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摘要: 
將各個物種間的演化關係透過一個距離矩陣的方式來建立最佳的演化樹，以得知物種間的

演化相似程度如何，在生物計算學中是一個相當重要的課題。本計畫的主要目的為針對距

離矩陣提供一個有效率且富使用者親和力的建構最佳等距演化樹的平行系統。在此計畫執

行的第一年中，我們已進行探討以分支與界定演算法來建構最佳演化樹的平行化策略與方

法，尋求一個適合在叢集電腦上執行的平行分支與界定方法來建構等距演化樹，並已獲得

不錯的結果。在本計劃執行的第二年，我們進行更快速的近似最佳解的策略與方法之研究，

並實際發展出一個利用緊湊集合(Compact Set)關係的演化樹平行建構演算法，以提供生物

學家選擇較適合的演化樹作實際的應用，並且已整理成論文 (A Fast Technique for 
Constructing Evolutionary Tree with the Application of Compact Sets)在 PaCT 2005 國際研討
會中發表，同時亦收錄於 Lecture Notes in Computer Science, Vol. 3606, pp. 346-354, 
Springer-Verlag (SCI Expanded)中。  
關鍵詞：演化樹、分支與界定、等距演化樹、緊湊集合、叢集電腦 

 

Abstract: 
Bioinformatics has becoming one of the major research topics in the 21st century. The 
constitution of computer technology and molecular biology technology is evidently essentially in 
the future. The problem of constructing evolutionary tree from distance matrix is an important 
issue in Bioinformatics. In the first year of this project, we have proposed an effective parallel 
algorithm for constructing an optimal ultrametric tree from a given distance matrix by using 
Branch-and-Bound technique. In the second year of the project, we have proposed a heuristic 
algorithm to shorten the revolutionary tree’s construction time. Also, we have developed an 
efficient algorithm for near-optimal ultrametric tree’s construction by applying the compact set 
technique. 
Keyword : Evolutionary tree 、Branch and Bound、Ultrametric Tree、Compact set、PC Cluster 

 

一、前言 

近年來由於 DNA序列的定序與分子生物學技術的進步，因此生物學家對於未知的遺傳因子

與訊息有更進一步的瞭解，一些相關的研究也如火如荼的展開。其中將各個物種間的演化

關係透過一個距離矩陣（Distance  Matrices）的方式來建立最佳的（Optimal）演化樹
(Phylogenetic Trees)，得知物種間的演化相似程度如何，在生物計算學中是一個相當重要的

課題，演化樹的建構是依據物種(objects)所具有的生物特徵來建立距離矩陣，進而分辨物種

之間的親疏遠近，以建立其相對應之演化樹，在一些相關的研究中（[3]，[8]，[9]，[10]），
雖然提出了各種的策略與方法，但這些方法卻無法提供良好的執行效率以讓生物學家廣為



使用。Ultrametric Tree亦是由距離矩陣所建構出來的，它是一棵有根樹（Rooted Tree），其
樹葉（Leaf）代表了某一個物種，內部節點（Internal Node）代表在其下面物種的共同祖先
（Ancestor），並且假設每個物種的演化速率相等。如此於 Ultrametric Tree的演化假設下，
所建立出的樹由其各內部節點至其所屬的 leaf 距離為等距。但同樣地，給一群物種間的距

離矩陣建立最小的 Ultrametric Tree（Minimum Size Ultrametric Tree，MUT）已被證明是 NP
的問題[1]。因此，許多的研究都是利用 approximation algorithms或 heuristic algorithms去求
得近似解，但跟 MUT 畢竟還是有一些誤差。在[5]中提出一個演算法來建立最小演化樹，

其物種數目只能達到 11個。而在[14]中則提出了新的演算法，在合理的時間範圍內，以及

輸入的距離矩陣不同的限制下，能夠算到 12至 20個物種。 
 
目前用來建構演化樹所使用到的演算法大都是使用『分支與界定』（Branch and Bound）的
方式[14,15,16]。當處理的資料量不大時，單一處理器（即 Sequential Processing）尚能負荷
其計算量；但是，當處理的資料量太多或太大時，則單一處理器的計算模式便會出現記憶

體不足或無法在有效的時間內給出答案的窘境。這意謂著以目前的技術而言，想要在單一

處理器上發展一個有效率的演算法是不大可行的。[14]提出了一個以分支與界定演算法來建

構MUT。但是其結構與設計上是適合於單機運作，然而要於合理的時間內得到答案的條件

要求下，可以計算的物種數目會被系統硬體效能所限制而無法實際的應用。在第一年的計

畫執行中，我們已提出一個有效率的平行化的分枝與界定演算法，在我們所設計的平行化

分枝與界定演算法中，所有計算節點同時對他們所擁有的候選樹做分枝 (branch) 的動作，
當計算節點發現候選樹符合界定(bound) 的條件時便不再對此候選樹做分枝的動作。而當計

算節點得到更好的 upper bound 值時便會將此值傳遞給其他所有計算節點，其他所有計算

節點得到新的 upper bound 值便可以界定掉(除掉)更多的候選演化樹。基於這個原因，在平
行化系統的解集合會少於單一處理器的系統，亦可以讓演算法的效率大幅提昇，所以我們

提出的平行化分枝與定界演算法在效率提昇 (speedup) 上在一些例子上可能會達到

super-linear 的速度。在此平行化演算法中， 我們同時使用了 global pool 及 local pool 做
為一種負載平衡的機制，讓計算節點不至於有閒置的情況發生。在此研究中我們採用 master 
/ slave 的架構來建構平行化最小等距演化樹的系統，運算資料是在執行期間由 master 指
派。 
 
因此，在本計畫執行的第二年的主要目的便是針對 MUT 平行化的建構，發展出更有效率

的平行化 MUT 建構的模式及策略，有效地加速演算法在處理 MUT 的物種個數及執行速

度，並且探討近似最佳解的可能演算法。 

二、研究目的 

本計畫的主要目的為針對距離矩陣提供一個有效率且富使用者親和力的建構最佳演化樹的

平行系統，在此計畫中，我們在叢集電腦的架構下探討以分支與界定的平行化演算法來建

構最佳演化樹的平行化策略與方法，尋求一個適合在叢集電腦上執行的分支與界定方法來

建構最佳演化樹，並且進行近似最佳解的演算法，並且實際發展一套有效率的演化樹平行

建構軟體工具系統，以提供生物學家選擇較適合的演化樹作實際的應用，最後我們將此套

工具系統透過Web介面，提供給從事此研究領域的專家學者使用。 
 
 



 

三、文獻探討 

[17]本計畫第一年的執行成果之一，在[17]我們提出了平行化的分支與界定演算法來建構

Minimum Size Ultrametric Tree的演算法，在此演算法，中我們主要是利用兩兩物種間之距

離關係計算出距離最大的兩個物種將其放在樹的最左右兩側，以建立芻型樹(只有兩個 leaf
的 binary tree，Branch-and-Bound Tree），再將剩餘的物種一一插入在中間，並用 UPGMM
（從 UPGMA演算法改良而來）演算法計算權重值，當節點 v 產生的的 LB （Lower Bound）
大於 UB（Upper Bound）時，表示後面產生的樹其結果比前述 UB還差而不符合要求，則

將節點 v 都刪除掉，以獲得最後的最小代價的MUT。 
 
在平行處理進行運算過程中，其影響整體效能（Efficiency）的重要因素乃為負載平衡（Load 
Balance）。若各運算單元負載不均，則會浪費很多寶貴的計算資源於閒置的運算處理單元。

而利用分支與界定演算法進行解決問題的重點在於分支（Branch）與界定（Bound）的方法
選擇決定上。於平行分散式系統中，往往會將原始問題分成數個可行解（Feasible solution）
的子問題（Subproblem），而分支後的一個或數個可行解分配給數個運算處理單元計算，因

此分支的動作將會影響負載平衡問題。因此，我們在研究的進行中使用了 global pool 及 
local pool 做為一種負載平衡的機制，讓計算節點不至於有閒置。而在我們的系統架構中，

我們用的是 master / slave 的架構，並且資料是在執行期間由 master 來指派，以提高系統
整體運算效率。 

 

四、計畫成果自評 

本計畫之執行之成果將能於較短的時間內建構出MUT，不但能夠增進執行效率，還能夠大

幅提昇 ultrametric tree的正確性與結果的可讀性，本年度的計畫執行不但順利完成第

二年度預期的計畫目標，亦已將第二年度所獲得的研究成果整理成論文並且發

表了二篇國際研討會論文 (一篇為 SCI Extended，另ㄧ篇為 IEEE 研討會 )，一
篇國內研討會論文 (NCS 2005) ，並且亦已將所得之成果整理成期刊論文形式

(Title :  Efficient Parallel Branch-and-Bound Algorithm for Constructing 
Minimum Ultrametric Tress from Distance Matrices)投稿至 IEEE TPDS special issue 
on High Performance Biology，本年度的計畫執行成果可說是相當豐碩。  
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Abstract. Constructing an evolutionary tree has many techniques, and usually 
biologists use distance matrix on this activity. The evolutionary tree can assist 
in taxonomy for biologists to analyze the phylogeny. In this paper, we specifi-
cally employ the compact sets to convert the original matrix into several small 
matrices for constructing evolutionary tree in parallel. By the properties of 
compact sets, we do not spend much time and do keep the correct relations 
among species. Besides, we adopt both Human Mitochondrial DNAs and ran-
domly generated matrix as input data in the experiments. In comparison with 
conventional technique, the experimental results show that utilizing compact 
sets can definitely construct the evolutionary tree in a reasonable time.  
Keywords: computational biology, evolutionary tree, compact sets, branch-and-
bound. 

1   Introduction1 

An evolutionary tree is a model of evolutional histories for a set of species. It is an 
important and fundamental model in bioinformatical field to observe livening species. 
A meaning evolutionary tree enhances biologists to evaluate the relationship of a set 
of species in taxonomy. Hence, many methods have been proposed to construct the 
evolutionary tree. 

The majority of these methods are all based on two models, i.e., the sequences and 
a distance matrix. In the sequences model, they do multiple sequence alignment 
(MSA) for a set of species with corresponding DNA sequence first. Then an evolu-
tionary tree is constructed according to the MSA result. However, the MSA problem 
is NP-hard. In a distance matrix model, they determine the distance as the edit dis-
tance for any two of species first. Then these distances are formed as a distance ma-
trix. Finally, an evolutionary tree is constructed according to a distance matrix. Unfor-

                                                           
*    This work was supported in part by the NSC of ROC, under grant NSC93-2213-E-216-037. 
**   Corresponding author. 
†  Post doctor fellowship is supported by NSC under contract NSC92-3112-B-007-002 and 

NSC93-3112-B-007-008. 
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tunately, it is also an NP-hard problem to construct a minimum cost evolutionary tree 
from a distance matrix. 

A category of evolutionary tree called ultrametric tree (UT) assumes that the rate of 
evolution is constant. An UT is a rooted and edge weighted binary tree in which every 
internal node has the same path length to all the leaves in its sub tree. The minimum 
UT for a distance matrix is an UT that the distance between any pair of leaves on the 
tree is no less than the given distance and the total weight on the tree edges is mini-
mized. 

In the distance matrix, shown in figure 1, each value represents the distance be-
tween two species. The distance matrix D is symmetric, i.e. for all 0 ≤  i ≤  n, D[i,i] = 
0. Also, the matrix D follows the triangle inequality, i.e. for all 1 ≤  i, j, k ≤  n, D[i,j] 
+ D[j,k] ≥  D[i,k]. 

V 1

V 1

V 2

V 2

V 3

V 3 V 4

V 4

V 5

V 5

V 6

V 6

0    3  1    1 2  6   1 3
0    7  9    5  1 6

0    1 1  4   1 5
0   1 4 2

0 8
0  

Fig. 1. An example of distance matrix 

Some studies on constructing optimal evolutionary tree have been proven to be an 
NP-hard problem [3, 4, 6, 8, 9, 15]. The scientists could use the branch-and-bound 
technique to construct optimal evolutionary tree in a reasonable time [12] when the 
number of species is small. Although the branch-and-bound algorithm would detect 
an optimal solution, such capacities cannot effectively support the optimal evolution-
ary tree construction when the number of species exceeds 26.  
   In this paper, we specifically utilize the compact sets to convert the distance matrix 
into several small matrices for constructing an UT in parallel. We can not only obtain 
nearly optimal evolutionary tree but also keep the precise relations among species 
through compact sets by the property - the least common ancestor [14]. Of such an 
advantage, our work might contribute to the findings on the phylogeny.  

The rest of the paper is organized as follows: section 2 proposes some preliminar-
ies. Section 3 describes the methods for constructing the ultrametric tree in detail. The 
experimental results are presented in section 4. Finally, the conclusion is placed in 
section 5. 

2   Preliminaries 

An ultrametric tree is a rooted, leaf labeled binary tree, and each edge associates with 
a distance cost. The length from root to any leaf is equal. We can construct an UT 
through a distance matrix D representing a complete, weighted and undirected graph 
G. The graph G = (V, E) includes vertices V and edges E. We give some definitions 
below: 
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Definition 1.  Assume that P is a given topology and i, j∈L(P). LCA(i,j) represents 
the lowest common ancestor of i and j. Assume a and b are two vertices in P, we de-
note a → b if and only if a is an ancestor of b. 

Definition 2. Assume P is a tree topology. R(P) is a relation - {(i,j,k}|a,b,c∈  L(P), 
LCA(i,k)=LCA(j,k) → LCA(i,j)}.  

The compact set has been extensively studied [5] but have not been applied to the 
evolutionary tree construction problem. We will list some properties of compact sets 
below: 

Lemma 1: Assume compact sets C exist in a tree T including elements i, j and k. The 
compact sets must satisfy a relation － least common ancestor. If and only if the rela-
tions ((i, j), k) and LCA(i, j) < LCA(i, k) = LCA(j, k) exist, then there is an adjacency 
relation in T like figure 2. 

Lemma 2: Let C be a subset of vertices V. If C is compact, then the maximum edge 
in C should be smaller than any edges between an element in C and that in V but not 
in C. 

Lemma 3: Let A and B be two different compact sets of V1. If A and B have intersec-
tion, then either A ⊂ B or B ⊂ A[5]. 

Lemma 4: If sub graph g is compact set, then the sub tree in g also belongs to the 

minimum spanning treeT . 

i j k
 

Fig. 2. An example of least common ancestor    

3   Proposed Solutions 

To construct nearly optimal UT for mass spices in reasonable time, we utilize the idea 
of compact set in our work. Firstly, we will find the compact sets from distance ma-
trix D and explore them to create several small distance matrices D’. Then we input 
the smaller distance matrices D’ to parallel branch-and-bound algorithm. Finally we 
can obtain sub trees T’ and merge them into an ultrametric tree T. We describe the de-
tails in the subsection. 

3.1   Compact Sets 

As above, we explore compact sets to separate the distance matrix D into several 
small distance matrices D’. If the elements in a subset S of X are closer than those out-
side S but in X, then S is a compact set. Also we could continuously find compact sets 
in S until exploring all sub sets. In this work we can find all the compact sets to clas-
sify the organisms by collecting the more relative species on the graph[17]. The found 
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found groups will keep the correct relations and could conduce to analyze the phylog-
eny. Thus we utilize compact sets to construct a more precise ultrametric tree. 

Initially we must find the minimum cost spanning tree to converge the closest 
groups and can probe the elements inside each group to discover all the compact sets. 
Take the figure 3 for example; if using the Kruskal’s algorithm, we can locate a 

minimum spanning tree T like figure 4, and the compact sets are 
{(1,3),(4,6),(1,2,3,5)}. We will continue using the algorithm below to verify the sub-

sets in T  to discover all the compact sets. 
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Fig. 3. The complete, weighted, undirected graph                Fig. 4. The minimum spanning tree  

Algorithm Compact Sets 
Input: A graph G = (V, E) with the vertex set V ={V1,  
       V2, …, Vn} and edge set E. Each edge has a weight. 
Output: All of the compact sets on the graph G.  

Step 1. Find the minimum spanning tree T  on the graph 
        G. )     //here we use Kruskal’s algorithm.  

Step 2. Sort the edges in T  in ascending order, which is 
        marked as (e1, e2, …, en-1).  
Step 3. P ← {{V1}, {V2,…,Vn}. 
Step 4. for i := 1 to n-2 
        { 
         1. Let a and b to be the end vertices of edge 
            ei, i.e., ei = (a, b).  
         2. Find A, B in P such that a belongs to A and b 
            belongs to B 
         3. A ← merge A and B 
         4. Delete B from P 
         5. Find the maximum edge in A, denoted Max(A). 
         6. Find the minimum edge between a vertex in A 
            and a vertex not in A, denoted Min(A, !A). 
         7. If Max(A) < Min(A, !A), then A is a compact 
            set. 
}  

According to the algorithm, the order of edges is (1, 3), (4, 6), (1, 2), (3, 5) and (5, 6) 

after sorting by the weights. The population P includes all the vertices in T , i.e. P = 
{(1), (2), (3), (4), (5), (6)}. We will firstly merge (1) and (3) together while coming to 
step 4. After the mergence, the P becomes {(1, 3), (2), (4), (5), (6)}. Continuously, we 
will find compact sets, (1, 3) and (4, 6). Worthy to be noticed is when we merge (1, 2) 
with (1, 3), we must examine if (1, 2, 3) satisfies the lemma 2. The maximum distance 
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in (1, 2, 3) is less than the minimum distance between vertices in (1, 2, 3) and (4, 5, 
6). Thus, (1, 2, 3) is a compact set. In the end, all the compact sets are (1, 3), (4, 6), 
(1, 2, 3) and (1, 2, 3, 5) like figure 5. 

1

2

3

4

5

6

C 1

C 2

C 3
C 4

 

Fig. 5. Compact sets for the example 

We then create several small distance matrices D’ of three types which differ in the 
distance lengths stored in D’. These three matrices separately called maximum, mini-
mum, and average. In this paper, we only study the ultrametric tree constructed from 
maximum matrix. The construction procedure is as follows. While creating the maxi-
mum matrix of C4, we will examine the distances between elements in C4, i.e. (C1, C3, 
5). When considering C3 and (5), we must select the maximum distance, which is 6, 
between (5) and any element in C3, i.e. (1), (3) or (2). The resulted maximum matrix 
of C4 shows in figure 7. 

We shall discuss a situation that if there more than oneT exists. In the previous 

step when findingT , we need to examine and will obtain another T while replacing 

the edge of T  with that holding the same weight on the graph. Indeed the new 

T should satisfy all conditions after the replacement. Figure 7(a) and (b) provides an 

example that twoT s coexist in a graph. 
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Fig. 6. Maximum matrix of C4                             Fig. 7. Two minimum spanning trees in a graph 

We can keep the precise relations among species by discovering all the compact 
sets on the graph. Thus we could ensure the relationship of every species in the ul-
trametric tree is precisely preserved by the characteristics of compact set. Then we 
can use the parallel branch-and-bound technique to construct an ultrametric tree from 
the small matrices D’. The following is an introduction to parallel branch-and-bound 
technique. 

3.2   Parallel Branch-and-Bound Algorithm 

We input several small distance matrices D’ to the parallel branch-and-bound algo-
rithm to find sub trees T’. Branch-and-bound algorithm is an efficient tree search  
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algorithm for NP-hard problems. Some results about ultrametric trees have been pro-
posed in [2]. In the previous researches, Wu et al., [19] had proposed a sequential 
branch-and-bound algorithm to construct minimum ultrametric trees from distance 
matrices. 

For the parallel branch-and-bound algorithm, we utilize a heuristic algorithm 
UPGMM (Unweighted Pair Group Method with Maximum), which is altered from al-
gorithm UPGMA [15], to find the cost values as bound values in our algorithm. If any 
computing nodes are notified that the branching unable to create any better solution, 
we then remove the branch. Compared with the single processor system, the solution 
space in the multi-processor system will decrease greatly. Thus, the parallel branch-
and-bound algorithm could achieve super-leaner speedup. 

The parallel branch-and-bound algorithm in the master and slave paradigm is listed 
as follows. 

Parallel Branch-and-Bound Algorithm 
Input: An n * n distance matrix D. 
Output: The minimum ultrametric tree for D. 
Step 1: Master control node re-label the species such 
        that (1, 2, …, n) is a maxmin permutation. 
Step 2: Master control node creates the root of the BBT 
        (branch-and-bound Tree). 
Step 3: Master control node run UPGMM and using the 
        result as the initial UB (upper bound). 
Step 4: Master control node branches the BBT until the 
        branched BBT reach 2 times of total nodes in 
        the computing environment. 
Step 5: Master control node broadcasts the global UB 
        and send the sorted matrix the nodes cycli-
cally. 
Step 6: while number of UTs in LP (Local Pools) > 0 or 
        number of UTs in GP (Global Pools) > 0 do 
 if number of UTs in LP = 0 then 
  if number of UTs in GP <> 0 then 
   receive UTs from GP 
  end if 
 end if  
 v = get the tree for branch using DFS 
 if LB(v) > UB then 
  continue 
 end if 
 insert next species to v and branch it 
 if v branched completed then 
  if LB (v) < UB then 
   update the GUB (Global Upper Bound) to 
            every nodes  
   add the v to results set 
  end if 
 end if 
 if number of UTs in GP = 0 then 
  send the last UT in sorted LP to GP 
 end if 
        end while 
Step 7: Gather all solutions from each node and output. 
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When obtaining the sub tree T’ from the small matrix D’, each node will return it 
to the master control node. Finally, the master control node will merge all the sub 
trees T’ into the ultrametric tree T. 

4   The Experimental Results 

The experimental environment is built by a Linux-based cluster incorporating one 
master control node and 16 computational nodes. Computational nodes have the same 
hardware specification and connect with each other at 100Mbps and 1Gbs to server. 
Human Mitochondrial DNAs and randomly generated species matrix are the data in-
stances stored in the distance matrix. The experiments will process in two conditions: 
To construct ultrametric tree (1) with application of compact sets and (2) without 
utilizing compact sets. We will compare the differences in computing time and total 
tree cost. We can find compact sets on a graph and determine the maximum distances 
of elements in each compact set as the total tree cost while considering the ultrametric 
tree based on maximum matrix. The following experimental results of compact sets 
are shown based on the data of maximum matrix. 
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Fig. 8. The computing time for random    Fig. 9. The total tree cost for random data               
data set                                                                  set 

As the experiments on the randomly generated sequences, the averages computing 
time is shown in figure 8. Figure 8 illustrates the more species the more computing 
time we spend. In comparison with the method without applying compact set, the 
most time we save is about 99.7% and the least is 77.19% while using compact sets. 
Also we present the differences in cost between condition 1 and 2 in figure 9 and the 
results are based on randomly generated sequences. Figure 9 illustrates the total tree 
costs under two conditions are almost equal and the difference is less than 5%.  

As the experiments on Human Mitochondrial DNAs, we use 15 data set containing 
26 species for each and the total tree cost is presented in figure 10. The results show 
the maximum difference is 1.5%. In other words, the results demonstrate compact sets 
have the same effect not only on generated sequences but also on Human Mitochon-
drial DNAs. Figure 11 shows the computing time. Using compact sets can definitely 
save time but unexpectedly the experiments without compact sets also take little time 
except the last data. 

We also experiment with 30 DNAs and figure 12 represents the costs of 10 data set 
each including 30 DNAs. As figure 12, using compact sets could keep the cost down 
when we experiment on 30 DNAs as well as generated data or 26 DNAs. According 
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to figure 13, for computing time, the performances of the experiments on both 26 and 
30 DNAs are alike. 
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       Fig. 10. The total tree cost for 26 DNAs          Fig. 11. The computing time for 26 DNAs    
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     Fig. 12. The total tree cost of 30 DNAs             Fig. 13. The computing time of 30 DNAs 

No matter how many species on which we experiment, the computing speed is still 
extremely rapid without using compact sets. Although the experiments using compact 
sets do not take much less time, we suppose the phenomenon is relevant to the popu-
lation of the data. The computing time resulted from the experiment with randomly 
generated data can be a reference for any circumstance. 

5   The Conclusions 

In this paper, we employ the compact sets to convert the original matrix into several 
small matrices for constructing ultrametric tree in parallel. Of the compact sets, the 
precise phylogeny remains and facilitates biologists to analyze the species in taxon-
omy. Although we experiment with both Human Mitochondrial DNAs and randomly 
generated sequences, the results from generated data can represent any real instance. 
Therefore our technique could be applied in any condition. 
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Abstract 
 

An ultrametric tree is an evolutionary tree in which 
the distances from the root to all leaves in the tree are 
equal. The Minimum Ultrametric Tree construction 
problem is the problem of constructing an ultrametric 
tree from distance matrices with minimum cost. It is 
shown that to construct a minimum cost ultrametric 
tree is NP-hard. In this paper, we present an efficient 
parallel branch and bound algorithm to construct a 
minimum ultrametric tree with less cost. The 
experimental results show that our proposed algorithm 
can discover optimal solutions for 38 species within 
reasonable time with 16 computing nodes.  

 
Keyword: Parallel computing, branch-and-bound, 

evolutionary tree, distance matrices, minimum 
ultrametric trees. 
 
1. Introduction 
 

An evolutionary tree is a model of evolutional 
histories for a set of species. It is a very important and 
fundamental model in computational biology field to 
observe livening species. A meaning evolutionary tree 
is helpful for biologists to evaluate the relationship of a 
set of species in taxonomy.  

However, it is hard to know the constructed 
evolutionary tree is meaning or not since the real 
evolutionary process is unknown. Hence, many 

methods have been proposed to construct the 
evolutionary tree. 

The majority of these methods are all based on two 
models, the sequences and the distance matrix. In the 
sequences model, researchers do multiple sequence 
alignment (MSA) for a set of species with 
corresponding DNA sequence first. Then an 
evolutionary tree is constructed according to the MSA 
result. However, the MSA problem is NP-hard. In the 
distance matrix model, they calculate the distance as 
the edit distance for any two of species first. Then 
these distances are formed as a distance matrix. Finally, 
an evolutionary tree is constructed according to a 
distance matrix. Unfortunately, it is also a NP-hard 
problem to construct a minimum cost evolutionary tree 
from a distance matrix. 

Some heuristic algorithms, such as Unweighted Pair 
Group Method with Arithmetic Mean (UPGMA) and 
Neighbor Joining Method, have been proposed and 
popularly used by biologists. However, the constructed 
evolutionary tree from them is not optimal. Moreover, 
it is still worthy to construct an optimal evolutionary 
tree for a set with small number of species. 

There is a category of evolutionary tree called 
ultrametric tree, in which we assume that the rate of 
evolution is constant. An ultrametric tree is a rooted 
and edge weighted binary tree in which every internal 
node has the same path length to all the leaves in its 
sub tree. However, the number of an ultrametric tree 

( )A n  grows very rapidly when the number of species 

n increases. For example, 21(20) 10A > , 29(25) 10A > , 



37(30) 10A > . The problem of constructing a minimum 
ultrametric tree has been shown to be NP-hard. The 
branch-and-bound algorithms are very well-known 
techniques to avoid exhaustive search.  It is a partition 
algorithm to decompose a problem into smaller 
subproblems and then repeatedly decomposes them 
until infeasibility is proved or a solution is found [17].  
Theoretically, a branch-and-bound algorithm cannot 
ensure polynomial time complexity in the worst case.  
However, it has been used to solve some NP-hard 
problems, such as Traveling Salesman, Knapsack, 
Vertex Covering, Integer Programming, and so on [17].  
In addition, a branch-and-bound algorithm can often 
find the near optimal solutions as well as an optimal 
one.   

In our previous work, we have proposed a parallel 
branch-and-bound technique to construct a metric 
minimum ultrametric tree. Our technique can 
drastically reduce the solution space. However, it is not 
enough to construct a metric minimum ultrametric tree 
with a numerous number of species. In this paper, we 
utilize the concept of 3-3 relationship in our proposed 
parallel branch-and-bound algorithm to reduce the 
solution space and may reduce the execution time 
significantly. 

This paper is organized as follows. In Section 2, we 
introduce the metric minimum ultrametric tree problem 
and the 3-3 relationship. Section 3 describes the 
proposed parallel branch-and-bound algorithm with the 
3-3 relationship. The experimental results and the 
conclusions will be given in Sections 4 and 5. 

 
2. Related Work 
 

Most of the optimization problems for evolutionary 
tree construction are NP-hard [3, 7, 12, 15]. There are 
many models of evolutionary tree and one of them is 
called ultrametric tree (UT) which assumes the rate of 
evolution is constant [310, 1]. A UT is a rooted, leaf 
labeled, and edge weighted binary tree in which every 
internal node has the same path length to all the leaves 
in its sub-tree [15]. Distance matrix is most frequently 
used to construct an evolutionary tree. For an n by n 
distance matrix M, the minimum UT for M is an UT 
that the distance between any pair of leaves on the tree 
is no less than the given distance and the total weight 
on the tree edges is minimized. There are some results 
about UT which have been presented in [1, 4, 7, 15]. 

As it is an NP-hard problem to construct a 
minimum ultrametric tree from distance matrix, 
branch-and-bound technique is a good candidate to 
reduce the solution space effectively. Wu et al., [15] 
proposed a sequential branch-and-bound algorithm for 

constructing minimum ultrametric trees from distance 
matrices. We denote their algorithm as Algorithm 
BBU for brevity. Initially, Algorithm BBU uses a 
heuristic algorithm UPGMM (Unweighted Pair Group 
Method with Maximum), which modifies from 
algorithm UPGMA, to find a feasible solution. Then, 
Algorithm BBU repeatedly searches the branch-and 
bound tree (BBT) for better solutions until an optimal 
solution is found. For any node, say v, in the BBT, 
compute the value of LB(v), which is a lower bound 
on the weight of any ultrametric tree. Below is a 
formal description of Algorithm BBU. 

 
Algorithm BBU 
 
Input: An n x n distance matrix M. 
Output: The minimum ultrametric tree for M. 
 
Step 1: Relabel the species such that (1, 2, …, n) is 
maxmin permutation. 
Step 2: Create the root v of the BBT such that v 

represents the only topology with leaves 1 and 
2. 

Step 3: Run UPGMM to find a feasible solution and 
store its weight in UB (the weight of current 
best UT). 

Step 4:  
while there is a node in BBT do 
 if LB(v) >= UB or all the children of v have 
been deleted then 
     delete all nodes v from BBT 
 end if 
 Select a node s in BBT, whose children has 
not been generated. 
 Generate the children of s by using the 
branching rule. 
 if find a better solution then 
    update UB 
 end if 
end while. 

 
The readers can refer to [15] for the correctness and 

time complexity issues of algorithm BBU. 
 
In this paper, G = (V, E) represents an unweighted 

graph with vertex set V and edge set E and G = (V, E, 
w) denotes an edge weighted graph. To simplify the 
presentation, notations and terminologies used in this 
paper are prior defined as follows. 

 
Definition 1: A distance matrix of n species is a 

symmetric n n matrix M such that M[i, 



j]≥ 0 for all 0≤ i, j≤ n, and M[i, i]=0 for 
all 0≤ i≤ n [15]. 

Definition 2: A M is a metric if the distances obey the 
triangle inequality, i.e., M[i, j]+M[j, 
k]≥M[i, k] for all 1≤ i, j, k≤ n [15]. 

Definition 3: A metric M is an ultrametric if and only 
if M[i, j]≤max{M[i, k], M[j, k]} for all 
1≤ i, j, k≤ n [2].   

Definition 4: Let T = (V, E, ω) be an edge weighted 
tree and u, v∈V.  The path length from u 
to v is denoted by ),( vudT . The weight 
of T is defined by 
ω(T)=∑ ∈Ee e)(ω [15]. 

Definition 5: Let T be a rooted tree and r be any node 
of T. We use Tr to denote the subtree 
rooted at r, and L(T) to denote the leaf set 
of T [15].   

Definition 6: An ultrametric tree T of {1, …, n} is a 
rooted and edge-weighted binary tree 
with L(T) = {1, …, n} and root r such 
that ),( rudT = ),( rvdT  for all u, 
v∈L(T) [15]. 

Definition 7: Let T = (V, E, ω) be an UT.  For any 
r ∈ V, the height of r, denoted by 
height(r), is the distance from r to any 
leaf in the subtree Tr, i.e., height(r) 
= ),( vrdT  for any v∈L(Tr) [15].   

Definition 8: For any M, MUT for M is T with 
minimum ω(T) such that L(T)={1, …, n} 
and ),( jidT ≥M[i, j] for all 1≤ i, j≤ n.  
The problem of finding MUT for M is 
called MUT problem [7]. 

Definition 9: The metric minimum ultrametric tree 
( ∆ MUT) problem has the same 
definition as MUT problem except that 
the input is a metric [15]. 

Theorem 1: The ∆MUT problem is NP-hard [15]. 

Definition 10:Let P be a topology, and )(, PLba ∈ . 
),( baLCA denotes the lowest common 

ancestor of a and b. If x and y are two 
nodes of P, we write yx →  if and only 
if x is an ancestor of y. 

Definition 11:We denote the distance between distance 
matrix and rooted topology of 

evolutionary trees is consistent if 
<],[ jiM ]},[],,[min{ kjMkiM  if and 

only if ),(),(),( kjLCAkiLCAjiLCA =<  
for any nkji ≤≤ ,,1 . Otherwise is 
contradictory. 

 
Fan [5] proposed an idea to evaluate the 

evolutionary trees by using distance relations between 
distance matrix and evolutionary trees for any 3 
species. The idea was as follows, choosing three 
species i, j, k arbitrary, if i, j relates closely in distance 
matrix, then on evolutionary trees should also present 
relation of i, j. Otherwise, it is contradiction, if the 
number of contradictions is more, expresses the 
method of evolutionary tree construction is 
insufficiently good, and it cannot faithfully reflect the 
relation of the original distance matrix. 

For the purpose of reducing the solution space in 
branch-and-bound strategy; we observe that the 
characteristic of 3-3 relationship between distance 
matrix and evolutionary tree can be utilized. 

 
3. Main title 
 

In this section, we will describe the system 
framework we developed in detail, including parallel 
algorithm, load balancing strategy, data structure, and 
how to use 3-3 relationship to construct evolutionary 
trees. 

The same level of evolutionary tree can be divided 
into independent parts, therefore parallel branch-and-
bound is a very suitable technique to solve 
evolutionary tree problem without considering the 
data-dependent problem between computing nodes. 
Each computing node only needs to handle or solve a 
sub-problem with sequential algorithm regardless of 
data-dependent problem. 

In our proposed parallel branch-and-bound 
algorithm, every node in the same level of branch-and-
bound tree represents respective solution. Every 
computing node branches one of the nodes in the same 
time. When some computing nodes find the branching 
solution satisfies the bounding rule then we don’t need 
to branch any more. It will pass a message to notify 
other computing nodes that the branching will not 
produce a better solution and then we can delete the 
branch. For this reason, the solution space in multi-
processor system will be less than the solution space in 
the single processor system. Thus, our proposed 
parallel branch-and-bound algorithm may achieve 
super-linear speedup. 



The load balancing strategy is important in our 
proposed system. Because the solution space in each 
computing node may differ a lot after bounding, this 
may result in the situation that some computing nodes 
idle. We apply the global pools design, which located 
in the Master processor. When local pools of 
computing nodes empty, it can request some branching 
data from global pools if it is not empty. Even through 
the global pools empty, it will poll branching data form 
the heavily loaded computing nodes. 

The data structure is also an important issue in the 
parallel computing. An unsuitable data structure may 
take unnecessary time during the exchange of 
information between computing nodes so that we shall 
consider whether the data structure performs well in 
parallel computing. Therefore, we develop a data 
structure, which is called UT node, including every 
internal node’s left children, right children, parents, 
leaves which were sorted by array and the UT node’s 
low bound. All necessary information is stored in a 
branch and bound tree (BBT) which combined with 
UT. 

In the proposed algorithm, the master processor 
(MP) will create initial nodes and then dispatch most 
of them to slave computing processors. The MP is also 
used to do the same work in slave computing 
processors and try to balance the nodes among MP and 
slave computing processors. 

In MP, in Step 1, it reorders the input metric 
distance matrix M to form a max-min permutation and 
then re-label the species as a leaf set {1, 2, …, n}.  
This work could be done in parallel.  In Step 2, a root v 
of BBT is created by MP which v represents the only 
topology with leaves 1 and 2.  In Step 3, MP will run 
UPGMM to find a feasible solution and store its 
weight in a global variable UB as an initial upper 
bound.  In the Step 4, MP applies the 3-3 relationship 
constrain to insert the third species, which can reduce 
the solution space significantly. In order to dispatch 
nodes to slave computing processors, some nodes of 
BBT should be generated.  Therefore, in Step 5, MP 
will do parts of Step 5 in BBU to generate some nodes 
of BBT.  Note that the value of LB(v) for each node v 
generated by MP is lower than or equal to UB.  Now, 
the number of nodes is set to be double of the number 
of processors p.  Similarly, this step could be done in 
parallel, but it is done by MP with the same reason. 

Since each node v in each slave computing 
processor may be bounded quickly or not, we try to 
balance the work among processors before the 
dispatching procedure.  In Step 6, for each node v 
generated by MP, a global UB is computed first, and 
then broadcasts to slave computing processors. 
According to the sorting results, each corresponding 

node will be stored sequentially into the Global pool 
(GP).  Afterward, MP dispatches most of them to slave 
computing processors by the cyclic partition method. 
In the dispatching procedure, UB and M with a max-
min permutation are also sent to Slave computing 
processors.  Since MP is also used to do the same work 
in Slave computing processors, it needs to preserve 
some nodes in GP.  Now, MP preserves 1/p nodes in 
GP.  By Step 7, a potential effect may be existed to 
balance the work among MP and slave computing 
processors.  After dispatching most of nodes from MP 
to Slave computing processors, parallel branch-and-
bound algorithm tries to find the optimal solution. 

The parallel branch-and-bound algorithm in the 
master-slave paradigm is presented as follows. 
 
Table 1 Parallel Branch-and-Bound with 3-3 
Relationship 
Input: An n x n distance matrix M. 
Output: The minimum ultrametric tree for M. 
 
Step 1: Master processor re-label the species such that 

(1, 2, …, n) is a maxmin permutation. 
Step 2: Master processor creates the root of the BBT. 
Step 3: Master processor run UPGMM and using the 

result as the initial UB (upper bound). 
Step 4: Under rooted base tree with 2 species. 

Referring the original distance matrix to insert 
the third species according to the 3-3 
relationship constraint.  

Step 5: Master processor branches the BBT until the 
branched BBT reaches 2     times of total 
nodes in the computing environment. 

Step 6: Master processor broadcasts the global UB and 
sends the sorted matrix the slave computing 
processors cyclically. 

Step 7:  
while number of UTs in LP (Local Pools) > 0 or 

number of UTs in GP (Global Pools) > 0 do 
 if number of UTs in LP = 0 then 
  if number of UTs in GP <> 0 then 
   receive UTs from GP 
  end if 
 end if 
 v = get the tree for branch using DFS 
 if LB(v) > UB then 
  continue 
 end if 
 Insert next species to v and branch it 
 if v branched completed then 
  if LB (v) < UB then 
   Update the GUB (Global 
Upper Bound) to every node  



   Add the v to results set 
  end if 
 end if 
 if number of UTs in GP = 0 then 
  Send the last UT in sorted LP to GP 
 end if
end while 
Step 8: Gather all solutions from each node and output 
the optimal solution. 
 
4. Experimental Results 

 
The experimental environment is built by a Linux-

based cluster; it consisted of one Master processor and 
16 slave computing processors. All slave computing 
nodes have the same hardware specification and 
connected with each other at 100Mbps and 1Gbs to 
server. One computing node (single processor) is 
designated as the sequential platform in contrast with 
the parallel computation. 

The data instances we used are the distance matrix 
constructed from Human Mitochondrial DNA 
(HMDNA), and each number of species we run 20 
instances to reduce the factor influenced by distance 
matrix. 

The computing time for 16 slave computing nodes 
and single node is shown in figure 1 and 2. From 
figure 1 and 2, we can observe that our proposed 
parallel algorithm is effective when the number of 
species is getting large. Also, we can observe that the 
computing time will be unendurable when the number 
of species greater than 26 for single processor. On the 
other hand, the parallel branch-and-bound algorithm 
can find optimal ultrametric tree within reasonable 
time for 38 species. The speedup ratio is shown in 
Figure 3, and we can find our proposed parallel 
branch-and-bound algorithm achieve super linear 
speedup ratio. Figure 4 depicts that 3-3 relationship 
can reduce computing time when number of species 
grows. Also, in our experimental results, the result 
trees with 3-3 relationship are a subset of result 
without 3-3 relationship. It indicates that applying 3-3 
relationship can not only reduce the solution space but 
also have the same results. 
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Figure 1  The computing time for 16 processors, 
HMDNA. 
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Figure 2  The computing time for single processor, 
HMDNA. 
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Figure 3  Speedup (16 processors vs. single 
processor, HMDNA). 
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Figure 4  The computing time for 16 processors 
(with 3-3 relationship vs. without 3-3 relationship, 
HMDNA). 
 

Figure 5, 6, 7 and 8 show the computing time as 
well as speedup ratio for   randomly generated data 
sample set, the range of the data values is from 0 to 
100. Also, our proposed algorithm has supreme 
performance and can obtain optimal evolutionary tree 
within reasonable time. Our proposed parallel branch-
and-bound algorithm can achieve super linear speedup 
ratio. 
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Figure 5  The computing time for 16 processors, 
Random Data. 
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Figure 6  Speedup (16 processor vs. single processor, 
Random Data). 
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Figure 7  The computing time for single processor, 
Random Data. 
 

Computing time for 16 processors (with 3-3 relationshiop vs. 
without 3-3 relationship, Random Data)

0

50

100

150

200

250

300

12 14 16 18 20 22 24 26

Species

Ti
m

e 
(s

ec
.)

Without 3-3 relationship
With 3-3 relationship

 
Figure 8  The computing time for 16 processors 
(with 3-3 relationship vs. without 3-3 relationship, 
Random Data). 
 
5. Conclusions 
 

In this paper, we have proposed a parallel branch-
and-bound algorithm that runs in a master/slave 
paradigm to resolve the minimum ultrametric trees 
construction problem, and we adopt the 3-3 
relationship in our algorithm. Experimental results 
show that the performance of our algorithm, running 
on a personal computer cluster with 16 slave 
computing processors, is extraordinary in comparison 
with single processor. Moreover, our proposed parallel 
algorithm can find an optimal solution for 38 species 
within reasonable time. To the best of our knowledge, 
there are no reported algorithms which can find the 
optimal ultrametric tree with the number of species 
exceeding 25. 

From experimental results, we can see that the 
performance of the sequential and parallel algorithms 
will be influenced by the number of species, the 
number of processors and the distance matrix. (Hint: 
different distance matrices with the same number of 
species lead to different performance). With 3-3 
relationship, we found it can reduce the computing 
time when number of species grows, but we only used 



it in the initial step. In our future work, we can extend 
this feature and speedup the process of constructing 
evolutionary trees. 
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Abstract. The data redistribution problems on multi-computers had been exten-
sively studied. Irregular data redistribution has been paid attention recently 
since it can distribute different size of data segment of each processor to proces-
sors according to their own computation capability. High Performance Fortran 
Version 2 (HPF-2) provides GEN_BLOCK data distribution method for generat-
ing irregular data distribution. In this paper, we develop an efficient scheduling 
algorithm, Smallest Conflict Points Algorithm (SCPA), to schedule HPF2 ir-
regular array redistribution. SCPA is a near optimal scheduling algorithm, 
which satisfies the minimal number of steps and minimal total messages size of 
steps for irregular data redistribution.  

Keywords: Irregular data redistribution, communication scheduling, 
GEN_BLOCK, conflict points. 

1   Introduction 

More and more works had large data or complex computation on run-time in most 
scientific and engineering application. Those kinds of tasks require parallel program-
ming on distributed system. Appropriate data distribution is critical for efficient exe-
cution of a data parallel program on a distributed computing environment. Therefore, 
an efficient data redistribution communication algorithm is needed to relocate the data 
among different processors. Data redistribution can be classified into two categories: 
the regular data redistribution [2, 3, 6] and the irregular data redistribution [1, 4, 10, 
11, 12]. The irregular distribution uses user-defined functions to specify unevenly 
data distribution. High Performance Fortran version 2 (HPF2) provides 
GEN_BLOCK data distribution instruction which facilitates generalized unequal-size 
consecutive segments of array mapping onto consecutive processors. This makes it 
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possible to let different processors dealing with appropriate data quantity according to 
their computation capability. In this scenario, all processors must send and receive 
message, even if send and receive on the same processor. 

In the irregular array redistribution, Guo et al. [11] proposed a Divide-and-
Conquer algorithm, they utilize Divide and Conquer technique to obtain near optimal 
scheduling while satisfied minimize the total communication messages size and 
minimize the number of steps. 

In this paper, we present a smallest-conflict-points algorithm (SCPA) to efficiently 
perform GEN_BLOCK array redistribution. The main idea of the SCPA is to schedule 
the conflict messages with maximum degree in the first step of data redistribution 
process. SCPA can effectively reduce communication time in the process of data 
redistribution. SCPA is not only an optimal algorithm in the term of minimal number 
of steps, but also a near optimal algorithm satisfied the condition of minimal message 
size of total steps.  

The rest of this paper is organized as follows. In Section 2, a brief survey of related 
work will be presented. In section 3, we will introduce communication model of ir-
regular data redistribution and give an example of GEN_BLOCK array redistribution 
as preliminary. Section 4 presents smallest-conflict-points algorithm for irregular 
redistribution problem. The performance analysis and simulation results will be pre-
sented in section 5. Finally, the conclusions will be given in section 6. 

2   Related Work 

Many data redistribution results have been proposed in the literature. These re-
searches are usually developed for regular or irregular problems [1] in multi-computer 
compiler techniques or runtime support techniques.  

Techniques for communication optimizations category provide different ap-
proaches to reduce the communication overheads [5, 7] in a redistribution operation. 
The communication scheduling approaches [3, 12] avoid node contention and the 
strip mining approach [9] overlaps communication and computational overheads. 

In irregular array redistribution problem, some works have concentrated on the in-
dexing and message generation while some has addressed on the communication 
efficiency. Guo et al. [10, 11] proposed a divide-and-conquer algorithm for perform-
ing irregular array redistribution. In this method, communication messages are first 
divided into groups using Neighbor Message Set (NMS), messages have the same 
sender or receiver; the communication steps will be scheduled after those NMSs are 
merged according to the relationship of contention.  Yook and Park [12] presented a 
relocation algorithm, while their algorithm may lead to high scheduling overheads 
and degrade the performance of a redistribution algorithm.  

3   Preliminaries and Redistribution Communication Models 

Data redistribution is a set of routines that transfer all the elements in a set of source 
processor S to a set of destination processor T. The sizes of the messages are specified 
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by values of user-defined random integer for array mapping from source processor to 
destination processor. Since node contention considerably influences, a processor can 
only send messages to other one processor in each communication step. Use the same 
rule, a processor can only receive messages from other one processor. 

To simplify the presentation, notations and terminologies used in this paper are 
prior defined as follows. 

Definition 1：GEN_BLOCK redistribution on one dimension array A[1:N] over P 
processors. The source processor is denoted as SPi, the destination processor is de-

noted as DPj, where 0 ≦ i, j ≦ P-1. 

Definition 2： The time of redistribution separator the time of startup is denoted as ts, 
and the time of communication is denoted as tcomm. 

Definition 3：  To satisfy the condition of the minimum steps and the processor 
sends/receives one message at each steps, some messages can not be scheduled in the 
same communication step are called conflict tuple [11]. 

Data redistribution implements have two methods: non-blocking scheduling algo-
rithm and blocking scheduling algorithm. The non-blocking scheduling algorithm is 
faster than the blocking scheduling algorithm. But need more buffer and be better 
control synchronization. In this paper, we discuss on blocking scheduling algorithm. 

Irregular data redistribution is unlike regular has a cyclic message passing pattern. 
Every message transmission link is not overlapping. Hence, the total number of mes-
sage links N is 2 1numprocs N numprocs≤ ≤ × − , where numprocs is the num-

ber of processors. Figure 1 shows an example of redistributing two GEN_BLOCK 
distributions on an array A[1:101].  The communications between source and destina-
tion processor sets are depicted in Figure 2. There are totally fifteen communication 
messages, m1, m2, m3…, m15 among processors involved in the redistribution. In this 
example, {m2, m3, m4} is a conflict tuple since they have common source processor 
SP1; {m7, m8, m9} is also a conflict point because of the common destination proces-
sor DP4.  The maximum degree in the example is equal to 3. Figure 3 shows a simple 
schedule for this example 

Source distribution 

Source Processor 
SP SP0 SP1 SP2 SP3 SP4 SP5 SP6 SP7 

Size 12 20 15 14 11 9 9 11 

Destination distribution 

Destination Processor 
DP DP0 DP1 DP2 DP3 DP4 DP5 DP6 DP7 
Size 17 10 13 6 17 12 11 15 

Fig. 1. An example of distributions 
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Fig. 2. The communications between source and destination processor sets 

Schedule Table 
Step 1 m2 m5 m9 m12 m14 
Step 2 m1 m3 m6 m8 m11 m15 
Step 3 m4 m7 m10 m13 

Fig. 3. A simple schedule 

3.1   Explicit Conflict Point and Implicit Conflict Point 

The total communication time of a message passing operation using two parameters: 
the startup time ts and the unit data transmission time tm. The startup time is once 
for each communication event and is independent of the message size to be communi-
cated. The data transmission time is relationship of a message size, size(m). The 
communication time of one communication step is the maximum of the message in 
this step. The total communication time of all steps is summary of each the communi-
cation time of step. The length of these steps determines the data transmission over-
heads. The minimum step is equal to maximum degree k, when message can not put 
into any step of minimum step it must relate to the processor has maximum degree 
transmission links. Figure 4 shows the maximum degree of figure 1. SP1, SP2 and DP4 
had maximum degree (K = 3) from messages m2~m9. Because of each one processor 
can only send/receive at most one message to/from other processor in each communi-
cation step. First, we concentrate all processors which have maximum degree trans-
mission links messages. For the sake of simplicity, such messages are referred to as 
“Maximum Degree Message Set” (MDMS) in the paper, as shown in figure 4. If the 
messages in MDMSs can put into k steps with no conflict occur, other messages of 
the processors’ degree less than maximum degree will be easier to put into the rest of 
step without increasing the number of steps. 

We say a message to be an explicit conflict point if it belongs to two MDMSs. 
There exists at most one explicit conflict point between two MDMSs. In figure 4, m7 
is a explicit conflict point since it belongs to two MDMSs {m5, m6, m7} and {m7, m8, 
m9}. On the other hand, if two MDMSs do not contain the same message, but the 

SP0      SP1        SP2      SP3       SP4        SP5      SP6        SP7 

DP0       DP1      DP2       DP3      DP4       DP5      DP6      DP7 

      m1             m3       m5      m7              m9         m11        m13     m15 

                      m2      m4          m6          m8         m10         m12        m14 

12     5     10       5     8       6        1    14    2      9     3       6     5       4   11 
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neighbor MDMSs each has a message been sent by the same processor, or been re-
ceived by the same processor. We call this kind of message as an implicit conflict 
point. As shown by figure 5, m4 and m5 are contained by the different MDMSs. DP2 
only receives m4 and m5 two messages, so it can not form an MDMS. But m4 and m5 
are also owned by different MDMSs. Therefore, m4 is an implicit conflict point. Al-
though, m5 is also covered by two MDMSs, but it is restricted by m4. Hence m5 will 
not cause conflict. Figure 7 depicts all MDMSs for the example shown in Figure 1. 

 
Fig. 4. Maximum Degree Messages Set 

 
Fig. 5. Example of explicit conflict point 

4   Scheduling Algorithm 

The main goal of irregular array distribution is to minimize communication step as 
well as the total message size of steps. We select the smallest conflict points which 
will really cause conflict to loose the schedule constraint and to minimize the total 
message size of schedule. 

Smallest conflict points algorithm consists of four parts:  

(1) Pick out MDMSs from given data redistributed problem.  
(2) Find out explicit conflict point and implicit conflict point. And schedule all the 

conflict point into the same schedule step.  
(3) Select messages on MDMSs in non-increasing order of message size. Schedule 

message into similar message size of that step and keep the relation of each processor 
send/receive at most one message to/from the processor. Repeat above process until 
no MDMSs’ messages left. 

(4) Schedule messages do not belong to MDMSs by non-increasing order of mes-
sage size. Repeat above process until no messages left. 

From Figure 1, we can pick out four MDMSs, MDMS1 = {m2, m3, m4}, MDMS2 = 
{m4, m5}, MDMS3 = {m5, m6, m7} and MDMS4 = {m7, m8, m9}, shown in Figure 8. 
We schedule m4 and m7 into the same step. Then schedule those messages on 
 

m5 m6 m7 m8 m9

1    2     4     3    1 

m2 m3 m4  m5 m6 m7 m8 m9 
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Fig. 6. Example of implicit conflict point 

 

Fig. 7. All MDMSs for the example in Figure 1 

 

Fig. 8. Results of MDMSs for Figure 1 

 

Fig. 9. The schedule obtained form SCPA 

MDMSs by non-increasing order of message size as follows: m8, m3, m5, m6, m2, m9. 
After that, we can schedule the rest messages that are not belong to any MDMSs by 
non-increasing order of message size as follows: m1, m15, m10, m12, m13, m14, m11. 
Figure 9 shows the final schedule obtained form smallest conflict points algorithm. 

5   Performance Evaluation and Analysis 

To evaluate the performance of the proposed methods, we have implemented the 
SCPA along with the divide-and-conquer algorithm [11].  The performance simula 
 

S1: m8 m3 m5 

S2: m6 m2 m9 

S3: m4 m7 

m2 m3 m4  m5 m6 m7 m8 m9 

m2 m3 m4  m5 m6 m7 

1  2     4       3     1    2 

m1   m2 m3 m4   m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 

S1: m8 m3 m5 m1 m15 m10 m12  

S2: m6 m2 m9 m13 m11 

S3: m4 m7 m14 
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tion is discussed in two classes, even GEN_BLOCK and uneven GEN_BLOCK dis-
tributions. In even GEN_BLOCK distribution, each processor owns similar size of 
data. Contrast to even distribution, few processors might be allocated grand volume of 
data in uneven distribution. Since array elements could be centralized to some specific 
processors, it is also possible for those processors to have the maximum degree of 
communications.  

The simulation program generates a set of random integer number as the size of 
message. To correctly evaluate the performance of these two algorithms, both pro-
grams were written in the single program multiple data (SPMD) programming para-
digm with MPI code and executed on an SMP/Linux cluster consisted of 24 SMP 
nodes. In the figures, “SCPA Better” represents the percentage of the number of 
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Fig. 10. The events percentage of computing time is plotted (a) with different number of proc-
essors and (b) with different of total messages size in 8 processors, on uneven data set 
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events that the SCPA has lower total steps of messages size than the divide-and-
conquer algorithm (DCA), while “DCA Better” gives the reverse situation. In the 
uneven distribution, the size of message’s up-bound is set to (totalsize/numprocs)*1.5 
and low-bound is set to (totalsize/numprocs)*0.3, where totalsize is total size of mes-
sages and numprocs is the size of processor. In the even distribution, the size of mes-
sage’s up-bound is set to (totalsize/numprocs)*1.3 and low-bound is set to low-bound 
is (totalsize/numprocs)*0.7. The total messages size is 1M. 

Figure 10 shows the simulation results of both the SCPA and the DCA with differ-
ent number of processors and total message size. We can observe that SCPA has bet-
ter performance on uneven data redistribution compared with DCA. 

Since the data is concentrated in the even case, from figure 11, we can observe that 
SCPA have the better performance compared with uneven case. Figure 11 also 
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Fig. 11. The events percentage of computing time is plotted (a) with different number of proc-
essors and (b) with different of total messages size in 8 processors, on even data set 
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illustrates that SCPA has at least 85% supreme than DCA in any size of total mes-
sages and any number of processors In both even and uneven case, SCPA performs 
slightly better than DCA. 

6   Conclusion 

In this paper, we have presented an efficient scheduling algorithm, smallest conflict 
points algorithm (SCPA), for irregular data distribution. The algorithm can effectively 
reduce communication time in the process of data redistribution. Smallest-conflict-
points algorithm is not only an optimal algorithm in the term of minimal number of 
steps, but also a near optimal algorithm satisfied the condition of minimal message 
size of total steps. Effectiveness of the proposed methods not only avoids node con-
tention but also shortens the overall communication length. 

For verifying the performance of our proposed algorithm, we have implemented 
SCPA as well as the divide-and-conquer redistribution algorithm. The experimental 
results show improvement of communication costs and high practicability on different 
processor hierarchy. Also, the experimental results indicate that both of them have 
good performance on GEN_BLOCK redistribution. But also both have advantages 
and disadvantages. In many situations, SCPA has better than the divide-and-conquer 
redistribution algorithm. 
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摘要 

以平行處理方式來計算龐大的資料運算是近

年來一個非常重要的應用觀念。有許多不同的環境

架構伴隨著不同的應用。網格 (Grid) 是一種建立

在網際網路上的架構，網格可透過網際網路與其他

網格互相分享資源，因此可以視為在使用龐大的且

容易增減的資源來運算；與傳統的叢集式系統相

比，傳統的叢集式系統 (Cluster) 若要增加運算能
力，則必需花費比網格多的費用，因此運算能力有

限。在一般所見的網格中，必須要有相同的協定、

彼此認同的認證、安全性的考量以及合理的資源存

取，才能讓網格在網路上互相溝通。使用網格運算

我們所要處理的資料及程式，並且在合理的時間內

得到正確的結果。本論文使用平行化演算法並以人

類粒腺體為例，在單機、網格與叢集電腦環境中建

構演化樹，並比較其效能差異。 

關鍵詞：等距演化樹 , 叢集電腦計算, 網格計算, 
Globus Toolkit 

1. 簡介 

生物資訊研究領域中，科學家常常需要從演

化樹的結果以了解物種間的親疏關係。從距離矩陣

中建造演化樹在生物學和分類法方面是一個重要

的議題，因此也產生許多不同的模型及相對應的演

算法。而大部份的最佳解問題都已被証明為 
NP-hard。 

 

* This word was supported in part by the NSC of 
ROC, under grant NSC-93-2213-E-216-037 and 
NSC-94-2213-E-216-028 

其中在許多不同的模型中有一個重要的模型

便是假定演化的速度是一致的 [5, 17]。在這種前
提下，利用距離矩陣算出的演化樹將會是一個等距

演化樹(ultrametric tree)。 

本論文使用一種高效能的平行化分枝界限演

算法(branch-and-bound) 建立最小距離演化樹 。這
個平行演算法是建立在 master-slave centralize 的
架構上，並且加入了有效的負載平衡、節點與節點

間通訊的策略，以解決最小權值等距演化樹建構的

問題，使得時間在可容忍的範圍內完成。 

近年來，對於許多以電腦輔助來求解的問題

越來越多，且個人電腦的計算能力已無法滿足在合

理的時間內得到結果。於是分散式的計算技術便是

下一個發展的層次。本論文以人類粒腺體為例建構

出演化樹，建構演化樹是一種非常複雜且耗時的計

算過程，使用一般的個人電腦，將耗費大量的時間

以求得結果，有時還會因資源不足造成等待許久的

運作中斷，因此，要在合理的時間內得到滿意的結

果，必須具有高效能的電腦，如超級電腦，但在經

濟的考量下，我們可使用叢集電腦或網格來達到近

似的效能。 

叢集電腦可有大小不同規模，此做法的最大

優點是「可擴充性」 (scalability) ：只要增加新的
個人電腦，就可以提高叢集電腦的效能。在某些情

況下資料是分布在不同的地區中需要互相存取，而

網格是透過網路連線將好幾個在不同地區的叢集

電腦串聯成的，更可以有效的利用這樣的優點來保

持最新的訊息，所以在使用資源效率方面更遠勝於

叢集電腦 [19]。 

在網格上發展的技術為中介軟體，是用來整

合網格分散的計算資源，主要角色是擔任機器間協

調功能的任務。在網格的使用者和資源提供者之
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間，擔任資源分配的協調工作，幫助使用者找到適

合其使用的機器，並完成資料存取的交易 [19]。
其中一個重要的組成要素，就是後設資料。 

網格的優點之一，是有效率的使用閒置中的

電腦，若是再長時間運算比較下，網格可以更有效

率的使用資源。使用平行處理的環境，像是叢集計

算或網格計算，必須用平行化的演算法以及使用平

行化的溝通工具，例如MPI，以幫助程式在該平臺
上順利運作。 

目前我們已成功的在網格的環境上執行平行

化演算法，並且建構出演化樹，從網格與叢集電腦

的實驗數據可看出，網格擁有與叢集電腦相似的效

能。在本論文中，比較使用單機、叢集電腦及網格

三種環境下的效能，在實驗結果中可顯示出，單機

運算能力遠不如叢集電腦及網格；叢集電腦與網格

之間的比較，若在相同節點數計算下，兩種環境效

能是差不多的。 

2. 背景 

2.1 等距演化樹 

在建立演化樹上有許多模型，其中一種為等

距演化樹。等距演化樹為假設各物種的演化速率一

致 [5, 13]，而等距演化樹的特性為有共同的父節
點，物種存在葉節點而且在邊上有權重值的一個二

元樹，在每個內節點的子樹中有同樣的路徑長到每

一個葉節點上 [4]。對於一個 n * n 的距離矩陣 M 
來說，定義最小的等距演化樹指的是兩兩葉節點的

邊上權重總合為最小的。因為等距演化樹可以很容

易的轉換為二元樹且不需要改變葉節點的距離 
[13]，所以，等距演化樹是一個非常適合給電腦計
算的模型。 

 
  圖1. 建立分支界限樹 (BBT) [3] 
 

如圖 1，我們可知，等距演化樹的數目 A(n)，
隨著 n的增加，演化樹的數量也快速的增加。有一

些有關等距演化樹的研究先前已被提出  [6, 7, 
15]。由於這些問題往往是不易解的，所以這些研

究大都是基於 heuristic 演算法。舉例來說，像 

UPGMA(Unweighted Pair Group Method with 
Arithmetic mean) [17]就是一個很常被用來建立等

距演化樹的演算法。 

在本論文中，我們使用 Exact Algorithms for 
Constructing Minimum branch-and-bound’s from 
Distance Matrices [4]的演算法為基礎，並將之平行

化。在上述方法中，使用分支界限法的策略作為找

尋最小距離演化樹的方法。為了求得最小距離演化

樹我們會將所有可能的樹型都找出並一一求值，但

隨著物種數的增加，等距演化樹 A(n)的增加是非常
快的，例如：A(20) > 1021 ，A(25) > 1029 ，A(30) 
> 1037 ，於是上述方法中使用了分支界限法的策

略來避免完全的搜尋。在本論文中，使用有效率平

行化的分支界限演算法建立最小距離演化樹，在我

們提出的方法中，是一個主從且集中式的平行化架

構，並在此架構中加上了 loading-balancing, 
bounded和 communication strategies等機制，以增
加程式的效率。 

2.2 叢集計算 

叢集計算(cluster computing)在隨著目前的科
技下，處理器和周邊設備的普及，我們可以用低成

本連接出高效能的叢集計算機。叢集計算機是以高

速網路連接個人電腦或工作站而成的，可提供高效

能的計算能力而且降低原來達到此效能的成本。在

運作上，既然是由許多台電腦連接的，所以普通的

應用程式也無法在上面發揮作用，必須設計適合在

平行及分散式環境中的演算法，而且同時配合像是

MPI這種專門用來做平行溝通的軟體，來設計應用

程式。 

現今在電腦和網路普及下，幾乎是可以看成

所有電腦都與網際網路相連，如果把叢集電腦更廣

義的角度來看，每台電腦就好像被網際網路連接的

大型區網，全球就是一個大型的叢集電腦，但是事

實並非如此，因為無法做到資源互相分享、計算互

相分擔，所以為了達到更廣義的資源活化運算，於

是網格計算的理念被提出。 

2.3 網格計算 

網格計算(Grid Computing)可讓分散於各地
的虛擬組織，協調彼此的資源分享，同時滿足大量

運算的需求。而集合分散的運算資源之外，網格計

算能夠經由網路管理組織內任何一個可使用的運

算資源，進而降低伺服器的閒置時間。 

網格計算可以解決在同一時間內使用網路上

很多資源去解決一個問題或者當一個問題需要大

量處理器計算或是需要存取大量分佈不同地方的

資料。耳熟能詳的例子像是  SETI (Search For 
Extraterrestrial Intelligence )@home 它讓上千人的
電腦在閒置時的處理器中去幫助計算資料。而且這

些電腦都是獨立性工作，指的是說無論有些工作需
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花較長的時間，或者沒有回傳資料，都沒有關係，

因為有此狀況時，它會在暫停一段時間後，自動把

工作分派給其他電腦做處理。 

2.4 Globus Toolkit 

Globus [8, 14, 20]對訊息安全、資源管理、訊

息服務、數據蒐集管理以及應用開發環境等網格關

鍵理論和技術進行廣泛的研究，並且開發出可以在

多種平台上執行的 GlobusToolkit，用來幫助規劃和

建造大型網格試驗和應用平台，開發大型網格系統

可以執行的應用程式。Globus Toolkit 同時提供了

好幾種語言模式給程式設計師選擇，就類似像物件

導向的方式。程式開發者更可以由 Globus Toolkit 
中所提供的服務任意選取最符合需求的工具去與

現存的軟體作整合。例如: GRAM 提供資源管理的

協定、MDS 提供資訊服務的協定、GridFTP 提供
了資料傳輸的協定…等，這些全部都有使用 GSI 
安全協定在他們的連接層 [20]。

 

表 1. GlobusToolkit 所提供的服務 

 

2.5 MPICH-G2 

MPI 是訊息傳送介面 (Message Passing 
Interface)用來撰寫  message-passing programs 和
可以廣泛的使用於平行運算的一種基礎 API。在
網格應用程式上 message-passing 的優點是它提供
比通訊協定 TCP/IP sockets 更高層的介面，讓我們
可以直接使用通訊結果而不必知道中間是如何溝

通。Globus 服務已被用來發展成 Grid-enable MPI 
以 MPICH library 為基礎，Nexus 為通訊基礎， 
GRAM 服務為資源分配和 GSI 來做安全認證。 

MPICH-G2是 Grid-enable以 MPI v.1.1為基
礎在網格上的實作。它使用了 Globus Toolkik(像是
資源分配、安全性)的服務。MPICH-G2 准許以連

接不同平台的機器來執行 MPI的程式。MPICH-G2
會自動作資料轉換當在兩個不同平台時的傳輸和

自動的選擇 TCP 以提供多重協定通訊的訊息給網
路上機器及傳出有MPI提供的訊息給區域內機器。 

 

2.6 UniGrid 

網格計算的目的是用來整合大型網路環境下

的各種資源。UniGrid是連結國內七所大學及國家

高速網路中心之電腦網格系統，建置一「國家計算

網格實驗平台」，以協助推廣網格計算的觀念到各

產學領域。UniGrid將著重在使用網格計算領域最

常用之程式集及工具套件 Globus。並且有提供隨
時每個節點的 CPU、RAM 狀況監看。 

Globus[8]提供了網格中使用的協定，可以讓

使用者充分利用分散於各處的資源中建出網格計

算的架構。 

2. 執行平行程式1. 產生 Globus RSL (資源
描述檔)

使用者的平行程式

設定環境變數
讀取參數

(proxy, host, domain, 
user information)

執行 Globusrun, mpirun

設定環境變數
讀取參數

(proxy, host, domain, 
user information)

Check Host Alive
Create RSL

 

圖 2. UniGrid上的程式流程 

 

Service Name 功能 

Resource managrment GRAM 資源分配與工作管理 

Communication Nexus 單一或多重溝通服務 

Security GSI 認證與聯繫上的安全服務 

Information MDS 分散式存取和狀態的資訊 

Health and status HBM 監測系統零件健康狀況 

Remote data access GASS 遠程存取資料經由連續及平行的連繫裝置 

Executable management GEM 結構、讀取技術與狀態執行管理 

Information GRIS 查詢計算資源現有的設定、能力及狀態 

GridFTP GridFTP 提供高效能、安全，以及健全的資料傳輸機制 
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圖 3 .UniGrid的架構圖[2] 

 

3. 系統架構 

單機上的程式處理方式與分散式系統的處理

方式不同，所以當平台由單機發展為分散式系統

時，若程式想要發揮平行處理的效能，就必須改變

原來的程式演算法，在程式中加入訊息傳送的程式

觀念。 

3.1 單機演算法 

在建構演化樹的問題上，一般用的是 
UPGMA 這一類的啟發式演算法，所得到的解並不

是最佳解。[4] 中提出了利用 branch-and-bound 來
建構最佳解演化樹。雖然 branch-and-bound 的解
空間會非常大，但中型的演化樹在生物學家的實際

用上仍然非常有實用價值。 

在 [4] 中所提出的演算法中，首先，執行

UPGMM得到一個起始解的 upper bound (UB)，接
著開始建立 branch-and-bound tree (BBT) 如果建
立時 lower bound (LB) 大於目前的 UB時就刪除
此節點，選擇下一個位置繼續建立，當計算到 UB
比目前的 UB低時就更新。直到所有物種都建立完

畢，最後，權值最小的樹即是我們所要求的解。其

演算法如下： 

 
Algorithm BBU 
Input: An n £n distance matrix M. 
Output: The minimum ultrametric tree for M. 
 
Step 1: Relabel the species such that (1, 2….. n) is a 

maxmin permutation. 
Step 2: Create the root v of the BBT such that v 

represents the only topology with leaves 1 and 2. 

Step 3: Run UPGMM to find a feasible solution and 
store its weight in UB. 

Step 4:  
while there is a node in BBT do 

Delete all nodes v from BBT if LB(v) ¸ UB or all 
the children of v have been deleted. 

Select a node s in BBT, whose children has not 
been generated. 

Generate the children of s by using the branching 
rule. 

If a better solution is obtained, then update UB. 
End while 
 

3.2 平行化分支界限演算法 

雖然利用 branch-and-bound 的技巧可以利用

bound 值來避免將每個可能做搜尋，但是隨著物種

數目的增加，所需的計算時間也成指數成長。所

以，我們便利用平行計算的方法來加速演化樹的建

構。 

考慮在平行計算的環境上的特性，所以針對

資料結構和演算法做了些改變和增加。在資料結構

上，為了減少節點與節點之間的溝通，因此所定義

的資料結構包含了每個內結點的左子節點、右子節

點、父節點，與子結點的路徑。在演算法上，為了

更能發揮平行處理的環境，必須讓每個節點的計算

量平衡，故必須加上如 Global Pools、Local Pools、
等機制讓節點與節點間可以達到動態的負載平

衡，並且我們為了減低不必要的計算，在算出一個

比原來標準用的上限還低時，就會一直把資訊傳給

全部的節點以達到提升計算效率。而平行化架構採

用的是主從式架構，起始化時分配的資料與計算過

程中所需動態分配的資料都是由 master 來做分配。 
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在負載平衡的問題上，一般來說可以分為靜

態與動態的負載平衡 [3]。靜態的負載平衡指的是
在資料的分配只在程式一開始的期間做分配，而程

式執行期間不做任何的資料牽移；相對的動態負載

平衡指的是會依需求而在節點間搬動及牽移資

料。動態負載平衡可以分為集中式的 (centralized) 
與分散式的 (decentralized) [3]。集中式的負載平衡
是由一台管理主機 (管理節點) 來做調控，每個 
節點藉由把資料送至管理節點後再由管理節點來

決定資料要如何分配。相對的分散式負載平衡則是

由節點彼此間互相溝通後再彼此間一同決定的機

制。一般來說，集中式的架構能夠有更好的負載平

衡，因為管理節點可以知道所有節點的狀態並決定

一個更好的分配，但在一個大型的平行系統下，集

中式的負載平衡會因為管理節點的瓶頸而效能不

佳。 

Input: A n * n distance matrix M 
Output: The minimum ultrametric trees 
 
Step 1: Master computing node re-label the species 
such that feasible maxmin permutation. 
Step 2: Master computing node creates the root of the 
BBT. 
Step 3: Master computing node run UPGMA and 
using the result as the initial UB (upper bound). 
Step 4: Master computing node branches the BBT 
until the branched BBT reach 2 times of total nodes 
in the computing environment. 
Step 5: Master computing node broadcasts the global 
UB and send the sorted matrix the nodes cyclically. 
 
Step 6:  
while number of UTs in LP (Local Pools) > 0 or 
number of UTs in GP (Global Pools) > 0 do 
 if number of UTs in LP = 0 then 
  if number of UTs in GP <> 0 then 
   receive UTs from GP 
  end if 
 end if 
 v = get the tree for branch using DFS 
 if LowerBound(v) > UB then 
  continue 
 end if 
 insert next species to v and branch it 
 if v branched completed then 
  if Cost(v) < UB then 
   update the GUB (Global Upper 
Bound) to every nodes  
   add the v to results set 
  end if 
 end if 
 if number of UTs in GP = 0 then 
  send the last UT in sorted LP to GP 
 end if 
end while 
 
Step 7: Gather all solutions from each node and 
output it. 

4. 實驗結果 

4.1 實驗環境及結果 

在實驗的環境中，我們使用了單機、以及叢

集電腦與網格的系統。單機及叢集電腦的系統如表

2。網格實驗環境使用的是 UniGrid 系統。 

在實驗數據中，我們挑選人類粒腺體做為實

驗數據，並以物種數目 12、14、16、18、20、22 一
一執行，每一物種數目有 10 組測試資料。我們從

10 組資料中分別取中位數、平均數、最差情況來

做實驗結果比較，以期消除資料相依所產生執行時

間的差異。 

 
表 2. 實驗環境 

單機 

處理器數目 1 
環境 中華大學平行分散實驗室 

硬體設備 AMD 2000+、2GB DDR RAM 

叢集電腦 

處理器數目 16 
環境 中華大學平行分散實驗室 

硬體設備 AMD 2000+、1GB DDR RAM 

網格 

處理器數目 12 
環境 國家網格計算實驗平台 

硬體設備 AMD 1.3G、2GB DDR RAM 

處理器數目 4 
環境 東海大學高效能計算實驗室 

硬體設備 
AMD MP 2000+ ‘2、512MB DDR 

RAM’2 

 

如表 3 及圖 4 分別為執行時間中位數的結

果，我們可以發現，當物種數目增加時，計算時間

也相對增加，而在圖中也可以了解，不論是叢集電

腦或者是網格系統，都能夠有效的降低執行時間。 

表 3. 中位數時間比較表 

物種數目 單機 叢集電腦 網格 

12 0.113313 0.146947 0.130881

14 2.936615 0.889956 1.180245

16 36.1053 29.2515 11.6873 

18 1003.268 324.5231 332.807 

20 138.684 157.6269 99.2526 

22 9873.82 5911.42 2625.637
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中位數時間比較圖
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圖 4. 中位數時間比較圖 

 

表 4 以及圖 5 為平均計算時間；表 5 以及
圖 6 為最差計時間，兩個相比較，我們可以了解、

平均計算時間可能被最差計算時間所影響，因為建

構演化樹的問題有資料相依的情形，所以我們會選

擇中位數計算時間做為我們主要的比較依據。而從

圖中也可以觀察到，計算時間隨著數種數目的成長

有相當快速的增加。 

表 4. 平均數時間比較表 

物種數目 單機 叢集電腦 網格 

12 0.344878 0.166051 0.236581

14 41.99103 7.537349 7.390265

16 390.8962 207.8525 58.34718

18 2598.467 983.583 1031.805

20 1114.028 4705.797 249.0695

22 9873.82 5911.42 2625.637
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圖 5. 平均數時間比較圖 

 

表 5. 最差狀況時間比較表 

物種數目 單機 叢集電腦 網格 

12 0.785476 0.395494 0.927229

14 303.738 40.4603 35.1285 

16 1387.6 911.781 203.611 

18 9339.67 4327.96 4606.76 

20 5009.17 25064.1 1028.86 

22 9873.82 5911.42 5068.7 

 
最差狀況時間比較圖
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圖 6. 最差狀況時間比較圖 

 

4.2 結果討論 

我們從數據中取出中位數、平均數、最差情

況來做比較。由圖表明顯看出隨著物種數目增加、

計算相同物種時，單機效能最差，叢集電腦次之，

網格效能最佳。正常情況下，叢集電腦的效能應比

網格好，因為使用內部溝通為高速網路的叢集電

腦，其效能遠高於使用網際網路溝通的網格。但是

實驗結果與理論不符，這是因為實驗中所使用的叢

集電腦設備較網格所使用的電腦設備差。 

最初使用單機運算樣本以繪出演化樹，雖然

成功建出演化樹，但是花費時間非常驚人，且運算

樣本的大小有限，因此進度緩慢、效率不佳，之後

採用叢集電腦。叢集電腦環境為 16 顆處理器，因

此效率提高許多。但因為考慮到經濟成本以及為了

應付更巨大的計算，我們考慮了更有效率的平行處

理環境:網格。 

所以我們開始把平行化建立演化樹的程式以

網格平台來做實驗。我們以 10組物種數目 20的資
料去實驗，實驗結果見表 6和圖 7。實驗結果發現
網格計算效能，如果在相同的節點數目，計算效能

似乎較叢集電腦差了一點，但是如果網格使用 24
節點，則效能遠超過叢集電腦 16節點。 

而現今已有許多網格平台的建立，像是

UniGrid 就是聯合國內七所大學以及國家高速網路

中心的叢集實驗室所成的網格實驗平台，我們可以

使用更多的資源去執行程式，並且透過網格運算的

技術，他會到網路中尋找閒置的電腦，並將工作依

據適當的比例分配，送到這些電腦上執行，然後將

結果送回，這樣做可以更有效率。 

而且我們考慮了未來萬一資料是放置在世界

各處或者是隨時都會更動的，那叢集電腦就顯得不

適合，且叢集電腦資源有限，如果遇到一個龐大的

問題也可能需要計算很久的時間，所以即使資料分

布在世界各地也可以輕鬆的應付並保持資料的最

新狀況。 
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表 6. 叢集電腦與網格使用不同節點數比較 

 叢集電腦 16節點 網格 16節點 網格 24節點

1 1629 1652.96 885.517 

2 10273 10691.6 6838.49 

3 750 764.104 750.752 

4 561 566.25 458.426 

5 249 258.197 256.616 

6 199 199.96 148.454 

7 54 57.693 83.55 

8 126 128.596 110.922 
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圖 7. 叢集電腦與網格使用不同節點數比較圖 

 

5. 結論 

實驗中測試的網格所使用的處理器 16顆，與
叢集電腦相比，數據中發現，網格與叢集電腦使用

處理器個數相同，網格並無任何優勢，網格效能較

叢集電腦差，因為叢集電腦內部溝通速度遠大於網

格間所使用的網際網路溝通。未來我們可以考慮建

立更有效率的網格溝通機制，相信可以大幅改善網

格的效能。 

我們的目標將是不只侷限於計算人類粒腺體

的資料，推廣至以網格來運算蛋白質的樣本，甚至

其他的資料在正規化之後皆可用網格來運算以得

到結果。 

目前是用網格來運算人類粒腺體的樣本，雖

然花費的時間非常的多，因為剛開始時需要找出在 
網格上的最佳效率，但是，未來中，我們將更有效

率的平行演算法及網格 API，目標在使用方面，只
要將要處理的資料整理成我們目前資料輸入的形

式，就可以得到我們要求的數據，所以，未來可能

運用此種方法來運算類似的龐大資料，像蛋白質等

等的樣本，應該跟目前的運作方式相同，在網格上

運算即可得到結果。 

參考文獻 : 

[1] 全球網格(World Wide Grid)發展趨勢 
[2] 格網計算平台架設實例簡介格網計算平架設

實 例 簡 介  Introduction to Constructing 
Introduction to Constructing Computational 
Computational Grid Grid, 王順泰 

[3]  Barry Wilkinson, Michael Allen, “Parallel 
Programming”, P.H. 

[4]  B.Y. Wu, K.M. Chao, C.Y. Tang, 
“Approximation and Exact Algorithms for 
Constructing Minimum Ultrametric Tree from 
Distance Matrices,” Journal of Combinatorial 
Optimization 3, pp. 199-211 

[5] D. Gusfield, “Algorithms on Strings, Trees, and 
Sequences, computer science and computational 
biology,” Cambridge University Press, 1997 

[6]  E. Dahlhaus, “Fast parallel recognition of 
ultrametrics and tree metrics,” SIAM Journal on 
Discrete Mathematics, 6(4):523-532, 1993 

[7] H.J. Bandelt, “Recognition of tree metrics,” 
SiAM Journal on Discrete Mathematics., 
3(1):1-6, 1990 

[8] The Globus Project: A Status Report. I. Foster, 
C. Kesselman. Proc. IPPS/SPDP '98 
Heterogeneous Computing Workshop, pp. 4-18, 
1998. 

[9] The Anatomy of the Grid: Enabling Scalable 
Virtual Organizations. I. Foster, C. Kesselman, S. 
Tuecke. International J. Supercomputer 
Applications, 15(3), 2001. 

[10]  The Nexus Approach to Integrating 
Multithreading and Communication. I. Foster, 
C. Kesselman, S. Tuecke, J. Journal of Parallel 
and Distributed Computing, 37:70--82, 1996. 

[11] A Grid-Enabled MPI: Message Passing in 
Heterogeneous Distributed Computing Systems. 
I. Foster, N. Karonis. Proc. 1998 SC 
Conference, November, 1998. 

[12] A Secure Communications Infrastructure for 
High-Performance Distributed Computing. I. 
Foster, N. Karonis, C. Kesselman, G. Koenig, S. 
Tuecke. 6th IEEE Symp. on High-Performance 
Distributed Computing, pp. 125-136, 1997. 

[13]  M.D. Hendy and D. Penny, 
“Branch-and-bound algorithms to determine 
minimal evolutionary trees,” Mathematical 
Biosciences, 59:277-290, 1982. 

[14] M. Frach, S. Kannan, and T. Warnow, “A 
robust model for finding optimal evolutionary 
trees,” Algorithmica, 13:155-179, 1995. 

[15] M. Krivanek, “The complexity of ultrametric 
partitions on graphs,” Information Processing 
Letter, 27(5):265-270, 1988. 

[16] Chuan Yi Tang, Solomon K.C. Wu, "Chee 
Kane Chang, “A scalable Fully Distributed 
Parallel Branch & Bound Algorithm on PVM 
cluster” 

[17] W.H. Li and D. Graur, “Foundomentals of 
Molecular Evolution,” Sinauer Associates, 
1991. 

[18] Yuji Shinano, “Kenichi Harada and Ryuichi 
Hirabayashi,” Control Schemes in a 
Generalized Utility for Parallel 



                                                                             8

Branch-and-Bound Algorithms, Parallel 
Processing Symposium, 1997. Proceedings., 
11th International , 1-5 Apr 1997, Page(s): 621 
-627 

[19] GridCafé (http://www2.twgrid.org/gridcafe) 
[20] The Globus Project (http://www.globus.org/) 
 



附錄二: 出席國際學術會議心得報告 

 

第二屆平行分散處理與應用國際研討會 

Second International Symposium on Parallel and Distributed 

Processing and Applications (ISPA'2004) 

  

一、前言 
第二屆平行分散處理與應用國際研討會(ISPA 2004)於西元 2004 年十二月十

二日至十二月十五日在香港之香港科技大學舉行。本次會議共錄取 106篇平行分

散研究領域之優秀論文，分為二十七個議題進行討論，分別為” Parallel Algorithms 
and Systems I、II” 、” Data Mining and Management” 、” Distributed Algorithms and 
Systems”、” Fault Tolerant Protocols and Systems 、” Sensor Networks and 
Protocols”、”Cluster Systems and Applications”、” Grid Applications and 
Systems”、 ”Peer-to-Peer and Ad-Hoc Networking”、 ” Data Replication and 
Caching ”、” Software Engineering and Testing”、” Grid Protocols”、” Context-aware 
and Mobile Computing”、” Grid Scheduling and Algorithms I、II”、” Cluster Resource 
Scheduling and Algorithms”、” Distributed Routing and Switching Protocols I、II”、” 
High Performance Processing and Applications”、” Security I、II” 、” Artificial 
Intelligence Systems and Applications”、” Networking and Protocols I、II”、” 
Hardware Architectures and Implementations”、” High Performance Computing and 
Architecture”以及” Distributed Processing and Architecture ”。 

 

平行分散處理與應用國際研討會是國際平行計算界領域的學者、專家相互交

流研究成果和資訊技術開發經驗的年會，在世界各地輪流舉辦。第一屆會議於

2003 年在日本愛知大學(The University of Aizu)舉行；今年是第二屆，雖然僅舉

辦二年，但是卻已成為分散平行計算研究界領域的重要會議，而且研討會論文已

被 LNCS收錄發行(SCI Extend) ，所以 ISPA已是目前在平行暨分散計算研究領

域中相當具有代表性之會議。 

 
 



二、參加會議經過 
會議的開幕典禮由主辦單位與會議的委員會主席簡單的致歡迎詞後，隨即展開，

本屆會議分別於三天的會議議程中安排了三個場次之平行計算最新趨勢之專題

報告: (1). Present and Future Supercomputer Architectures”(2). "Challenges in P2P 
Computing" (3). "Multihop Wireless Ad Hoc Networking: Current Challenges and 
Future Opportunities"，分別由 Prof. Jack Dongarra、Prof. Lionel Ni 以及 Prof. 
David B. Johnson作精彩的專題報告，正式之論文報告分別於三天三個場次的專

題報告後進行，本人之論文『Optimal Processor Mapping Scheme for Efficient 
Communication of Data Realignment 』被安排在第一天的”Parallel Algorithms 
and Systems II”(Session 3A)之場次發表，本人並且擔任此場次之會議主席。 

 

三、與會心得 
此次會議有來自世界各地的學者發表了相當多優秀的平行計算各領域的論

文，國內大約有六位學者参加此次會議並同時發表論文，由會議的進行過程中可

以看出主辦單位對會議的流程安排相當用心，不過在專題報告的時間控制上不

良，超出預定之時程太多，這些都是整個會議美中不足的地方。 
 

四、攜回資料 
1. 大會議程 
2. Second International Symposium on Parallel and Distributed Processing and 

Applications研討會論文集 


