancestor of i and j. Assume a and b are two vertices in P, we de-
note a → b if and only if a is an ancestor of b.

Definition 2. Assume P is a tree topology. R(P) is a relation - {(i,j,k}|a,b,c∈ L(P),
LCA(i,k)=LCA(j,k) → LCA(i,j)}.

The compact set has been extensively studied [5] but have not been applied to the
evolutionary tree construction problem. We will list some properties of compact sets
below:

Lemma 1: Assume compact sets C exist in a tree T including elements i, j and k. The
compact sets must satisfy a relation － least common ancestor. If and only if the rela-
tions ((i, j), k) and LCA(i, j) < LCA(i, k) = LCA(j, k) exist, then there is an adjacency
relation in T like figure 2.

Lemma 2: Let C be a subset of vertices V. If C is compact, then the maximum edge
in C should be smaller than any edges between an element in C and that in V but not
in C.

Lemma 3: Let A and B be two different compact sets of V1. If A and B have intersec-
tion, then either A ⊂ B or B ⊂ A[5].

Lemma 4: If sub graph g is compact set, then the sub tree in g also belongs to the

minimum spanning treeT .

i j k

Fig. 2. An example of least common ancestor

3 Proposed Solutions

To construct nearly optimal UT for mass spices in reasonable time, we utilize the idea
of compact set in our work. Firstly, we will find the compact sets from distance ma-
trix D and explore them to create several small distance matrices D’. Then we input
the smaller distance matrices D’ to parallel branch-and-bound algorithm. Finally we
can obtain sub trees T’ and merge them into an ultrametric tree T. We describe the de-
tails in the subsection.

3.1 Compact Sets

As above, we explore compact sets to separate the distance matrix D into several
small distance matrices D’. If the elements in a subset S of X are closer than those out-
side S but in X, then S is a compact set. Also we could continuously find compact sets
in S until exploring all sub sets. In this work we can find all the compact sets to clas-
sify the organisms by collecting the more relative species on the graph[17]. The found

 A Fast Technique for Constructing Evolutionary Tree

349

found groups will keep the correct relations and could conduce to analyze the phylog-
eny. Thus we utilize compact sets to construct a more precise ultrametric tree.

Initially we must find the minimum cost spanning tree to converge the closest
groups and can probe the elements inside each group to discover all the compact sets.
Take the figure 3 for example; if using the Kruskal’s algorithm, we can locate a

minimum spanning tree T like figure 4, and the compact sets are
{(1,3),(4,6),(1,2,3,5)}. We will continue using the algorithm below to verify the sub-

sets in T to discover all the compact sets.

1

2

3

4

5

6

1

2

3
4

5
6

7
8

9 1 1
1 3

1 4

1 5 1 6
1 2

1

2

3

4

5

6

1

2

3 4

8

Fig. 3. The complete, weighted, undirected graph Fig. 4. The minimum spanning tree

Algorithm Compact Sets
Input: A graph G = (V, E) with the vertex set V ={V1,
 V2, …, Vn} and edge set E. Each edge has a weight.
Output: All of the compact sets on the graph G.

Step 1. Find the minimum spanning tree T on the graph
 G.) //here we use Kruskal’s algorithm.

Step 2. Sort the edges in T in ascending order, which is
 marked as (e1, e2, …, en-1).
Step 3. P ← {{V1}, {V2,…,Vn}.
Step 4. for i := 1 to n-2
 {
 1. Let a and b to be the end vertices of edge
 ei, i.e., ei = (a, b).
 2. Find A, B in P such that a belongs to A and b
 belongs to B
 3. A ← merge A and B
 4. Delete B from P
 5. Find the maximum edge in A, denoted Max(A).
 6. Find the minimum edge between a vertex in A
 and a vertex not in A, denoted Min(A, !A).
 7. If Max(A) < Min(A, !A), then A is a compact
 set.
}

According to the algorithm, the order of edges is (1, 3), (4, 6), (1, 2), (3, 5) and (5, 6)

after sorting by the weights. The population P includes all the vertices in T , i.e. P =
{(1), (2), (3), (4), (5), (6)}. We will firstly merge (1) and (3) together while coming to
step 4. After the mergence, the P becomes {(1, 3), (2), (4), (5), (6)}. Continuously, we
will find compact sets, (1, 3) and (4, 6). Worthy to be noticed is when we merge (1, 2)
with (1, 3), we must examine if (1, 2, 3) satisfies the lemma 2. The maximum distance

K.-M. Yu et al.

350

in (1, 2, 3) is less than the minimum distance between vertices in (1, 2, 3) and (4, 5,
6). Thus, (1, 2, 3) is a compact set. In the end, all the compact sets are (1, 3), (4, 6),
(1, 2, 3) and (1, 2, 3, 5) like figure 5.

1

2

3

4

5

6

C 1

C 2

C 3
C 4

Fig. 5. Compact sets for the example

We then create several small distance matrices D’ of three types which differ in the
distance lengths stored in D’. These three matrices separately called maximum, mini-
mum, and average. In this paper, we only study the ultrametric tree constructed from
maximum matrix. The construction procedure is as follows. While creating the maxi-
mum matrix of C4, we will examine the distances between elements in C4, i.e. (C1, C3,
5). When considering C3 and (5), we must select the maximum distance, which is 6,
between (5) and any element in C3, i.e. (1), (3) or (2). The resulted maximum matrix
of C4 shows in figure 7.

We shall discuss a situation that if there more than oneT exists. In the previous

step when findingT , we need to examine and will obtain another T while replacing

the edge of T with that holding the same weight on the graph. Indeed the new

T should satisfy all conditions after the replacement. Figure 7(a) and (b) provides an

example that twoT s coexist in a graph.

C 1 C 2

C 1

C 2

5

5

0 7 6
0 6

0

M a x i m u m

1

2
3

4

51

2

3

4

4

1

2
3

4

51

2

3

4

4

(a) (b)

Fig. 6. Maximum matrix of C4 Fig. 7. Two minimum spanning trees in a graph

We can keep the precise relations among species by discovering all the compact
sets on the graph. Thus we could ensure the relationship of every species in the ul-
trametric tree is precisely preserved by the characteristics of compact set. Then we
can use the parallel branch-and-bound technique to construct an ultrametric tree from
the small matrices D’. The following is an introduction to parallel branch-and-bound
technique.

3.2 Parallel Branch-and-Bound Algorithm

We input several small distance matrices D’ to the parallel branch-and-bound algo-
rithm to find sub trees T’. Branch-and-bound algorithm is an efficient tree search

 A Fast Technique for Constructing Evolutionary Tree

351

algorithm for NP-hard problems. Some results about ultrametric trees have been pro-
posed in [2]. In the previous researches, Wu et al., [19] had proposed a sequential
branch-and-bound algorithm to construct minimum ultrametric trees from distance
matrices.

For the parallel branch-and-bound algorithm, we utilize a heuristic algorithm
UPGMM (Unweighted Pair Group Method with Maximum), which is altered from al-
gorithm UPGMA [15], to find the cost values as bound values in our algorithm. If any
computing nodes are notified that the branching unable to create any better solution,
we then remove the branch. Compared with the single processor system, the solution
space in the multi-processor system will decrease greatly. Thus, the parallel branch-
and-bound algorithm could achieve super-leaner speedup.

The parallel branch-and-bound algorithm in the master and slave paradigm is listed
as follows.

Parallel Branch-and-Bound Algorithm
Input: An n * n distance matrix D.
Output: The minimum ultrametric tree for D.
Step 1: Master control node re-label the species such
 that (1, 2, …, n) is a maxmin permutation.
Step 2: Master control node creates the root of the BBT
 (branch-and-bound Tree).
Step 3: Master control node run UPGMM and using the
 result as the initial UB (upper bound).
Step 4: Master control node branches the BBT until the
 branched BBT reach 2 times of total nodes in
 the computing environment.
Step 5: Master control node broadcasts the global UB
 and send the sorted matrix the nodes cycli-
cally.
Step 6: while number of UTs in LP (Local Pools) > 0 or
 number of UTs in GP (Global Pools) > 0 do
 if number of UTs in LP = 0 then
 if number of UTs in GP <> 0 then
 receive UTs from GP
 end if
 end if
 v = get the tree for branch using DFS
 if LB(v) > UB then
 continue
 end if
 insert next species to v and branch it
 if v branched completed then
 if LB (v) < UB then
 update the GUB (Global Upper Bound) to
 every nodes
 add the v to results set
 end if
 end if
 if number of UTs in GP = 0 then
 send the last UT in sorted LP to GP
 end if
 end while
Step 7: Gather all solutions from each node and output.

K.-M. Yu et al.

352

When obtaining the sub tree T’ from the small matrix D’, each node will return it
to the master control node. Finally, the master control node will merge all the sub
trees T’ into the ultrametric tree T.

4 The Experimental Results

The experimental environment is built by a Linux-based cluster incorporating one
master control node and 16 computational nodes. Computational nodes have the same
hardware specification and connect with each other at 100Mbps and 1Gbs to server.
Human Mitochondrial DNAs and randomly generated species matrix are the data in-
stances stored in the distance matrix. The experiments will process in two conditions:
To construct ultrametric tree (1) with application of compact sets and (2) without
utilizing compact sets. We will compare the differences in computing time and total
tree cost. We can find compact sets on a graph and determine the maximum distances
of elements in each compact set as the total tree cost while considering the ultrametric
tree based on maximum matrix. The following experimental results of compact sets
are shown based on the data of maximum matrix.

Time

0.1

1

10

100

1000

10000

20 25 26 28

species

(sec)

compact set
original

Cost

800
900

1000
1100
1200
1300
1400
1500

1 3 5 7 9 11 13 15 17 19 21
distance matrix

(cost)

compact set

original

Fig. 8. The computing time for random Fig. 9. The total tree cost for random data
data set set

As the experiments on the randomly generated sequences, the averages computing
time is shown in figure 8. Figure 8 illustrates the more species the more computing
time we spend. In comparison with the method without applying compact set, the
most time we save is about 99.7% and the least is 77.19% while using compact sets.
Also we present the differences in cost between condition 1 and 2 in figure 9 and the
results are based on randomly generated sequences. Figure 9 illustrates the total tree
costs under two conditions are almost equal and the difference is less than 5%.

As the experiments on Human Mitochondrial DNAs, we use 15 data set containing
26 species for each and the total tree cost is presented in figure 10. The results show
the maximum difference is 1.5%. In other words, the results demonstrate compact sets
have the same effect not only on generated sequences but also on Human Mitochon-
drial DNAs. Figure 11 shows the computing time. Using compact sets can definitely
save time but unexpectedly the experiments without compact sets also take little time
except the last data.

We also experiment with 30 DNAs and figure 12 represents the costs of 10 data set
each including 30 DNAs. As figure 12, using compact sets could keep the cost down
when we experiment on 30 DNAs as well as generated data or 26 DNAs. According

 A Fast Technique for Constructing Evolutionary Tree

353

to figure 13, for computing time, the performances of the experiments on both 26 and
30 DNAs are alike.

COST of 26 DNA species

500

600

700

800

1 3 5 7 9 11 13
distance matrix

(cost) compact set

original

TIME of 26 DNA species

0

20

40

60

80

1 2 3 4 5 6

distance matrix

(sec)

compact set

original

 Fig. 10. The total tree cost for 26 DNAs Fig. 11. The computing time for 26 DNAs

COST of 30 DNA species

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10
distance matrix

(cost) compact set

original

TIME of 30 DNA species

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9
distance matrix

(sec)

compact set

original

 Fig. 12. The total tree cost of 30 DNAs Fig. 13. The computing time of 30 DNAs

No matter how many species on which we experiment, the computing speed is still
extremely rapid without using compact sets. Although the experiments using compact
sets do not take much less time, we suppose the phenomenon is relevant to the popu-
lation of the data. The computing time resulted from the experiment with randomly
generated data can be a reference for any circumstance.

5 The Conclusions

In this paper, we employ the compact sets to convert the original matrix into several
small matrices for constructing ultrametric tree in parallel. Of the compact sets, the
precise phylogeny remains and facilitates biologists to analyze the species in taxon-
omy. Although we experiment with both Human Mitochondrial DNAs and randomly
generated sequences, the results from generated data can represent any real instance.
Therefore our technique could be applied in any condition.

References

1. H.J. Bandelt, “Recognition of tree metrics,” SIAM Journal on Discrete Mathematics, vol.
3, no. 1, pp.1-6, 1990.

2. E. Dahlhaus, “Fast parallel recognition of ultrametrics and tree metrics,” SIAM Journal on
Discrete Mathematics, vol. 6, no. 4, pp. 523-532, 1993.

3. W.H.E. Day, ”Computationally difficult parsimony problems in phylogenetic systemat-
ics,“ Journal of Theoretic Biology, vol. 103, pp. 429-438, 1983.

4. W.H.E. Day, “Computational complexity of inferring phylogenies from dissimilarity ma-
trices,” Bulletin of Mathematical Biology, vol. 49, no. 4, pp. 461-467, 1987.

K.-M. Yu et al.

354

5. E. Dekel, J. Hu, and W. Ouyang. An optimal algorithm for finding compact sets. Informa-
tion Processing Letters, 44:285-289, 1992.

6. M. Farach, S. Kannan, and T. Warnow, “A robust model for finding optimal evolutionary
trees,” Algorithmica, vol. 13, pp. 155-179, 1995.

7. W.M. Fitch, “A non-sequential method for constructing trees and hierarchical classifica-
tions,” Journal of Molecular Evolution, vol. 18, pp. 30-37, 1981.

8. L.R. Foulds, “Maximum savings in the Steiner problem in phylogency,” Journal of theo-
retic Biology, vol. 107, pp.471-474, 1984.

9. L.R. Foulds and R.L. Graham, “The Steiner problem in phylogeny is NP-complete,” Ad-
vances in Applied Mathematics, vol. 3, pp. 43-49, 1982.

10. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman: San Fransisco, 1979.

11. D. Gusfield, “Algorithms on Strings, Trees, and Sequences, computer science and compu-
tational biology,” Cambridge University Press, 1997.

12. M.D. Henry and D. Penny, ”Branch and bound algorithms to determine minimal evolu-
tionary trees,” Mathematical Biosciences, vol. 59, pp. 277-290, 1982.

13. R.M. Karp, “Reducibility among combinatorial problems,” in Complexity of Computer
Computations, R.E. Miller and J.W. Thatcher (Eds.), Plenum Press: New York, 1972, pp.
85-103.

14. SungKwon Kim, “A note on finding compact sets in graphs represented by an adjacency
list” Information Processing Letters, vol. 57, pp. 335-238, 1996.

15. M. Krivanek, “The complexity of ultrametric partitions on graphs,” Information Process-
ing Letter, vol. 27, no. 5, pp. 265-270, 1988.

16. W.H. Li and D.Graur, Fundamentals of Molecular Evolution, Sinauer Associates, 1991.
17. Chiou-Kuo Liang, "An O(n2) Algorithm for Finding the Compact Sets of a Graph," BIT,

vol. 33, pp 390-395, 1993.
18. N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstructing phy-

logenetic trees. Molecular Biology and Evolution, 4:406-425, 1987.
19. B.Y. Wu, K.M. Chao, C.Y. Tang, “Approximation and Exact Algorithms for Constructing

minimum Ultrametric Tree from Distance Matrices,” Journal of Combinatorial Optimiza-
tion, vol. 3, pp.199-211, 1999.

Parallel Branch-and-Bound Algorithm for Constructing Evolutionary Trees
from Distance Matrix *

Kun-Ming Yu1 †, Jiayi Zhou1, Chun-Yuan Lin2 ‡, and Chuan Yi Tang3

1Department of Computer Science and Information Engineering, Chung Hua University

2Institute of Molecular and Cellular Biology, National Tsing Hua University
3Department of Computer Science, National Tsing Hua University

Hsinchu, Taiwan 300, ROC

1 yu@chu.edu.tw, jyzhou@pdlab.csie.chu.edu.tw
2 cyulin@mx.nthu.edu.tw
3 cytang@cs.nthu.edu.tw

* This work was supported in part by the NSC of ROC, under grant NSC-93-2213-E-216-037
† Corresponding author
‡ Post doctor fellowship is supported by NSC under contract NSC92-3112-B-007-002 and NSC93-3112-B-007-008

Abstract

An ultrametric tree is an evolutionary tree in which
the distances from the root to all leaves in the tree are
equal. The Minimum Ultrametric Tree construction
problem is the problem of constructing an ultrametric
tree from distance matrices with minimum cost. It is
shown that to construct a minimum cost ultrametric
tree is NP-hard. In this paper, we present an efficient
parallel branch and bound algorithm to construct a
minimum ultrametric tree with less cost. The
experimental results show that our proposed algorithm
can discover optimal solutions for 38 species within
reasonable time with 16 computing nodes.

Keyword: Parallel computing, branch-and-bound,

evolutionary tree, distance matrices, minimum
ultrametric trees.

1. Introduction

An evolutionary tree is a model of evolutional
histories for a set of species. It is a very important and
fundamental model in computational biology field to
observe livening species. A meaning evolutionary tree
is helpful for biologists to evaluate the relationship of a
set of species in taxonomy.

However, it is hard to know the constructed
evolutionary tree is meaning or not since the real
evolutionary process is unknown. Hence, many

methods have been proposed to construct the
evolutionary tree.

The majority of these methods are all based on two
models, the sequences and the distance matrix. In the
sequences model, researchers do multiple sequence
alignment (MSA) for a set of species with
corresponding DNA sequence first. Then an
evolutionary tree is constructed according to the MSA
result. However, the MSA problem is NP-hard. In the
distance matrix model, they calculate the distance as
the edit distance for any two of species first. Then
these distances are formed as a distance matrix. Finally,
an evolutionary tree is constructed according to a
distance matrix. Unfortunately, it is also a NP-hard
problem to construct a minimum cost evolutionary tree
from a distance matrix.

Some heuristic algorithms, such as Unweighted Pair
Group Method with Arithmetic Mean (UPGMA) and
Neighbor Joining Method, have been proposed and
popularly used by biologists. However, the constructed
evolutionary tree from them is not optimal. Moreover,
it is still worthy to construct an optimal evolutionary
tree for a set with small number of species.

There is a category of evolutionary tree called
ultrametric tree, in which we assume that the rate of
evolution is constant. An ultrametric tree is a rooted
and edge weighted binary tree in which every internal
node has the same path length to all the leaves in its
sub tree. However, the number of an ultrametric tree

()A n grows very rapidly when the number of species

n increases. For example, 21(20) 10A > , 29(25) 10A > ,

37(30) 10A > . The problem of constructing a minimum
ultrametric tree has been shown to be NP-hard. The
branch-and-bound algorithms are very well-known
techniques to avoid exhaustive search. It is a partition
algorithm to decompose a problem into smaller
subproblems and then repeatedly decomposes them
until infeasibility is proved or a solution is found [17].
Theoretically, a branch-and-bound algorithm cannot
ensure polynomial time complexity in the worst case.
However, it has been used to solve some NP-hard
problems, such as Traveling Salesman, Knapsack,
Vertex Covering, Integer Programming, and so on [17].
In addition, a branch-and-bound algorithm can often
find the near optimal solutions as well as an optimal
one.

In our previous work, we have proposed a parallel
branch-and-bound technique to construct a metric
minimum ultrametric tree. Our technique can
drastically reduce the solution space. However, it is not
enough to construct a metric minimum ultrametric tree
with a numerous number of species. In this paper, we
utilize the concept of 3-3 relationship in our proposed
parallel branch-and-bound algorithm to reduce the
solution space and may reduce the execution time
significantly.

This paper is organized as follows. In Section 2, we
introduce the metric minimum ultrametric tree problem
and the 3-3 relationship. Section 3 describes the
proposed parallel branch-and-bound algorithm with the
3-3 relationship. The experimental results and the
conclusions will be given in Sections 4 and 5.

2. Related Work

Most of the optimization problems for evolutionary
tree construction are NP-hard [3, 7, 12, 15]. There are
many models of evolutionary tree and one of them is
called ultrametric tree (UT) which assumes the rate of
evolution is constant [310, 1]. A UT is a rooted, leaf
labeled, and edge weighted binary tree in which every
internal node has the same path length to all the leaves
in its sub-tree [15]. Distance matrix is most frequently
used to construct an evolutionary tree. For an n by n
distance matrix M, the minimum UT for M is an UT
that the distance between any pair of leaves on the tree
is no less than the given distance and the total weight
on the tree edges is minimized. There are some results
about UT which have been presented in [1, 4, 7, 15].

As it is an NP-hard problem to construct a
minimum ultrametric tree from distance matrix,
branch-and-bound technique is a good candidate to
reduce the solution space effectively. Wu et al., [15]
proposed a sequential branch-and-bound algorithm for

constructing minimum ultrametric trees from distance
matrices. We denote their algorithm as Algorithm
BBU for brevity. Initially, Algorithm BBU uses a
heuristic algorithm UPGMM (Unweighted Pair Group
Method with Maximum), which modifies from
algorithm UPGMA, to find a feasible solution. Then,
Algorithm BBU repeatedly searches the branch-and
bound tree (BBT) for better solutions until an optimal
solution is found. For any node, say v, in the BBT,
compute the value of LB(v), which is a lower bound
on the weight of any ultrametric tree. Below is a
formal description of Algorithm BBU.

Algorithm BBU

Input: An n x n distance matrix M.
Output: The minimum ultrametric tree for M.

Step 1: Relabel the species such that (1, 2, …, n) is
maxmin permutation.
Step 2: Create the root v of the BBT such that v

represents the only topology with leaves 1 and
2.

Step 3: Run UPGMM to find a feasible solution and
store its weight in UB (the weight of current
best UT).

Step 4:
while there is a node in BBT do
 if LB(v) >= UB or all the children of v have
been deleted then
 delete all nodes v from BBT
 end if
 Select a node s in BBT, whose children has
not been generated.
 Generate the children of s by using the
branching rule.
 if find a better solution then
 update UB
 end if
end while.

The readers can refer to [15] for the correctness and

time complexity issues of algorithm BBU.

In this paper, G = (V, E) represents an unweighted

graph with vertex set V and edge set E and G = (V, E,
w) denotes an edge weighted graph. To simplify the
presentation, notations and terminologies used in this
paper are prior defined as follows.

Definition 1: A distance matrix of n species is a

symmetric n n matrix M such that M[i,

j]≥ 0 for all 0≤ i, j≤ n, and M[i, i]=0 for
all 0≤ i≤ n [15].

Definition 2: A M is a metric if the distances obey the
triangle inequality, i.e., M[i, j]+M[j,
k]≥M[i, k] for all 1≤ i, j, k≤ n [15].

Definition 3: A metric M is an ultrametric if and only
if M[i, j]≤max{M[i, k], M[j, k]} for all
1≤ i, j, k≤ n [2].

Definition 4: Let T = (V, E, ω) be an edge weighted
tree and u, v∈V. The path length from u
to v is denoted by),(vudT . The weight
of T is defined by
ω(T)=∑ ∈Ee e)(ω [15].

Definition 5: Let T be a rooted tree and r be any node
of T. We use Tr to denote the subtree
rooted at r, and L(T) to denote the leaf set
of T [15].

Definition 6: An ultrametric tree T of {1, …, n} is a
rooted and edge-weighted binary tree
with L(T) = {1, …, n} and root r such
that),(rudT =),(rvdT for all u,
v∈L(T) [15].

Definition 7: Let T = (V, E, ω) be an UT. For any
r ∈ V, the height of r, denoted by
height(r), is the distance from r to any
leaf in the subtree Tr, i.e., height(r)
=),(vrdT for any v∈L(Tr) [15].

Definition 8: For any M, MUT for M is T with
minimum ω(T) such that L(T)={1, …, n}
and),(jidT ≥M[i, j] for all 1≤ i, j≤ n.
The problem of finding MUT for M is
called MUT problem [7].

Definition 9: The metric minimum ultrametric tree
(∆ MUT) problem has the same
definition as MUT problem except that
the input is a metric [15].

Theorem 1: The ∆MUT problem is NP-hard [15].

Definition 10:Let P be a topology, and)(, PLba ∈ .
),(baLCA denotes the lowest common

ancestor of a and b. If x and y are two
nodes of P, we write yx → if and only
if x is an ancestor of y.

Definition 11:We denote the distance between distance
matrix and rooted topology of

evolutionary trees is consistent if
<],[jiM]},[],,[min{ kjMkiM if and

only if),(),(),(kjLCAkiLCAjiLCA =<
for any nkji ≤≤ ,,1 . Otherwise is
contradictory.

Fan [5] proposed an idea to evaluate the

evolutionary trees by using distance relations between
distance matrix and evolutionary trees for any 3
species. The idea was as follows, choosing three
species i, j, k arbitrary, if i, j relates closely in distance
matrix, then on evolutionary trees should also present
relation of i, j. Otherwise, it is contradiction, if the
number of contradictions is more, expresses the
method of evolutionary tree construction is
insufficiently good, and it cannot faithfully reflect the
relation of the original distance matrix.

For the purpose of reducing the solution space in
branch-and-bound strategy; we observe that the
characteristic of 3-3 relationship between distance
matrix and evolutionary tree can be utilized.

3. Main title

In this section, we will describe the system
framework we developed in detail, including parallel
algorithm, load balancing strategy, data structure, and
how to use 3-3 relationship to construct evolutionary
trees.

The same level of evolutionary tree can be divided
into independent parts, therefore parallel branch-and-
bound is a very suitable technique to solve
evolutionary tree problem without considering the
data-dependent problem between computing nodes.
Each computing node only needs to handle or solve a
sub-problem with sequential algorithm regardless of
data-dependent problem.

In our proposed parallel branch-and-bound
algorithm, every node in the same level of branch-and-
bound tree represents respective solution. Every
computing node branches one of the nodes in the same
time. When some computing nodes find the branching
solution satisfies the bounding rule then we don’t need
to branch any more. It will pass a message to notify
other computing nodes that the branching will not
produce a better solution and then we can delete the
branch. For this reason, the solution space in multi-
processor system will be less than the solution space in
the single processor system. Thus, our proposed
parallel branch-and-bound algorithm may achieve
super-linear speedup.

The load balancing strategy is important in our
proposed system. Because the solution space in each
computing node may differ a lot after bounding, this
may result in the situation that some computing nodes
idle. We apply the global pools design, which located
in the Master processor. When local pools of
computing nodes empty, it can request some branching
data from global pools if it is not empty. Even through
the global pools empty, it will poll branching data form
the heavily loaded computing nodes.

The data structure is also an important issue in the
parallel computing. An unsuitable data structure may
take unnecessary time during the exchange of
information between computing nodes so that we shall
consider whether the data structure performs well in
parallel computing. Therefore, we develop a data
structure, which is called UT node, including every
internal node’s left children, right children, parents,
leaves which were sorted by array and the UT node’s
low bound. All necessary information is stored in a
branch and bound tree (BBT) which combined with
UT.

In the proposed algorithm, the master processor
(MP) will create initial nodes and then dispatch most
of them to slave computing processors. The MP is also
used to do the same work in slave computing
processors and try to balance the nodes among MP and
slave computing processors.

In MP, in Step 1, it reorders the input metric
distance matrix M to form a max-min permutation and
then re-label the species as a leaf set {1, 2, …, n}.
This work could be done in parallel. In Step 2, a root v
of BBT is created by MP which v represents the only
topology with leaves 1 and 2. In Step 3, MP will run
UPGMM to find a feasible solution and store its
weight in a global variable UB as an initial upper
bound. In the Step 4, MP applies the 3-3 relationship
constrain to insert the third species, which can reduce
the solution space significantly. In order to dispatch
nodes to slave computing processors, some nodes of
BBT should be generated. Therefore, in Step 5, MP
will do parts of Step 5 in BBU to generate some nodes
of BBT. Note that the value of LB(v) for each node v
generated by MP is lower than or equal to UB. Now,
the number of nodes is set to be double of the number
of processors p. Similarly, this step could be done in
parallel, but it is done by MP with the same reason.

Since each node v in each slave computing
processor may be bounded quickly or not, we try to
balance the work among processors before the
dispatching procedure. In Step 6, for each node v
generated by MP, a global UB is computed first, and
then broadcasts to slave computing processors.
According to the sorting results, each corresponding

node will be stored sequentially into the Global pool
(GP). Afterward, MP dispatches most of them to slave
computing processors by the cyclic partition method.
In the dispatching procedure, UB and M with a max-
min permutation are also sent to Slave computing
processors. Since MP is also used to do the same work
in Slave computing processors, it needs to preserve
some nodes in GP. Now, MP preserves 1/p nodes in
GP. By Step 7, a potential effect may be existed to
balance the work among MP and slave computing
processors. After dispatching most of nodes from MP
to Slave computing processors, parallel branch-and-
bound algorithm tries to find the optimal solution.

The parallel branch-and-bound algorithm in the
master-slave paradigm is presented as follows.

Table 1 Parallel Branch-and-Bound with 3-3
Relationship
Input: An n x n distance matrix M.
Output: The minimum ultrametric tree for M.

Step 1: Master processor re-label the species such that

(1, 2, …, n) is a maxmin permutation.
Step 2: Master processor creates the root of the BBT.
Step 3: Master processor run UPGMM and using the

result as the initial UB (upper bound).
Step 4: Under rooted base tree with 2 species.

Referring the original distance matrix to insert
the third species according to the 3-3
relationship constraint.

Step 5: Master processor branches the BBT until the
branched BBT reaches 2 times of total
nodes in the computing environment.

Step 6: Master processor broadcasts the global UB and
sends the sorted matrix the slave computing
processors cyclically.

Step 7:
while number of UTs in LP (Local Pools) > 0 or

number of UTs in GP (Global Pools) > 0 do
 if number of UTs in LP = 0 then
 if number of UTs in GP <> 0 then
 receive UTs from GP
 end if
 end if
 v = get the tree for branch using DFS
 if LB(v) > UB then
 continue
 end if
 Insert next species to v and branch it
 if v branched completed then
 if LB (v) < UB then
 Update the GUB (Global
Upper Bound) to every node

 Add the v to results set
 end if
 end if
 if number of UTs in GP = 0 then
 Send the last UT in sorted LP to GP
 end if
end while
Step 8: Gather all solutions from each node and output
the optimal solution.

4. Experimental Results

The experimental environment is built by a Linux-

based cluster; it consisted of one Master processor and
16 slave computing processors. All slave computing
nodes have the same hardware specification and
connected with each other at 100Mbps and 1Gbs to
server. One computing node (single processor) is
designated as the sequential platform in contrast with
the parallel computation.

The data instances we used are the distance matrix
constructed from Human Mitochondrial DNA
(HMDNA), and each number of species we run 20
instances to reduce the factor influenced by distance
matrix.

The computing time for 16 slave computing nodes
and single node is shown in figure 1 and 2. From
figure 1 and 2, we can observe that our proposed
parallel algorithm is effective when the number of
species is getting large. Also, we can observe that the
computing time will be unendurable when the number
of species greater than 26 for single processor. On the
other hand, the parallel branch-and-bound algorithm
can find optimal ultrametric tree within reasonable
time for 38 species. The speedup ratio is shown in
Figure 3, and we can find our proposed parallel
branch-and-bound algorithm achieve super linear
speedup ratio. Figure 4 depicts that 3-3 relationship
can reduce computing time when number of species
grows. Also, in our experimental results, the result
trees with 3-3 relationship are a subset of result
without 3-3 relationship. It indicates that applying 3-3
relationship can not only reduce the solution space but
also have the same results.

16 processors (HMDNA)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

12 14 16 18 20 22 24 26 28

Species

Ti
m

e
(s

ec
.)

Median case

Figure 1 The computing time for 16 processors,
HMDNA.

Single processor (HMDNA)

0

10

20

30

40

50

60

70

80

90

12 14 16 18 20 22 24 26 28

Species

Ti
m

e
(s

ec
.)

Median case

Figure 2 The computing time for single processor,
HMDNA.

Speedup (Single processor vs. 16 processors, HMDNA)

0

50

100

150

200

250

300

12 14 16 18 20 22 24 26 28

Species

S
p

ee
d

u
p

Median case

Figure 3 Speedup (16 processors vs. single
processor, HMDNA).

Computing time for 16 processors (with 3-3 relationshiop
vs. without 3-3 relationship, HMDNA)

0

0.5

1

1.5

2

2.5

3

12 14 16 18 20 22 24 26 28

Species

Ti
m

e
(s

ec
.)

Without 3-3 relationship
With 3-3 relationship

Figure 4 The computing time for 16 processors
(with 3-3 relationship vs. without 3-3 relationship,
HMDNA).

Figure 5, 6, 7 and 8 show the computing time as
well as speedup ratio for randomly generated data
sample set, the range of the data values is from 0 to
100. Also, our proposed algorithm has supreme
performance and can obtain optimal evolutionary tree
within reasonable time. Our proposed parallel branch-
and-bound algorithm can achieve super linear speedup
ratio.

16 processors (Random Data)

0

50

100

150

200

250

300

12 14 16 18 20 22 24 26

Species

Ti
m

e
(s

ec
.)

Median case

Figure 5 The computing time for 16 processors,
Random Data.

Speedup (Single processor vs. 16 processors, Random
Data)

0

20

40

60

80

100

120

12 14 16 18 20 22 24 26

Species

Sp
ee

du
p

Median case

Figure 6 Speedup (16 processor vs. single processor,
Random Data).

Single processor (Random Data)

0

1000

2000

3000

4000

5000

6000

12 14 16 18 20 22 24 26

Species

Ti
m

e
(s

ec
.)

Median case

Figure 7 The computing time for single processor,
Random Data.

Computing time for 16 processors (with 3-3 relationshiop vs.
without 3-3 relationship, Random Data)

0

50

100

150

200

250

300

12 14 16 18 20 22 24 26

Species

Ti
m

e
(s

ec
.)

Without 3-3 relationship
With 3-3 relationship

Figure 8 The computing time for 16 processors
(with 3-3 relationship vs. without 3-3 relationship,
Random Data).

5. Conclusions

In this paper, we have proposed a parallel branch-
and-bound algorithm that runs in a master/slave
paradigm to resolve the minimum ultrametric trees
construction problem, and we adopt the 3-3
relationship in our algorithm. Experimental results
show that the performance of our algorithm, running
on a personal computer cluster with 16 slave
computing processors, is extraordinary in comparison
with single processor. Moreover, our proposed parallel
algorithm can find an optimal solution for 38 species
within reasonable time. To the best of our knowledge,
there are no reported algorithms which can find the
optimal ultrametric tree with the number of species
exceeding 25.

From experimental results, we can see that the
performance of the sequential and parallel algorithms
will be influenced by the number of species, the
number of processors and the distance matrix. (Hint:
different distance matrices with the same number of
species lead to different performance). With 3-3
relationship, we found it can reduce the computing
time when number of species grows, but we only used

it in the initial step. In our future work, we can extend
this feature and speedup the process of constructing
evolutionary trees.

References

[1] H.J. Bandelt, “Recognition of tree metrics,” SIAM

Journal on Discrete Mathematics, vol. 3, no. 1,
pp.1-6, 1990.

[2] E. Dahlhaus, “Fast parallel recognition of
ultrametrics and tree metrics,” SIAM Journal on
Discrete Mathematics, vol. 6, no. 4, pp.523-532,
1993.

[3] W.H.E. Day, D.S. Johnson and D. Sankoff, “The
computational complexity of inferring rooted
phylogenies by parsimony,” Mathematical
Biosciences, vol. 81:33-42, 1986.

[4] W.H.E. Day, “Computation complexity of
inferring phylogenies from dissimilarity matrices,”
Bullotin of Mathematical Biology, vol. 49, no. 4,
pp. 461-467, 1987.

[5] Chen-Tai Fan, “The evolved tree appraises the
pattern the establishment and applies, “ Master
Thesis, National Tsing Hua University, 2000.

[6] L.R. Foulds and R.L. Graham, “The Steiner
problem in phylogeny is NP-complete,” Advances
in Applied Mathematics, vol. 3, pp. 43-49, 1982.

[7] M. Frach, S. Kannan, and T. Warnow, “A robust
model for finding optimal evolutionary trees,”
Algorithmica, vol. 13, pp.155-179, 1995.

[8] L.R. Foulds, “Maximum savings in the Steiner
problem in phylogeny,” Journal of theoretic
Biology, vol. 107, pp. 471-474, 1984.

[9] L.R. Foulds and R.L. Graham, “The Steiner

problem in phylogeny is NP-complete,” Advances
in Applied Mathematics, vol. 3, pp. 43-49, 1982.

[10] D. Gusfield, “Algorithms on Strings, Trees, and
Sequences, computer science and computational
biology,” Cambridge University Press, 1997

[11] M.D. Hendy and D. Penny, “Branch-and-bound
algorithms to determine minimal evolutionary
trees,” Mathematical Biosciences, vol. 59, pp.
277-290, 1982.

[12] M. Krivanek, “The complexity of ultrametric
partitions on graphs,” Information Processing
Letter, vol. 27, no. 5, pp. 265-270, 1988.

[13] W.H. Li and D. Graur, “Foundomentals of
Molecular Evolution,” Sinauer Associates, 1991.

[14] Yuji Shinano, Kenichi Harada and Ryuichi
Hirabayashi,” Control Schemes in a Generalized
Utility for Parallel Branch-and-Bound
Algorithms,’’ Parallel Processing Symposium
Proceedings, pp. 621 –627, 1997.

[15] B.Y. Wu, K.M. Chao, C.Y. Tang, “Approximation
and Exact Algorithms for Constructing Minimum
Ultrametric Tree from Distance Matrices,” Journal
of Combinatorial Optimization, vol 3, pp. 199-211,
1999.

[16] Albert Y. Zomaya, Senior Member, IEEE, and
Yee-Hwei Teh, “Observations on Using Genetic
Algorithms for Dynamic Load-Balancing,” IEEE
Transaction on Parallel and Distributed Systems,
vol. 12, no. 9, pp.899-911, 2001.

[17] C.F. Yu and B.W. Wah, “Efficient Branch-and-
Bound Algorithms on a Two-Level Memory
System,” IEEE Trans. Parallel and Distributed
Systems, vol. 14, no.9, 1988, pp. 1342-1356.

J. Cao, W. Nejdl, and M. Xu (Eds.): APPT 2005, LNCS 3756, pp. 101 – 110, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Contention-Free Communication Scheduling
for Irregular Data Redistribution

in Parallelizing Compilers∗

Kun-Ming Yu, Chi-Hsiu Chen, Ching-Hsien Hsu, Chang Wu Yu,
and Chiu Kuo Liang

Department of Computer Science and Information Engineering,
Chung Hua University, Hsinchu, Taiwan 300, ROC

Tel: 886-3-5186412, Fax: 886-3-5329701
yu@chu.edu.tw

Abstract. The data redistribution problems on multi-computers had been exten-
sively studied. Irregular data redistribution has been paid attention recently
since it can distribute different size of data segment of each processor to proces-
sors according to their own computation capability. High Performance Fortran
Version 2 (HPF-2) provides GEN_BLOCK data distribution method for generat-
ing irregular data distribution. In this paper, we develop an efficient scheduling
algorithm, Smallest Conflict Points Algorithm (SCPA), to schedule HPF2 ir-
regular array redistribution. SCPA is a near optimal scheduling algorithm,
which satisfies the minimal number of steps and minimal total messages size of
steps for irregular data redistribution.

Keywords: Irregular data redistribution, communication scheduling,
GEN_BLOCK, conflict points.

1 Introduction

More and more works had large data or complex computation on run-time in most
scientific and engineering application. Those kinds of tasks require parallel program-
ming on distributed system. Appropriate data distribution is critical for efficient exe-
cution of a data parallel program on a distributed computing environment. Therefore,
an efficient data redistribution communication algorithm is needed to relocate the data
among different processors. Data redistribution can be classified into two categories:
the regular data redistribution [2, 3, 6] and the irregular data redistribution [1, 4, 10,
11, 12]. The irregular distribution uses user-defined functions to specify unevenly
data distribution. High Performance Fortran version 2 (HPF2) provides
GEN_BLOCK data distribution instruction which facilitates generalized unequal-size
consecutive segments of array mapping onto consecutive processors. This makes it

∗ The work is partially supported by National Science Council of Taiwan, under grant number

NSC-93-2213-E-216-029.

102 K.-M. Yu et al.

possible to let different processors dealing with appropriate data quantity according to
their computation capability. In this scenario, all processors must send and receive
message, even if send and receive on the same processor.

In the irregular array redistribution, Guo et al. [11] proposed a Divide-and-
Conquer algorithm, they utilize Divide and Conquer technique to obtain near optimal
scheduling while satisfied minimize the total communication messages size and
minimize the number of steps.

In this paper, we present a smallest-conflict-points algorithm (SCPA) to efficiently
perform GEN_BLOCK array redistribution. The main idea of the SCPA is to schedule
the conflict messages with maximum degree in the first step of data redistribution
process. SCPA can effectively reduce communication time in the process of data
redistribution. SCPA is not only an optimal algorithm in the term of minimal number
of steps, but also a near optimal algorithm satisfied the condition of minimal message
size of total steps.

The rest of this paper is organized as follows. In Section 2, a brief survey of related
work will be presented. In section 3, we will introduce communication model of ir-
regular data redistribution and give an example of GEN_BLOCK array redistribution
as preliminary. Section 4 presents smallest-conflict-points algorithm for irregular
redistribution problem. The performance analysis and simulation results will be pre-
sented in section 5. Finally, the conclusions will be given in section 6.

2 Related Work

Many data redistribution results have been proposed in the literature. These re-
searches are usually developed for regular or irregular problems [1] in multi-computer
compiler techniques or runtime support techniques.

Techniques for communication optimizations category provide different ap-
proaches to reduce the communication overheads [5, 7] in a redistribution operation.
The communication scheduling approaches [3, 12] avoid node contention and the
strip mining approach [9] overlaps communication and computational overheads.

In irregular array redistribution problem, some works have concentrated on the in-
dexing and message generation while some has addressed on the communication
efficiency. Guo et al. [10, 11] proposed a divide-and-conquer algorithm for perform-
ing irregular array redistribution. In this method, communication messages are first
divided into groups using Neighbor Message Set (NMS), messages have the same
sender or receiver; the communication steps will be scheduled after those NMSs are
merged according to the relationship of contention. Yook and Park [12] presented a
relocation algorithm, while their algorithm may lead to high scheduling overheads
and degrade the performance of a redistribution algorithm.

3 Preliminaries and Redistribution Communication Models

Data redistribution is a set of routines that transfer all the elements in a set of source
processor S to a set of destination processor T. The sizes of the messages are specified

 Contention-Free Communication Scheduling for Irregular Data Redistribution 103

by values of user-defined random integer for array mapping from source processor to
destination processor. Since node contention considerably influences, a processor can
only send messages to other one processor in each communication step. Use the same
rule, a processor can only receive messages from other one processor.

To simplify the presentation, notations and terminologies used in this paper are
prior defined as follows.

Definition 1：GEN_BLOCK redistribution on one dimension array A[1:N] over P
processors. The source processor is denoted as SPi, the destination processor is de-

noted as DPj, where 0 ≦ i, j ≦ P-1.

Definition 2： The time of redistribution separator the time of startup is denoted as ts,
and the time of communication is denoted as tcomm.

Definition 3： To satisfy the condition of the minimum steps and the processor
sends/receives one message at each steps, some messages can not be scheduled in the
same communication step are called conflict tuple [11].

Data redistribution implements have two methods: non-blocking scheduling algo-
rithm and blocking scheduling algorithm. The non-blocking scheduling algorithm is
faster than the blocking scheduling algorithm. But need more buffer and be better
control synchronization. In this paper, we discuss on blocking scheduling algorithm.

Irregular data redistribution is unlike regular has a cyclic message passing pattern.
Every message transmission link is not overlapping. Hence, the total number of mes-
sage links N is 2 1numprocs N numprocs≤ ≤ × − , where numprocs is the num-

ber of processors. Figure 1 shows an example of redistributing two GEN_BLOCK
distributions on an array A[1:101]. The communications between source and destina-
tion processor sets are depicted in Figure 2. There are totally fifteen communication
messages, m1, m2, m3…, m15 among processors involved in the redistribution. In this
example, {m2, m3, m4} is a conflict tuple since they have common source processor
SP1; {m7, m8, m9} is also a conflict point because of the common destination proces-
sor DP4. The maximum degree in the example is equal to 3. Figure 3 shows a simple
schedule for this example

Source distribution

Source Processor
SP SP0 SP1 SP2 SP3 SP4 SP5 SP6 SP7

Size 12 20 15 14 11 9 9 11

Destination distribution

Destination Processor
DP DP0 DP1 DP2 DP3 DP4 DP5 DP6 DP7
Size 17 10 13 6 17 12 11 15

Fig. 1. An example of distributions

104 K.-M. Yu et al.

Fig. 2. The communications between source and destination processor sets

Schedule Table
Step 1 m2 m5 m9 m12 m14
Step 2 m1 m3 m6 m8 m11 m15
Step 3 m4 m7 m10 m13

Fig. 3. A simple schedule

3.1 Explicit Conflict Point and Implicit Conflict Point

The total communication time of a message passing operation using two parameters:
the startup time ts and the unit data transmission time tm. The startup time is once
for each communication event and is independent of the message size to be communi-
cated. The data transmission time is relationship of a message size, size(m). The
communication time of one communication step is the maximum of the message in
this step. The total communication time of all steps is summary of each the communi-
cation time of step. The length of these steps determines the data transmission over-
heads. The minimum step is equal to maximum degree k, when message can not put
into any step of minimum step it must relate to the processor has maximum degree
transmission links. Figure 4 shows the maximum degree of figure 1. SP1, SP2 and DP4
had maximum degree (K = 3) from messages m2~m9. Because of each one processor
can only send/receive at most one message to/from other processor in each communi-
cation step. First, we concentrate all processors which have maximum degree trans-
mission links messages. For the sake of simplicity, such messages are referred to as
“Maximum Degree Message Set” (MDMS) in the paper, as shown in figure 4. If the
messages in MDMSs can put into k steps with no conflict occur, other messages of
the processors’ degree less than maximum degree will be easier to put into the rest of
step without increasing the number of steps.

We say a message to be an explicit conflict point if it belongs to two MDMSs.
There exists at most one explicit conflict point between two MDMSs. In figure 4, m7
is a explicit conflict point since it belongs to two MDMSs {m5, m6, m7} and {m7, m8,
m9}. On the other hand, if two MDMSs do not contain the same message, but the

SP0 SP1 SP2 SP3 SP4 SP5 SP6 SP7

DP0 DP1 DP2 DP3 DP4 DP5 DP6 DP7

 m1 m3 m5 m7 m9 m11 m13 m15

 m2 m4 m6 m8 m10 m12 m14

12 5 10 5 8 6 1 14 2 9 3 6 5 4 11

 Contention-Free Communication Scheduling for Irregular Data Redistribution 105

neighbor MDMSs each has a message been sent by the same processor, or been re-
ceived by the same processor. We call this kind of message as an implicit conflict
point. As shown by figure 5, m4 and m5 are contained by the different MDMSs. DP2
only receives m4 and m5 two messages, so it can not form an MDMS. But m4 and m5
are also owned by different MDMSs. Therefore, m4 is an implicit conflict point. Al-
though, m5 is also covered by two MDMSs, but it is restricted by m4. Hence m5 will
not cause conflict. Figure 7 depicts all MDMSs for the example shown in Figure 1.

Fig. 4. Maximum Degree Messages Set

Fig. 5. Example of explicit conflict point

4 Scheduling Algorithm

The main goal of irregular array distribution is to minimize communication step as
well as the total message size of steps. We select the smallest conflict points which
will really cause conflict to loose the schedule constraint and to minimize the total
message size of schedule.

Smallest conflict points algorithm consists of four parts:

(1) Pick out MDMSs from given data redistributed problem.
(2) Find out explicit conflict point and implicit conflict point. And schedule all the

conflict point into the same schedule step.
(3) Select messages on MDMSs in non-increasing order of message size. Schedule

message into similar message size of that step and keep the relation of each processor
send/receive at most one message to/from the processor. Repeat above process until
no MDMSs’ messages left.

(4) Schedule messages do not belong to MDMSs by non-increasing order of mes-
sage size. Repeat above process until no messages left.

From Figure 1, we can pick out four MDMSs, MDMS1 = {m2, m3, m4}, MDMS2 =
{m4, m5}, MDMS3 = {m5, m6, m7} and MDMS4 = {m7, m8, m9}, shown in Figure 8.
We schedule m4 and m7 into the same step. Then schedule those messages on

m5 m6 m7 m8 m9

1 2 4 3 1

m2 m3 m4 m5 m6 m7 m8 m9

106 K.-M. Yu et al.

Fig. 6. Example of implicit conflict point

Fig. 7. All MDMSs for the example in Figure 1

Fig. 8. Results of MDMSs for Figure 1

Fig. 9. The schedule obtained form SCPA

MDMSs by non-increasing order of message size as follows: m8, m3, m5, m6, m2, m9.
After that, we can schedule the rest messages that are not belong to any MDMSs by
non-increasing order of message size as follows: m1, m15, m10, m12, m13, m14, m11.
Figure 9 shows the final schedule obtained form smallest conflict points algorithm.

5 Performance Evaluation and Analysis

To evaluate the performance of the proposed methods, we have implemented the
SCPA along with the divide-and-conquer algorithm [11]. The performance simula

S1: m8 m3 m5

S2: m6 m2 m9

S3: m4 m7

m2 m3 m4 m5 m6 m7 m8 m9

m2 m3 m4 m5 m6 m7

1 2 4 3 1 2

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14

S1: m8 m3 m5 m1 m15 m10 m12

S2: m6 m2 m9 m13 m11

S3: m4 m7 m14

 Contention-Free Communication Scheduling for Irregular Data Redistribution 107

tion is discussed in two classes, even GEN_BLOCK and uneven GEN_BLOCK dis-
tributions. In even GEN_BLOCK distribution, each processor owns similar size of
data. Contrast to even distribution, few processors might be allocated grand volume of
data in uneven distribution. Since array elements could be centralized to some specific
processors, it is also possible for those processors to have the maximum degree of
communications.

The simulation program generates a set of random integer number as the size of
message. To correctly evaluate the performance of these two algorithms, both pro-
grams were written in the single program multiple data (SPMD) programming para-
digm with MPI code and executed on an SMP/Linux cluster consisted of 24 SMP
nodes. In the figures, “SCPA Better” represents the percentage of the number of

0

10

20

30

40

50

60

70

80

90

100

8 12 16 20 24

The number of processors

E
v
e
n
t
p
e
rc
e
n
ta
g
e
 (
%
)

The Same Results SCPA Better DCA Better
(a)

0

10

20

30

40

50

60

70

80

90

100

1000 2000 3000 4000 5000

Total messages size

E
v
e
n
t
p
e
rc
e
n
ta
g
e
 (
%
)

The Same Results SCPA Better DCA Better

(b)

Fig. 10. The events percentage of computing time is plotted (a) with different number of proc-
essors and (b) with different of total messages size in 8 processors, on uneven data set

108 K.-M. Yu et al.

events that the SCPA has lower total steps of messages size than the divide-and-
conquer algorithm (DCA), while “DCA Better” gives the reverse situation. In the
uneven distribution, the size of message’s up-bound is set to (totalsize/numprocs)*1.5
and low-bound is set to (totalsize/numprocs)*0.3, where totalsize is total size of mes-
sages and numprocs is the size of processor. In the even distribution, the size of mes-
sage’s up-bound is set to (totalsize/numprocs)*1.3 and low-bound is set to low-bound
is (totalsize/numprocs)*0.7. The total messages size is 1M.

Figure 10 shows the simulation results of both the SCPA and the DCA with differ-
ent number of processors and total message size. We can observe that SCPA has bet-
ter performance on uneven data redistribution compared with DCA.

Since the data is concentrated in the even case, from figure 11, we can observe that
SCPA have the better performance compared with uneven case. Figure 11 also

0

10

20

30

40

50

60

70

80

90

100

8 12 16 20 24

The number of processors

E
v
e
n
t
p
e
rc
e
n
ta
g
e
 (
%
)

The Same Results SCPA Better DCA Better

(a)

0

10

20

30

40

50

60

70

80

90

100

10000 20000 30000 40000 50000

Total message size

E
v
en
t
p
er
ce
n
ta
g
e
(%
)

The Same Results SCPA Better DCA Better
(b)

Fig. 11. The events percentage of computing time is plotted (a) with different number of proc-
essors and (b) with different of total messages size in 8 processors, on even data set

 Contention-Free Communication Scheduling for Irregular Data Redistribution 109

illustrates that SCPA has at least 85% supreme than DCA in any size of total mes-
sages and any number of processors In both even and uneven case, SCPA performs
slightly better than DCA.

6 Conclusion

In this paper, we have presented an efficient scheduling algorithm, smallest conflict
points algorithm (SCPA), for irregular data distribution. The algorithm can effectively
reduce communication time in the process of data redistribution. Smallest-conflict-
points algorithm is not only an optimal algorithm in the term of minimal number of
steps, but also a near optimal algorithm satisfied the condition of minimal message
size of total steps. Effectiveness of the proposed methods not only avoids node con-
tention but also shortens the overall communication length.

For verifying the performance of our proposed algorithm, we have implemented
SCPA as well as the divide-and-conquer redistribution algorithm. The experimental
results show improvement of communication costs and high practicability on different
processor hierarchy. Also, the experimental results indicate that both of them have
good performance on GEN_BLOCK redistribution. But also both have advantages
and disadvantages. In many situations, SCPA has better than the divide-and-conquer
redistribution algorithm.

References

1. Minyi Guo, “Communication Generation for Irregular Codes,” The Journal of
Supercomputing, vol. 25, no. 3, pp. 199-214, 2003.

2. Minyi Guo, I. Nakata and Y. Yamashita, “Contention-Free Communication Scheduling for
Array Redistribution,” Parallel Computing, vol. 26, no.8, pp. 1325-1343, 2000.

3. Minyi Guo, I. Nakata and Y. Yamashita, “An Efficient Data Distribution Technique for
Distributed Memory Parallel Computers,” JSPP'97, pp.189-196, 1997.

4. Minyi Guo, Yi Pan and Zhen Liu, “Symbolic Communication Set Generation for Irregular
Parallel Applications,” The Journal of Supercomputing, vol. 25, pp. 199-214, 2003.

5. S. Lee, H. Yook, M. Koo and M. Park, “Processor reordering algorithms toward efficient
GEN_BLOCK redistribution,” Proceedings of the ACM symposium on Applied comput-
ing, pp. 539-543, 2001.

6. Ching-Hsien Hsu, Kun-Ming Yu, Chi-Hsiu Chen, Chang Wu Yu, and Chiu Kuo Liang,
"Optimal Processor Replacement for Efficient Communication of Runtime Data Redistri-
bution," Lecture Notes in Computer Science (ISPA’04), Vol. 3358, pp. 268-273, Dec.
2004.

7. C.-H Hsu, Dong-Lin Yang, Yeh-Ching Chung and Chyi-Ren Dow, “A Generalized Proc-
essor Mapping Technique for Array Redistribution,” IEEE Transactions on Parallel and
Distributed Systems, vol. 12, vol. 7, pp. 743-757, July 2001.

8. S. Ramaswamy, B. Simons, and P. Banerjee, “Optimization for Efficient Data redistribu-
tion on Distributed Memory Multicomputers,” Journal of Parallel and Distributed Comput-
ing, vol. 38, pp. 217-228, 1996.

110 K.-M. Yu et al.

9. Akiyoshi Wakatani and Michael Wolfe, “Optimization of Data redistribution for Distrib-
uted Memory Multicomputers,” short communication, Parallel Computing, vol. 21, no. 9,
pp. 1485-1490, September 1995.

10. Hui Wang, Minyi Guo and Wenxi Chen, “An Efficient Algorithm for Irregular Redistribu-
tion in Parallelizing Compilers,” Proceedings of 2003 International Symposium on Parallel
and Distributed Processing with Applications, LNCS 2745, 2003.

11. Hui Wang, Minyi Guo and Daming Wei, "Divide-and-conquer Algorithm for Irregular
Redistributions in Parallelizing Compilers”, The Journal of Supercomputing, vol. 29, no.
2, pp. 157-170, 2004.

12. H.-G. Yook and Myung-Soon Park, “Scheduling GEN_BLOCK Array Redistribution,”
Proceedings of the IASTED International Conference Parallel and Distributed Computing
and Systems, November, 1999.

 1

應用網格建立一個高效能演化樹平行建構環境 *

游坤明 1, 徐蓓芳 1, 賴威廷 1 , 謝一功 1 , 周嘉奕 1 , 林俊淵 2, 唐傳義 3

1 中華大學資訊工程學系
2 國立清華大學分子與細胞生物研究所

3 國立清華大學資訊工程學系

1 yu@chu.edu.tw, {b9102042, b9004060, b9102004}@cc.chu.edu.tw,
jyzhou@pdlab.csie.chu.edu.tw

2 cyulin@mx.nthu.edu.tw
3 cytang@cs.nthu.edu.tw

摘要

以平行處理方式來計算龐大的資料運算是近

年來一個非常重要的應用觀念。有許多不同的環境

架構伴隨著不同的應用。網格 (Grid) 是一種建立

在網際網路上的架構，網格可透過網際網路與其他

網格互相分享資源，因此可以視為在使用龐大的且

容易增減的資源來運算；與傳統的叢集式系統相

比，傳統的叢集式系統 (Cluster) 若要增加運算能
力，則必需花費比網格多的費用，因此運算能力有

限。在一般所見的網格中，必須要有相同的協定、

彼此認同的認證、安全性的考量以及合理的資源存

取，才能讓網格在網路上互相溝通。使用網格運算

我們所要處理的資料及程式，並且在合理的時間內

得到正確的結果。本論文使用平行化演算法並以人

類粒腺體為例，在單機、網格與叢集電腦環境中建

構演化樹，並比較其效能差異。

關鍵詞：等距演化樹 , 叢集電腦計算, 網格計算,
Globus Toolkit

1. 簡介

生物資訊研究領域中，科學家常常需要從演

化樹的結果以了解物種間的親疏關係。從距離矩陣

中建造演化樹在生物學和分類法方面是一個重要

的議題，因此也產生許多不同的模型及相對應的演

算法。而大部份的最佳解問題都已被証明為
NP-hard。

* This word was supported in part by the NSC of
ROC, under grant NSC-93-2213-E-216-037 and
NSC-94-2213-E-216-028

其中在許多不同的模型中有一個重要的模型

便是假定演化的速度是一致的 [5, 17]。在這種前
提下，利用距離矩陣算出的演化樹將會是一個等距

演化樹(ultrametric tree)。

本論文使用一種高效能的平行化分枝界限演

算法(branch-and-bound) 建立最小距離演化樹 。這
個平行演算法是建立在 master-slave centralize 的
架構上，並且加入了有效的負載平衡、節點與節點

間通訊的策略，以解決最小權值等距演化樹建構的

問題，使得時間在可容忍的範圍內完成。

近年來，對於許多以電腦輔助來求解的問題

越來越多，且個人電腦的計算能力已無法滿足在合

理的時間內得到結果。於是分散式的計算技術便是

下一個發展的層次。本論文以人類粒腺體為例建構

出演化樹，建構演化樹是一種非常複雜且耗時的計

算過程，使用一般的個人電腦，將耗費大量的時間

以求得結果，有時還會因資源不足造成等待許久的

運作中斷，因此，要在合理的時間內得到滿意的結

果，必須具有高效能的電腦，如超級電腦，但在經

濟的考量下，我們可使用叢集電腦或網格來達到近

似的效能。

叢集電腦可有大小不同規模，此做法的最大

優點是「可擴充性」 (scalability) ：只要增加新的
個人電腦，就可以提高叢集電腦的效能。在某些情

況下資料是分布在不同的地區中需要互相存取，而

網格是透過網路連線將好幾個在不同地區的叢集

電腦串聯成的，更可以有效的利用這樣的優點來保

持最新的訊息，所以在使用資源效率方面更遠勝於

叢集電腦 [19]。

在網格上發展的技術為中介軟體，是用來整

合網格分散的計算資源，主要角色是擔任機器間協

調功能的任務。在網格的使用者和資源提供者之

 2

間，擔任資源分配的協調工作，幫助使用者找到適

合其使用的機器，並完成資料存取的交易 [19]。
其中一個重要的組成要素，就是後設資料。

網格的優點之一，是有效率的使用閒置中的

電腦，若是再長時間運算比較下，網格可以更有效

率的使用資源。使用平行處理的環境，像是叢集計

算或網格計算，必須用平行化的演算法以及使用平

行化的溝通工具，例如MPI，以幫助程式在該平臺
上順利運作。

目前我們已成功的在網格的環境上執行平行

化演算法，並且建構出演化樹，從網格與叢集電腦

的實驗數據可看出，網格擁有與叢集電腦相似的效

能。在本論文中，比較使用單機、叢集電腦及網格

三種環境下的效能，在實驗結果中可顯示出，單機

運算能力遠不如叢集電腦及網格；叢集電腦與網格

之間的比較，若在相同節點數計算下，兩種環境效

能是差不多的。

2. 背景

2.1 等距演化樹

在建立演化樹上有許多模型，其中一種為等

距演化樹。等距演化樹為假設各物種的演化速率一

致 [5, 13]，而等距演化樹的特性為有共同的父節
點，物種存在葉節點而且在邊上有權重值的一個二

元樹，在每個內節點的子樹中有同樣的路徑長到每

一個葉節點上 [4]。對於一個 n * n 的距離矩陣 M
來說，定義最小的等距演化樹指的是兩兩葉節點的

邊上權重總合為最小的。因為等距演化樹可以很容

易的轉換為二元樹且不需要改變葉節點的距離
[13]，所以，等距演化樹是一個非常適合給電腦計
算的模型。

 圖1. 建立分支界限樹 (BBT) [3]

如圖 1，我們可知，等距演化樹的數目 A(n)，
隨著 n的增加，演化樹的數量也快速的增加。有一

些有關等距演化樹的研究先前已被提出 [6, 7,
15]。由於這些問題往往是不易解的，所以這些研

究大都是基於 heuristic 演算法。舉例來說，像

UPGMA(Unweighted Pair Group Method with
Arithmetic mean) [17]就是一個很常被用來建立等

距演化樹的演算法。

在本論文中，我們使用 Exact Algorithms for
Constructing Minimum branch-and-bound’s from
Distance Matrices [4]的演算法為基礎，並將之平行

化。在上述方法中，使用分支界限法的策略作為找

尋最小距離演化樹的方法。為了求得最小距離演化

樹我們會將所有可能的樹型都找出並一一求值，但

隨著物種數的增加，等距演化樹 A(n)的增加是非常
快的，例如：A(20) > 1021 ，A(25) > 1029 ，A(30)
> 1037 ，於是上述方法中使用了分支界限法的策

略來避免完全的搜尋。在本論文中，使用有效率平

行化的分支界限演算法建立最小距離演化樹，在我

們提出的方法中，是一個主從且集中式的平行化架

構，並在此架構中加上了 loading-balancing,
bounded和 communication strategies等機制，以增
加程式的效率。

2.2 叢集計算

叢集計算(cluster computing)在隨著目前的科
技下，處理器和周邊設備的普及，我們可以用低成

本連接出高效能的叢集計算機。叢集計算機是以高

速網路連接個人電腦或工作站而成的，可提供高效

能的計算能力而且降低原來達到此效能的成本。在

運作上，既然是由許多台電腦連接的，所以普通的

應用程式也無法在上面發揮作用，必須設計適合在

平行及分散式環境中的演算法，而且同時配合像是

MPI這種專門用來做平行溝通的軟體，來設計應用

程式。

現今在電腦和網路普及下，幾乎是可以看成

所有電腦都與網際網路相連，如果把叢集電腦更廣

義的角度來看，每台電腦就好像被網際網路連接的

大型區網，全球就是一個大型的叢集電腦，但是事

實並非如此，因為無法做到資源互相分享、計算互

相分擔，所以為了達到更廣義的資源活化運算，於

是網格計算的理念被提出。

2.3 網格計算

網格計算(Grid Computing)可讓分散於各地
的虛擬組織，協調彼此的資源分享，同時滿足大量

運算的需求。而集合分散的運算資源之外，網格計

算能夠經由網路管理組織內任何一個可使用的運

算資源，進而降低伺服器的閒置時間。

網格計算可以解決在同一時間內使用網路上

很多資源去解決一個問題或者當一個問題需要大

量處理器計算或是需要存取大量分佈不同地方的

資料。耳熟能詳的例子像是 SETI (Search For
Extraterrestrial Intelligence)@home 它讓上千人的
電腦在閒置時的處理器中去幫助計算資料。而且這

些電腦都是獨立性工作，指的是說無論有些工作需

 3

花較長的時間，或者沒有回傳資料，都沒有關係，

因為有此狀況時，它會在暫停一段時間後，自動把

工作分派給其他電腦做處理。

2.4 Globus Toolkit

Globus [8, 14, 20]對訊息安全、資源管理、訊

息服務、數據蒐集管理以及應用開發環境等網格關

鍵理論和技術進行廣泛的研究，並且開發出可以在

多種平台上執行的 GlobusToolkit，用來幫助規劃和

建造大型網格試驗和應用平台，開發大型網格系統

可以執行的應用程式。Globus Toolkit 同時提供了

好幾種語言模式給程式設計師選擇，就類似像物件

導向的方式。程式開發者更可以由 Globus Toolkit
中所提供的服務任意選取最符合需求的工具去與

現存的軟體作整合。例如: GRAM 提供資源管理的

協定、MDS 提供資訊服務的協定、GridFTP 提供
了資料傳輸的協定…等，這些全部都有使用 GSI
安全協定在他們的連接層 [20]。

表 1. GlobusToolkit 所提供的服務

2.5 MPICH-G2

MPI 是訊息傳送介面 (Message Passing
Interface)用來撰寫 message-passing programs 和
可以廣泛的使用於平行運算的一種基礎 API。在
網格應用程式上 message-passing 的優點是它提供
比通訊協定 TCP/IP sockets 更高層的介面，讓我們
可以直接使用通訊結果而不必知道中間是如何溝

通。Globus 服務已被用來發展成 Grid-enable MPI
以 MPICH library 為基礎，Nexus 為通訊基礎，
GRAM 服務為資源分配和 GSI 來做安全認證。

MPICH-G2是 Grid-enable以 MPI v.1.1為基
礎在網格上的實作。它使用了 Globus Toolkik(像是
資源分配、安全性)的服務。MPICH-G2 准許以連

接不同平台的機器來執行 MPI的程式。MPICH-G2
會自動作資料轉換當在兩個不同平台時的傳輸和

自動的選擇 TCP 以提供多重協定通訊的訊息給網
路上機器及傳出有MPI提供的訊息給區域內機器。

2.6 UniGrid

網格計算的目的是用來整合大型網路環境下

的各種資源。UniGrid是連結國內七所大學及國家

高速網路中心之電腦網格系統，建置一「國家計算

網格實驗平台」，以協助推廣網格計算的觀念到各

產學領域。UniGrid將著重在使用網格計算領域最

常用之程式集及工具套件 Globus。並且有提供隨
時每個節點的 CPU、RAM 狀況監看。

Globus[8]提供了網格中使用的協定，可以讓

使用者充分利用分散於各處的資源中建出網格計

算的架構。

2. 執行平行程式1. 產生 Globus RSL (資源
描述檔)

使用者的平行程式

設定環境變數
讀取參數

(proxy, host, domain,
user information)

執行 Globusrun, mpirun

設定環境變數
讀取參數

(proxy, host, domain,
user information)

Check Host Alive
Create RSL

圖 2. UniGrid上的程式流程

Service Name 功能

Resource managrment GRAM 資源分配與工作管理

Communication Nexus 單一或多重溝通服務

Security GSI 認證與聯繫上的安全服務

Information MDS 分散式存取和狀態的資訊

Health and status HBM 監測系統零件健康狀況

Remote data access GASS 遠程存取資料經由連續及平行的連繫裝置

Executable management GEM 結構、讀取技術與狀態執行管理

Information GRIS 查詢計算資源現有的設定、能力及狀態

GridFTP GridFTP 提供高效能、安全，以及健全的資料傳輸機制

 4

圖 3 .UniGrid的架構圖[2]

3. 系統架構

單機上的程式處理方式與分散式系統的處理

方式不同，所以當平台由單機發展為分散式系統

時，若程式想要發揮平行處理的效能，就必須改變

原來的程式演算法，在程式中加入訊息傳送的程式

觀念。

3.1 單機演算法

在建構演化樹的問題上，一般用的是
UPGMA 這一類的啟發式演算法，所得到的解並不

是最佳解。[4] 中提出了利用 branch-and-bound 來
建構最佳解演化樹。雖然 branch-and-bound 的解
空間會非常大，但中型的演化樹在生物學家的實際

用上仍然非常有實用價值。

在 [4] 中所提出的演算法中，首先，執行

UPGMM得到一個起始解的 upper bound (UB)，接
著開始建立 branch-and-bound tree (BBT) 如果建
立時 lower bound (LB) 大於目前的 UB時就刪除
此節點，選擇下一個位置繼續建立，當計算到 UB
比目前的 UB低時就更新。直到所有物種都建立完

畢，最後，權值最小的樹即是我們所要求的解。其

演算法如下：

Algorithm BBU
Input: An n £n distance matrix M.
Output: The minimum ultrametric tree for M.

Step 1: Relabel the species such that (1, 2….. n) is a

maxmin permutation.
Step 2: Create the root v of the BBT such that v

represents the only topology with leaves 1 and 2.

Step 3: Run UPGMM to find a feasible solution and
store its weight in UB.

Step 4:
while there is a node in BBT do

Delete all nodes v from BBT if LB(v) ¸ UB or all
the children of v have been deleted.

Select a node s in BBT, whose children has not
been generated.

Generate the children of s by using the branching
rule.

If a better solution is obtained, then update UB.
End while

3.2 平行化分支界限演算法

雖然利用 branch-and-bound 的技巧可以利用

bound 值來避免將每個可能做搜尋，但是隨著物種

數目的增加，所需的計算時間也成指數成長。所

以，我們便利用平行計算的方法來加速演化樹的建

構。

考慮在平行計算的環境上的特性，所以針對

資料結構和演算法做了些改變和增加。在資料結構

上，為了減少節點與節點之間的溝通，因此所定義

的資料結構包含了每個內結點的左子節點、右子節

點、父節點，與子結點的路徑。在演算法上，為了

更能發揮平行處理的環境，必須讓每個節點的計算

量平衡，故必須加上如 Global Pools、Local Pools、
等機制讓節點與節點間可以達到動態的負載平

衡，並且我們為了減低不必要的計算，在算出一個

比原來標準用的上限還低時，就會一直把資訊傳給

全部的節點以達到提升計算效率。而平行化架構採

用的是主從式架構，起始化時分配的資料與計算過

程中所需動態分配的資料都是由 master 來做分配。

 5

在負載平衡的問題上，一般來說可以分為靜

態與動態的負載平衡 [3]。靜態的負載平衡指的是
在資料的分配只在程式一開始的期間做分配，而程

式執行期間不做任何的資料牽移；相對的動態負載

平衡指的是會依需求而在節點間搬動及牽移資

料。動態負載平衡可以分為集中式的 (centralized)
與分散式的 (decentralized) [3]。集中式的負載平衡
是由一台管理主機 (管理節點) 來做調控，每個
節點藉由把資料送至管理節點後再由管理節點來

決定資料要如何分配。相對的分散式負載平衡則是

由節點彼此間互相溝通後再彼此間一同決定的機

制。一般來說，集中式的架構能夠有更好的負載平

衡，因為管理節點可以知道所有節點的狀態並決定

一個更好的分配，但在一個大型的平行系統下，集

中式的負載平衡會因為管理節點的瓶頸而效能不

佳。

Input: A n * n distance matrix M
Output: The minimum ultrametric trees

Step 1: Master computing node re-label the species
such that feasible maxmin permutation.
Step 2: Master computing node creates the root of the
BBT.
Step 3: Master computing node run UPGMA and
using the result as the initial UB (upper bound).
Step 4: Master computing node branches the BBT
until the branched BBT reach 2 times of total nodes
in the computing environment.
Step 5: Master computing node broadcasts the global
UB and send the sorted matrix the nodes cyclically.

Step 6:
while number of UTs in LP (Local Pools) > 0 or
number of UTs in GP (Global Pools) > 0 do
 if number of UTs in LP = 0 then
 if number of UTs in GP <> 0 then
 receive UTs from GP
 end if
 end if
 v = get the tree for branch using DFS
 if LowerBound(v) > UB then
 continue
 end if
 insert next species to v and branch it
 if v branched completed then
 if Cost(v) < UB then
 update the GUB (Global Upper
Bound) to every nodes
 add the v to results set
 end if
 end if
 if number of UTs in GP = 0 then
 send the last UT in sorted LP to GP
 end if
end while

Step 7: Gather all solutions from each node and
output it.

4. 實驗結果

4.1 實驗環境及結果

在實驗的環境中，我們使用了單機、以及叢

集電腦與網格的系統。單機及叢集電腦的系統如表

2。網格實驗環境使用的是 UniGrid 系統。

在實驗數據中，我們挑選人類粒腺體做為實

驗數據，並以物種數目 12、14、16、18、20、22 一
一執行，每一物種數目有 10 組測試資料。我們從

10 組資料中分別取中位數、平均數、最差情況來

做實驗結果比較，以期消除資料相依所產生執行時

間的差異。

表 2. 實驗環境

單機

處理器數目 1
環境 中華大學平行分散實驗室

硬體設備 AMD 2000+、2GB DDR RAM

叢集電腦

處理器數目 16
環境 中華大學平行分散實驗室

硬體設備 AMD 2000+、1GB DDR RAM

網格

處理器數目 12
環境 國家網格計算實驗平台

硬體設備 AMD 1.3G、2GB DDR RAM

處理器數目 4
環境 東海大學高效能計算實驗室

硬體設備
AMD MP 2000+ ‘2、512MB DDR

RAM’2

如表 3 及圖 4 分別為執行時間中位數的結

果，我們可以發現，當物種數目增加時，計算時間

也相對增加，而在圖中也可以了解，不論是叢集電

腦或者是網格系統，都能夠有效的降低執行時間。

表 3. 中位數時間比較表

物種數目 單機 叢集電腦 網格

12 0.113313 0.146947 0.130881

14 2.936615 0.889956 1.180245

16 36.1053 29.2515 11.6873

18 1003.268 324.5231 332.807

20 138.684 157.6269 99.2526

22 9873.82 5911.42 2625.637

 6

中位數時間比較圖

0

2000

4000

6000

8000

10000

12000

12 14 16 18 20 22
物種數目

時
間
(秒
) 單機

叢集電腦

網格

圖 4. 中位數時間比較圖

表 4 以及圖 5 為平均計算時間；表 5 以及
圖 6 為最差計時間，兩個相比較，我們可以了解、

平均計算時間可能被最差計算時間所影響，因為建

構演化樹的問題有資料相依的情形，所以我們會選

擇中位數計算時間做為我們主要的比較依據。而從

圖中也可以觀察到，計算時間隨著數種數目的成長

有相當快速的增加。

表 4. 平均數時間比較表

物種數目 單機 叢集電腦 網格

12 0.344878 0.166051 0.236581

14 41.99103 7.537349 7.390265

16 390.8962 207.8525 58.34718

18 2598.467 983.583 1031.805

20 1114.028 4705.797 249.0695

22 9873.82 5911.42 2625.637

平均值時間比較圖

0

2000
4000

6000

8000
10000

12000

12 14 16 18 20 22
物種數目

時
間
 (
秒
) 單機

叢集電腦

網格

圖 5. 平均數時間比較圖

表 5. 最差狀況時間比較表

物種數目 單機 叢集電腦 網格

12 0.785476 0.395494 0.927229

14 303.738 40.4603 35.1285

16 1387.6 911.781 203.611

18 9339.67 4327.96 4606.76

20 5009.17 25064.1 1028.86

22 9873.82 5911.42 5068.7

最差狀況時間比較圖

0

10000

20000

30000

12 14 16 18 20 22

物種數目

時
間
 (
秒
) 單機

叢集電腦

網格

圖 6. 最差狀況時間比較圖

4.2 結果討論

我們從數據中取出中位數、平均數、最差情

況來做比較。由圖表明顯看出隨著物種數目增加、

計算相同物種時，單機效能最差，叢集電腦次之，

網格效能最佳。正常情況下，叢集電腦的效能應比

網格好，因為使用內部溝通為高速網路的叢集電

腦，其效能遠高於使用網際網路溝通的網格。但是

實驗結果與理論不符，這是因為實驗中所使用的叢

集電腦設備較網格所使用的電腦設備差。

最初使用單機運算樣本以繪出演化樹，雖然

成功建出演化樹，但是花費時間非常驚人，且運算

樣本的大小有限，因此進度緩慢、效率不佳，之後

採用叢集電腦。叢集電腦環境為 16 顆處理器，因

此效率提高許多。但因為考慮到經濟成本以及為了

應付更巨大的計算，我們考慮了更有效率的平行處

理環境:網格。

所以我們開始把平行化建立演化樹的程式以

網格平台來做實驗。我們以 10組物種數目 20的資
料去實驗，實驗結果見表 6和圖 7。實驗結果發現
網格計算效能，如果在相同的節點數目，計算效能

似乎較叢集電腦差了一點，但是如果網格使用 24
節點，則效能遠超過叢集電腦 16節點。

而現今已有許多網格平台的建立，像是

UniGrid 就是聯合國內七所大學以及國家高速網路

中心的叢集實驗室所成的網格實驗平台，我們可以

使用更多的資源去執行程式，並且透過網格運算的

技術，他會到網路中尋找閒置的電腦，並將工作依

據適當的比例分配，送到這些電腦上執行，然後將

結果送回，這樣做可以更有效率。

而且我們考慮了未來萬一資料是放置在世界

各處或者是隨時都會更動的，那叢集電腦就顯得不

適合，且叢集電腦資源有限，如果遇到一個龐大的

問題也可能需要計算很久的時間，所以即使資料分

布在世界各地也可以輕鬆的應付並保持資料的最

新狀況。

 7

表 6. 叢集電腦與網格使用不同節點數比較

 叢集電腦 16節點 網格 16節點 網格 24節點

1 1629 1652.96 885.517

2 10273 10691.6 6838.49

3 750 764.104 750.752

4 561 566.25 458.426

5 249 258.197 256.616

6 199 199.96 148.454

7 54 57.693 83.55

8 126 128.596 110.922

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8

物種組別

時
間
(秒
)

叢集電腦16節點

網格16節點

網格24節點

圖 7. 叢集電腦與網格使用不同節點數比較圖

5. 結論

實驗中測試的網格所使用的處理器 16顆，與
叢集電腦相比，數據中發現，網格與叢集電腦使用

處理器個數相同，網格並無任何優勢，網格效能較

叢集電腦差，因為叢集電腦內部溝通速度遠大於網

格間所使用的網際網路溝通。未來我們可以考慮建

立更有效率的網格溝通機制，相信可以大幅改善網

格的效能。

我們的目標將是不只侷限於計算人類粒腺體

的資料，推廣至以網格來運算蛋白質的樣本，甚至

其他的資料在正規化之後皆可用網格來運算以得

到結果。

目前是用網格來運算人類粒腺體的樣本，雖

然花費的時間非常的多，因為剛開始時需要找出在
網格上的最佳效率，但是，未來中，我們將更有效

率的平行演算法及網格 API，目標在使用方面，只
要將要處理的資料整理成我們目前資料輸入的形

式，就可以得到我們要求的數據，所以，未來可能

運用此種方法來運算類似的龐大資料，像蛋白質等

等的樣本，應該跟目前的運作方式相同，在網格上

運算即可得到結果。

參考文獻 :

[1] 全球網格(World Wide Grid)發展趨勢
[2] 格網計算平台架設實例簡介格網計算平架設

實 例 簡 介 Introduction to Constructing
Introduction to Constructing Computational
Computational Grid Grid, 王順泰

[3] Barry Wilkinson, Michael Allen, “Parallel
Programming”, P.H.

[4] B.Y. Wu, K.M. Chao, C.Y. Tang,
“Approximation and Exact Algorithms for
Constructing Minimum Ultrametric Tree from
Distance Matrices,” Journal of Combinatorial
Optimization 3, pp. 199-211

[5] D. Gusfield, “Algorithms on Strings, Trees, and
Sequences, computer science and computational
biology,” Cambridge University Press, 1997

[6] E. Dahlhaus, “Fast parallel recognition of
ultrametrics and tree metrics,” SIAM Journal on
Discrete Mathematics, 6(4):523-532, 1993

[7] H.J. Bandelt, “Recognition of tree metrics,”
SiAM Journal on Discrete Mathematics.,
3(1):1-6, 1990

[8] The Globus Project: A Status Report. I. Foster,
C. Kesselman. Proc. IPPS/SPDP '98
Heterogeneous Computing Workshop, pp. 4-18,
1998.

[9] The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. I. Foster, C. Kesselman, S.
Tuecke. International J. Supercomputer
Applications, 15(3), 2001.

[10] The Nexus Approach to Integrating
Multithreading and Communication. I. Foster,
C. Kesselman, S. Tuecke, J. Journal of Parallel
and Distributed Computing, 37:70--82, 1996.

[11] A Grid-Enabled MPI: Message Passing in
Heterogeneous Distributed Computing Systems.
I. Foster, N. Karonis. Proc. 1998 SC
Conference, November, 1998.

[12] A Secure Communications Infrastructure for
High-Performance Distributed Computing. I.
Foster, N. Karonis, C. Kesselman, G. Koenig, S.
Tuecke. 6th IEEE Symp. on High-Performance
Distributed Computing, pp. 125-136, 1997.

[13] M.D. Hendy and D. Penny,
“Branch-and-bound algorithms to determine
minimal evolutionary trees,” Mathematical
Biosciences, 59:277-290, 1982.

[14] M. Frach, S. Kannan, and T. Warnow, “A
robust model for finding optimal evolutionary
trees,” Algorithmica, 13:155-179, 1995.

[15] M. Krivanek, “The complexity of ultrametric
partitions on graphs,” Information Processing
Letter, 27(5):265-270, 1988.

[16] Chuan Yi Tang, Solomon K.C. Wu, "Chee
Kane Chang, “A scalable Fully Distributed
Parallel Branch & Bound Algorithm on PVM
cluster”

[17] W.H. Li and D. Graur, “Foundomentals of
Molecular Evolution,” Sinauer Associates,
1991.

[18] Yuji Shinano, “Kenichi Harada and Ryuichi
Hirabayashi,” Control Schemes in a
Generalized Utility for Parallel

 8

Branch-and-Bound Algorithms, Parallel
Processing Symposium, 1997. Proceedings.,
11th International , 1-5 Apr 1997, Page(s): 621
-627

[19] GridCafé (http://www2.twgrid.org/gridcafe)
[20] The Globus Project (http://www.globus.org/)

附錄二: 出席國際學術會議心得報告

第二屆平行分散處理與應用國際研討會

Second International Symposium on Parallel and Distributed

Processing and Applications (ISPA'2004)

一、前言
第二屆平行分散處理與應用國際研討會(ISPA 2004)於西元 2004 年十二月十

二日至十二月十五日在香港之香港科技大學舉行。本次會議共錄取 106篇平行分

散研究領域之優秀論文，分為二十七個議題進行討論，分別為” Parallel Algorithms
and Systems I、II” 、” Data Mining and Management” 、” Distributed Algorithms and
Systems”、” Fault Tolerant Protocols and Systems 、” Sensor Networks and
Protocols”、”Cluster Systems and Applications”、” Grid Applications and
Systems”、 ”Peer-to-Peer and Ad-Hoc Networking”、 ” Data Replication and
Caching ”、” Software Engineering and Testing”、” Grid Protocols”、” Context-aware
and Mobile Computing”、” Grid Scheduling and Algorithms I、II”、” Cluster Resource
Scheduling and Algorithms”、” Distributed Routing and Switching Protocols I、II”、”
High Performance Processing and Applications”、” Security I、II” 、” Artificial
Intelligence Systems and Applications”、” Networking and Protocols I、II”、”
Hardware Architectures and Implementations”、” High Performance Computing and
Architecture”以及” Distributed Processing and Architecture ”。

平行分散處理與應用國際研討會是國際平行計算界領域的學者、專家相互交

流研究成果和資訊技術開發經驗的年會，在世界各地輪流舉辦。第一屆會議於

2003 年在日本愛知大學(The University of Aizu)舉行；今年是第二屆，雖然僅舉

辦二年，但是卻已成為分散平行計算研究界領域的重要會議，而且研討會論文已

被 LNCS收錄發行(SCI Extend) ，所以 ISPA已是目前在平行暨分散計算研究領

域中相當具有代表性之會議。

二、參加會議經過
會議的開幕典禮由主辦單位與會議的委員會主席簡單的致歡迎詞後，隨即展開，

本屆會議分別於三天的會議議程中安排了三個場次之平行計算最新趨勢之專題

報告: (1). Present and Future Supercomputer Architectures”(2). "Challenges in P2P
Computing" (3). "Multihop Wireless Ad Hoc Networking: Current Challenges and
Future Opportunities"，分別由 Prof. Jack Dongarra、Prof. Lionel Ni 以及 Prof.
David B. Johnson作精彩的專題報告，正式之論文報告分別於三天三個場次的專

題報告後進行，本人之論文『Optimal Processor Mapping Scheme for Efficient
Communication of Data Realignment 』被安排在第一天的”Parallel Algorithms
and Systems II”(Session 3A)之場次發表，本人並且擔任此場次之會議主席。

三、與會心得
此次會議有來自世界各地的學者發表了相當多優秀的平行計算各領域的論

文，國內大約有六位學者参加此次會議並同時發表論文，由會議的進行過程中可

以看出主辦單位對會議的流程安排相當用心，不過在專題報告的時間控制上不

良，超出預定之時程太多，這些都是整個會議美中不足的地方。

四、攜回資料
1. 大會議程
2. Second International Symposium on Parallel and Distributed Processing and

Applications研討會論文集

