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Abstract

This project undergoes quantitative analyses on fundamental properties of ad hoc networks
including estimating the number of hidden-terminal pairs, the number of exposed-terminal sets,
the number of neighboring nodes supporting triangle routes, and the extents of coverage and
connectivity. To obtain these results, we propose a paradigm to systematically derive exact
formulas for a great deal of subgraph probabilities of random geometric graphs. In contrast to
previous work, which established asymptotic bounds or approximation, we obtain closed-form

formulas that are fairly accurate and of practical value.

Keywords: Ad hoc networks, sensor networks, analytical method, random geometric graphs,
connectivity, coverage, performance evaluation, hidden terminal, exposed terminal, quantitative
analysis

1. Introduction

A geometric graph G=(V, r) consists of nodes placed in 2-dimension space R? and edge set
E={{,)) | d(i, j)<r, where i, jeV and d(i, j) denotes the Euclidian distance between node i and
node j}. Let Xoi={Xi, X2, ..., Xn} be a set of independently and uniformly distributed random
points. We use H( X, r, A) to denote the random geometric graph (RGG) [29] of n nodes on X,
with radius r and placed in an area A. RGGs consider geometric graphs on random point
configurations. Applications of RGGs include communications networks, classification, spatial
statistics, epidemiology, astrophysics, and neural networks [29].

A RGG (X, r, A) is suitable to model an ad hoc network N=(n, r, A) consisting of n
mobile devices with transmission radius r unit length that are independently and uniformly
distributed at random in an area A. When each vertex in #(X,, I, A) represents a mobile device,
each edge connecting two vertices represents a possible communication link as they are within
the transmission range of each other. A random geometric graph and its representing network
are shown in Figure 1. In the example, area A is a rectangle that is used to model the deployed
area such as a meeting room. Area A, however, can be a circle, or any other shape, and even

infinite space.



(a) (b)

Figure 1. (a) An ad hoc network N=(6, r, A), where A is a rectangle. (b) Its associated
random geometric graph H Xg, I, A).

Many fundamental properties of ad hoc networks are related to subgraphs in RGGs. For
example, the IEEE 802.11 CSMA/CA protocol suffers from the hidden and the exposed
terminal problem [41, 45]. The hidden terminal problem is caused by concurrent transmissions
of two nodes that cannot sense each other but transmit to the same destination. We call such two
terminals a hidden-terminal pair. The existence of hidden-terminal pairs in an environment
seriously results in garbled messages and increases communication delay, thus degrading

system performance [24, 25, 45].

Quantitative analyses on specific subgraphs of a given RGG are of importance for
understanding and evaluating the fundamental properties of MANETs. There is extensive
literature on the subgraph probability of RGGs [29]. Penrose had shown that, for arbitrary
feasible connected /" with k vertices, the number of induced subgraphs isomorphic to 7/ satisfies
a Poisson limit theorem and a normal limit theorem [29]. To the best of our knowledge,

previous related results are all asymptotic or approximate.

In the project, we make the first attempt to propose a paradigm to systematically derive the
exact formulas for a great deal of subgraph probabilities in RGGs. In contrast to previous
asymptotic bounds or approximation, the closed-form formulas we derived are fairly accurate
and of practical value. With the paradigm, we undergoes quantitative analyses on fundamental
properties of ad hoc networks including the number of hidden-terminal pairs, the number of
exposed-terminal sets, the number of neighboring nodes supporting triangle routes, and the

extents of coverage and connectivity.

Computing the probability of occurrence of RGG subgraphs is complicated by the
assumption of finite plane. For example, one device in Figure 1 is deployed nearby the
boundary of rectangle A so that its radio communication range (often modeled by a circle) is
not properly contained in A. This is due to border effects, which complicate the derivation of
closed formulas; therefore, previous discussions usually circumvent the border effects by using
torus convection [1, 20]. Torus convention models the network topology in a way that nodes
nearby the border are considered as being close to nodes at the opposite border and they are
allowed to establish links. Most of the time, we adopt torus convention to deal with border
effects in the report. However, we also obtain an exact formula for the single edge probability

of RGGs when confronting the border effects.



The rest of this report is organized as follows. In Section 2, some definitions and notations
are introduced. In Section 3, we briefly survey related results on RGGs. A method for
computing the subgraph probability of RGGs with torus convention is presented in Section 4.
Section 5 presents those derivations when confronting border effects. Finally, Section 6

concludes the report.

2. Definitions and notations

A graph G=(V, E) consists of a finite nonempty vertex set V and edge set E of unordered
pairs of distinct vertices of V. A graph G=(V, E) is labeled when the |V| vertices are
distinguished from one another by names such as vi, V», ..., Vjv. Two labeled graphs G=(Vg, Eg)
and H=(Vy, En) are identical, denoted by G=H if Vg= V4 and Eg=En. A graph H=(Vn, En) is a
subgraph of G=(Vg, Eg) if VucVs and EncEg. Suppose that 17 is a nonempty subset of V. The
subgraph of G=(V, E) whose vertex set is V' and whose edge set is the set of those edges of G
that have both ends in V' is called the subgraph of G induced by V', denoted by Gy. The size of
any set S is denoted by |S|. The degree of a vertex vV in graph G is the number of edge incident

n
with v. The notation[ jdenotes the number of ways to select m from n distinct objects.
m

The subgraph probability of RGGs is defined as follows. Let 2={G, G, ..., Gk} represent

n

2
every possible labeled graphs of #(X;, r, A), where k=2 . When Gy is a labeled subgraph in 2,
we use Pr(Gy) to denote the probability of the occurrence of Gy. Suppose ScV and TcV, we
define Pr(Gs)= Y Pr(G,), when 1<wsk.

VG, eQand Gy =G,cG,,

3. Related work in RGG

To the best of our knowledge, previous results on RGGs are all asymptotic and approximate
except [49, 50]. We summary related results as follows.

A book written by Penrose [29] provides and explains the theory of random geometric graphs.
Graph problems considered in the book include subgraph and component counts, vertex degrees,
cliques and colorings, minimum degree, the largest component, partitioning problems, and
connectivity and the number of components.

For n points uniformly randomly distributed on a unit cube in d>2 dimensions, Penrose [32]
showed that the resulting geometric random graph G is k-connected and G has minimum degree
k at the same time when n—o0. In [9, 10], Diaz et al. discussed many layout problems including
minimum linear arrangement, cutwidth, sum cut, vertex separation, edge bisection, and vertex
bisection in random geometric graphs. In [11], Diaz et al. considered the clique or chromatic
number of random geometric graphs and their connectivity.

Some results of RGGs can be applied to the connectivity problem of ad hoc networks. In
[39], Santi and Blough discussed the connectivity problem of random geometric graphs ¥ Xy, I,
A), where A is a d-dimensional region with the same length size. In [1], Bettstetter investigated
two fundamental characteristics of wireless networks: its minimum node degree and its

k-connectivity. In [12], Dousse et al. obtained analytical expressions of the probability of



connectivity in the one dimension case. In [18], Gupta and Kumar have shown that if

r=1/M , then the resulting network is connected with high probability if and only if
m

c(n)—oo. In [47], Xue and Kumar have shown that each node should be connected to ®(log n)
nearest neighbors in order that the overall network is connected.

Recently, Yen and Yu have analyzed link probability, expected node degree, and expected
coverage of MANETS [49]. In [48], Yang has obtained the limits of the number of subgraphs of

a specified type which appear in a random graph.
4. Computing subgraph probability

In the section, we develop a paradigm for computing subgraph probability of RGGS. First of
all, we are to prove that the occurrences of arbitrary two distinct edges in RGGs are
independent in the next subsection. The property of edge independence greatly simplifies our
further calculations. For simplicity, we always assume that A is sufficiently large to properly
contain a circle with radius r in a ¥(X;, r, A) throughout the report; that implies nr*<|A|. In the
report, notation E; (E;") denotes the event of the occurrence (absence) of edge ;.

Since we adopt torus convention to avoid border effects in the section, single-edge
probability in RGG is obtained trivially and listed below.

Theorem 1: We have Pr(Ej)=nr*/|A|, for an arbitrary edge &/=(u, v) and U=V, in a ¥( X, r, A).

4.1 Edge independence in RGGs

The following theorem shows that the occurrences of arbitrary two distinct edges in RGGs
are independent even if they share one end vertex.

Theorem 2: For arbitrary two distinct edges ei=(u, v) and e=(w, X) in a ¥ Xy, I, A), we have
PI‘(EiEj)ZPI‘(Ei)PI‘(Ej).

Theorem 2 indicates that the occurrences of arbitrary two distinct edges in RGGs are
independent. The result is somewhat difficult to be accepted as facts at first glance for some
scholars. For example, Santi and Blough [39] claimed that the occurrences of two distinct edges
e;=(u, v) and e,=(u, w) are correlated by observing that

if

Si: (d(u, v)<d(u, w))

then

Sy: (the existence of e; (E,) implies the existence of e (E))).

In logical terms, the statement (if S; then S) is true under all its interpretations (that is, the
statement is a tautology) [6]; however, that does not necessarily imply the truth of S, and the
conclusion that any two distinct edges are dependent.

The falsity of their deduction can be proved by contradiction. Given four distinct nodes u, v,
w, and X, the statement

“If

S3: (d(u, v)<d(w, X)) then

S4: (the existence of e;=(W, X) implies the existence of e,= (U, v)).”

is a tautology. Provided that Santi and Blough’s deduction is correct, we conclude that S, is true.



Consequently, the false statement “two independent edges (i.e. (W, X) and (u, V)) are dependent”
were true. A contradiction occurs.

Note that Theorem 2 does not imply that the occurrences of more than two edges in RGGs
are also independent. In fact, we will show their dependence later.

By Theorem 1 and 2, we obtain the probability of two-edge subgraphs immediately.

Corollary 3: For arbitrary two distinct edges ej=(u, V) and ej=(w, X) in a (X, r, A), we have
Pr(EiEj)= (nr’/|A])’.

4.2 Base subgraphs

In this subsection, we consider eight labeled subgraphs with three vertices as base
subgraphs, the probabilities of which will be used to compute the probability of larger
subgraphs later. Based on the number of edges included, subgraphs of three vertices can be
classified into four groups: a triangle (C3), an induced path of length two (pz), an edge with an

isolated vertex (p;+l;), and three isolated vertices (I3) (See Figure 2).

VANIVASVA SR
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pith pith P+l I3

Figure 2. Eight base subgraphs.

To compute the probability of c3;, we need the following lemma. If one of two equal-sized
circles in the place contains the center of the other, we call them two properly intersecting
circles.

Lemma 4 [50]: The expected overlapped area of two properly intersecting circles with the same

radius r is (7[ —#]rz ina Xy, r,A).

The following conditional probability is a consequence of Lemma 4.
Lemma 5: For three distinct edges e/=(u, V), &=(U, W), and e=(v, W) in a ¥ Xy, I, A), we have

33

Pr(EiE;| Ex)= (z——] r?/|A|, where uv=w.

The probability of the first base subgraph 3 (triangle) can then be obtained.
Theorem 6: For three distinct edges ei=(u, V), &=(u, w), and ex=(v, w) in a X, r, A), we have

33

Pr(EiE;Ex)= (7[ ——] */|A[?, where U£vW.



Next, we consider the subgraph of an edge with an isolated vertex (p;+l;).

Theorem 7: For three distinct edges ei=(u, V), ej=(u, w), and e,=(v, W) in a ¥ Xy, r, A), we have

2 7ZI’23\/§2

AT

We have shown that the occurrences of two distinct edges in a ¥( Xy, I, A) are independent

P(EE/E()=2

), where uvw.

(Theorem 2). The next theorem, however, shows that edge independence does not exist for

subgraphs with three or more edges.

Theorem 8: The occurrences of arbitrary three distinct edges in a ¥( Xy, r, A) are dependent.
The next base subgraph we considered is an induced path p,, which will be used to model

a hidden-terminal pair.

Theorem 9: For arbitrary three distinct edges e=(u, V), &=(u, W), and ex=(v, W) in a ¥( X, r, A),

we have Pr(EEEx)= [ */_] /A%, where uv=w.

The last base subgraph we considered is 5.
Theorem 10: For arbitrary three distinct edges ei=(u, V), ej=(u, w), and e,=(v, w) in a ‘# Xy, I, A),
3\/_
4

we have Pr(E/E/E)=1- " — 4 7r* where usv=w.

A IAI
5. Computing subgraph probability in the face of border effects

In the section, we restrict the deployed area A to an Ixm rectangle. We make an attempt to
face border effects and obtain a closed-form formula of computing the single edge probability
of RGGs. The results derived in the section will be used to measure the extent of coverage and
connectivity of ad hoc networks later.

For clarity, the main result and its corollaries are listed before their proofs.

Theorem 11: Given a ¥(X,, r, A) and an Ixm rectangle A, the single edge probability

Lpd 4¢3 _ 4 3 2
o At =4I’ =4mr’ + r'ml
considering border effects is-2 3 23 E

m

Corollary 12: The average (expected) degree of a vertex in a ¥(X;, r, A) considering border

rt =41 —4mr’ + ar’ml
effects is (n-1)x(2 g

), where A is an Ixm rectangle.

Corollary 13: The expected edge number of a (X, r, A) considering border effects is

(

n(n— Lyt —ilr —imr + 7r’*ml )
( 2, )x(2 ETE ), where A is an Ixm rectangle.

To obtain these results, we first derive some necessary lemmas. Let X;={X;, Xz, ..., Xn} be a
set of independently and uniformly distributed random points in a given ¥(X;, r, A), where
Xi=(Xi, Yi) and 0<Xi<I and 0<Y;<m, for 1<i<n. Clearly, X;’s (and Y;’s) are independent,
identically distributed random variables with probability density function (p.d.f.) f(x)=1/I
(g(y)=1/m) over the range [0, 1] ([0, m]).

Lemma 14: Given a H(X;, I, A) and any two distinct nodes Xi=(Xi, Y;) and Xj=(X;, Yj), we have



—W? +2mw

2
-z e 21z and Pr[| Yi-Yj | <w]=——— = where 0<z<I and 0<w<m.
m

|2

Pr[ | Xi-X;| <z]=

2

Lemma 16. Given a (X, r, A) and any two distinct nodes Xi=(X;, Yi) and X=(X;, Yj), we have

1

lu 2 -
|2

that: (1) the p.d.f. of (Xi-X;))* is f(u)= ! Wwhere 0<u<l’, and (2) the p.d.f. of (Y;-Y))* is

1

2 _
g(v)zmv—zl, where 0<v<m’.
m

1 1
- > . 1 vVu .
Lemma 15 [43]: _[u 2ya’ —udu=u2+a’ -u+a’sin 1£+c, where C is a constant.
a

Finally, we prove the main theorem of the section as follows.
Theorem 12: Given a #(X,, r, A) and an Ixm rectangle A, the single edge probability
At =4 —4mr’ + ar’ml :
is 2 3 23| > , when border effects are considered.
m
We conclude that border effect does affect the value of the single edge probability of ¥ X,

r, A). If A is an Ixm rectangle, the difference between the single edge probabilities with and

dmr’ + 4 -1t
without avoiding border effects (by adopting torus convention) is- 2
m-l

6. Conclusions

We have proposed a paradigm for computing the subgraph probabilities of RGGs, and have
shown its applications in finding fundamental properties of wireless networks. We are surprised
at finding some interesting properties:

1. The occurrences of two distinct edges in RGG are independent.
2. The occurrences of three or more distinct edges in RGG are dependent.
3. Probabilities of some specific subgraphs in RGG can be estimated accurately.

Many interesting subgraph probabilities and their applications in MANETs are still
uncovered. For example, we are now interested in accurately estimating the diameter of RGGs.
We also believe that the techniques developed in the report can be exploited to conduct

quantitative analysis on other fundamental properties of wireless ad hoc networks.
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