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I、中文摘要 

許多現實生活上的最佳化問題常需要最佳化多個不同尺度且互相衝突競爭的目標，這

些問題通常被稱為多目標最佳化問題。相對於單目標最佳化問題只需求解一個單一的最佳

解答，多目標最佳化問題最大的差異處在於其必須求解出許多個最佳解答。近年來，由於

多目標演化式演算法可以在一次的執行中有效地同時搜尋多個解答，因此多目標演化式演

算法被廣泛認為非常適用於求解多目標最佳化問題。儘管多目標演化式演算法已被廣泛認

為適用於求解現實生活中的許多多目標最佳化問題，絕大多數的研究卻僅限於針對該研究

領域的問題來設計有效的多目標演化式演算法。僅僅有非常少數的研究探討多目標演化式

演算法在求解多目標最佳化問題時所需的族群大小和收斂時間。 

本研究計畫的主題在於探討多目標演化式演算法在解決具有各種不均衡特性的多目標

最佳化問題之效能。本計劃之研究結果除了在學理上可以提供改良多目標演算法之貢獻

外，並可以提供工業界在應用多目標最佳化演算法之參數決定問題。本計劃之研究成果並

已部份實踐於數篇會議論文之中，並加以延伸投稿期刊論文。 

 

關鍵字：多目標最佳化、演化式演算法 

 

II、Abstract 

Many real-world optimization problems involve multiple incommensurable and often 
competent objectives; these problems are known as multi-objective optimization problems 
(MOOPs). Many MOOPs cannot satisfactorily be characterized by a single performance measure. 
Due to the nature of trade-offs involved, MOOPs seldom have a unique solution. Instead of 
obtaining a single optimal solution, the ultimate goal of solving MOOPs is to find a complete set 
of Pareto-optimal solutions. Recently, multi-objective evolutionary algorithms (MOEAs) have 
been recognized to be well-suited for solving MOOPs because their abilities to exploit and 
explore multiple solutions in parallel and to find a widespread set of non-dominated solutions in a 
single run. Although MOEAs have been shown to be effective for solving many real-world 
applications and exploring complex non-linear search spaces as efficient optimizers, but only a 
few preliminary analysis based on selectorecombinative MOEAs and (1+1)MOEA have been 
conducted in analyzing the population sizing and convergence time of MOEAs in solving 
MOOPs.  

The main topics of this project are to investigate the performances of MOEAs in solving 
MOOPs with disequilibrium, and study the important factors that affect the convergence time and 
population sizing of MOEAs. These models can provide practitioners guidance in choosing key 
MOEAs parameters, and also assists MOEA practitioners to get maximum mileage on designing 
their MOEAs. The results of this project have been published in several conference papers, and 
their extended results have been submitted for the review of journals. 

III、Background, Motivation, and Objectives 

Multi-objective optimization problems (MOOPs) are common in our real life. A MOOP has 
a number of objective functions to be maximized or minimized. For example, consider the design 
of a car. Generally, the cost of such systems is to be minimized, while maximum performance is 



desired. Depending on conditions of the application, further objectives may be important such as 
reliability and energy dissipation. Considering the design of a car, and assuming that the two 
objectives cheapness (f1) and performance (f2) are to be maximized under speed constraints. Then, 
an optimal design might be an architecture which achieves maximum performance at minimal 
cost and does not violate the speed constraint. However, what makes MOOPs difficult is that a 
solution may be optimal in an objective function, but bad in other objective functions. The 
objectives are conflicting and cannot be optimized simultaneously. Instead, a satisfactory 
trade-off has to be found. In the example of designing a car, cheapness (the inverse of cost) and 
performance are generally competing. High-performance car architectures substantially increase 
costs, while car architectures with cheap costs usually provide low performance. Depending on 
the market requirements, an intermediate solution (medium performance, medium cost) may be 
an appropriate trade-off for decision makers. 

There are many industrial applications belong to MOOPs. Take a manufacturing factory for 
another example, production planning have to consider routing optimization, equipment 
optimization and machine optimization. Take an IC design application for an example, in the 
layout processes of an IC, the floorplan process usually seeks to optimize two competing 
objectives: area and routeability; and the result of the placement and routing depend on the result 
of floorplanning. 

Assume the multi-objective functions are to be minimized. Mathematically, MOOPs can be 
represented as the following vector mathematical programming problems: 

1 2  (  )  { (  ),  (  ),  ...,  (  )}.iMinimize F Y f Y f Y f Y=  (1) 

where Y denotes a solution and fi(Y) is generally a nonlinear objective function. Pareto 
dominance relationship and some related terminologies are introduced below. When the 
following inequalities hold between two solutions Y1 and Y2, Y2 is a non-dominated solution and 
is said to dominate Y1 (Y2 Y1): 

1 2 1 2:  ( )  ( )  :  ( )  ( ).i i j ji f Y f Y j f Y f Y∀ > ∧∃ >  (2) 

When the following inequality hold between two solutions Y1 and Y2, Y2 is said to weakly 
dominate Y1 (Y2 Y1): 

1 2 :  ( )  ( ) .i ii f Y f Y∀ ≥  (3) 

A feasible solution Y * is said to be a Pareto-optimal solution if and only if there does not exist a 
feasible solution Y where Y dominates Y *, and the corresponding vector of Pareto-optimal 
solutions is called Pareto-optimal front. 

The great success for evolutionary computation techniques, including evolutionary 
programming (EP), evolutionary strategy (ES), genetic algorithm (GA), came in the 1980s when 
extremely complex optimization problems from various disciplines were solved, thus facilitating 
the undeniable breakthrough of evolutionary computation as a problem-solving methodology. 
Inspired from the mechanisms of natural evolution, evolutionary algorithms (EAs) utilize a 
collective learning process of a population of individuals. Descendants of individuals are 
generated using randomized operations such as mutation and recombination. Mutation 
corresponds to an erroneous self-replication of individuals, while recombination exchanges 
information between two or more existing individuals. According to a fitness measure, the 



selection process favors better individuals to reproduce more often than those that are relatively 
worse. Specifically, GAs are used to illustrate the basic framework of EAs. GAs are stochastic, 
population-based search and optimization algorithms loosely modeled after the paradigms of 
evolution. GAs guide the search through the solution space by using natural selection and genetic 
operators, such as crossover, mutation, and the like. EAs have been shown to be effective for 
solving NP-hard problems and exploring complex non-linear search spaces as efficient optimizers. 
The robust capability of EAs to find solutions to difficult problems has permitted them to become 
a popular optimization and search technique in many industries.  

Recently, multi-objective evolutionary algorithms (MOEAs) have been recognized to be 
well-suited for solving MOOPs because their abilities to exploit and explore multiple solutions in 
parallel and to find a widespread set of non-dominated solutions in a single run. Several MOEAs 
based on Pareto dominance relationship are proposed to solve MOOPs directly, and present more 
promising results than single-objective optimization techniques theoretically and empirically. By 
making use of Pareto dominance relationship, MOEAs are capable of performing fitness 
assignment without using a weighted linear combination of all objectives. 

The objectives of this project are to study the four important factors that affect the 
performance of MOEAs and to discover the relationship of these factors with convergence time 
and population sizing of MOEAs. By making uses of our results, we can further develop efficient 
multi-objective evolutionary algorithms to solve real-world application more quickly and reliable. 

IV、Results 

The results of this project have been submitted for possible publication of a journal and 
published in the following conference papers: 
[1] J-H. Chen, Jian-Hung Chen, “Multi-objective Memetic Approach for Flexible Process 

Sequencing Problems.”  in Proceeding of 2008 ACM SIG-EVO Genetic and Evolutionary 
Computation Conference (GECCO-2008), pp. 2123-2128. (EI) 

[2] Jian-Hung Chen, “Memetic Approach for Multi-objective Flexible Process Sequencing 
Problems.”  in Proceeding of 2008 WORLDCOMP Conference (WORLDCOMP-2008), pp. 
248-254. 

[3] C-W. Kang, Jian-Hung Chen, “Multi-objective Evolutionary Optimization of 3D 
Differentiated Sensor Network Deployment.”  in Proceeding of 2009 ACM SIG-EVO 
Genetic and Evolutionary Computation Conference (GECCO-2009), pp. 2059-2064. (EI) 

[4] C-W. Kang, Jian-Hung Chen, “An Evolutionary Approach of Multi-Objective 3D 
Differentiated Sensor Network Deployment.”  in Proceeding of 12th IEEE International 
Conference on Computational Science and Engineering (CSE-09) ), pp. 187-193. (EI) 

[5] C-H. Chen, Jian-Hung Chen, “A Multi-Objective Evolutionary Approach forCombined 
Heat and Power Environmental/Economic Power Dispatch” in Proceeding of 2009 
WORLDCOMP Conference (WORLDCOMP-2009). 

[6] L.-C. Wei, C-W. Kang, Jian-Hung Chen, “A Force-Driven Evolutionary Approach 
Optimization of 3D Differentiated Sensor Network Deployment.”  in Proceeding of 2009 
IEEE MASS Conference (MASS-2009) (EI) 
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ABSTRACT
This paper describes a multi-objective memetic approach for
solving multi-objective flexible process sequencing problems
in flexible manufacturing systems (FMSs). FMS can be de-
scribed as an integrated manufacturing system consisting of
machines, computers, robots, tools, and automated guided
vehicles (AGVs).FMSs usually pose complex problems on
process sequencing of operations among multiple parts. An
efficient multi-objective memetic algorithm with fitness in-
heritance mechanism is proposed to solve flexible process
problems (FPSs) with the consideration the machining time
of operations and machine workload load balancing. The
experimental results demonstrate that our approach can ef-
ficiently solve FPSs and fitness inheritance can speed up
the convergence speed of the proposed algorithm in solving
FPSs.

Categories and Subject Descriptors
J.6 [COMPUTER-AIDED ENGINEERING]: Computer-
aided manufacturing (CAM)

General Terms
Algorithms, Design, Performance

Keywords
process planning, flexible manufacturing systems, multi-objective
optimization, memetic algorithms, fitness inheritance

1. INTRODUCTION
Computer-aided process planning (CAPP) is an automated

system for preparation of a plan that specifies machines, ma-
chine conditions, operations, operation sequence, and tools
required to production these components. Traditionally, the
process sequencing has been solved by either the experience
of process planners or a fixed and static process plan con-
sisting of an ordered sequence of operations. However, the

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-131-6/08/07.

traditional mythologies are not suitable in real flexible en-
vironment, because the techniques have a few constraints in
order to cope with dynamic situations of the flexible environ-
ment [7]. Moreover, as the number of operations increase,
it poses more difficulties for decision makers to plan a cost-
effective process sequences for manufacturing.

In this paper, a memetic algorithm using fitness inher-
itance (MEFI) is proposed to solve multi-objective flexible
process sequencing problems (FPSs) having three objectives:
minimizing total machining time, maximum machine work-
load and machine workload unbalance. The proposed ap-
proach can obtain a set of non-dominated solutions for deci-
sion makers in a single run, without the necessary of problem
decomposition and relative preferences. Decision makers can
easily distinguish between the costs of different process se-
quences and choose more than one satisfactory process se-
quences at a time. Six benchmark problems with differ-
ent complexities are used to evaluate the performance of
the proposed approach. A multi-objective genetic algorithm
(MOGA) without local search and fitness inheritance is used
for performance comparisons. It is shown empirically that
MAFI outperforms MOGA in terms of the solution quality.

This paper is organized as follows: Section 2 presents the
background of process sequencing problems, multi-objective
evolutionary optimization. Section 3 introduces the setup
of flexible manufacturing system and the mathematical for-
mulation of FPSs. Section 4 presents the multi-objective
memetic algorithm for solving FPSs. Section 5 presents the
experimental analysis of the proposed algorithm, and Sec-
tion 6 summarizes our conclusions.

2. BACKGROUND

2.1 Process Sequencing Problems
Flexible process sequencing problems are well known among

the combinatorial optimization problems. Previous research
focused on two important key issues of process sequenc-
ing problems, described as follows. The first key issue is
the objective functions of process sequencing. Several ap-
proaches [4, 1] are proposed for process sequencing with
various objectives. Another key issue that arises recently
is the alternative process sequences. In the view of real time
scheduling, alternative process sequences provide additional
capability for the decision maker (DM) to cope with unpre-
dictable events such as machine failures or rush orders. From
the view of off-line scheduling, alternative process sequences
may be used to improve the schedule quality by reducing
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the load on bottleneck machines [1]. It is essential but also
a challenge for DM to prepare a set of alternative process
sequences considering the trade-off between schedule qual-
ity and the costs of process sequences. However, traditional
techniques are not able to provide such flexibility for DM.

The above issues lead to flexible process sequencing prob-
lems (FPSs), which simultaneously considers alternative pro-
cess plans with multiple objectives and the flexibility of pro-
cess sequences. Over the past decade, a number of models
have been developed to solve the process sequencing prob-
lems, but only few models [1, 7] have been reported to design
the process sequencing problem considering the above issues.
To date, solving the problem of flexible process sequencing
with multiple objectives that are conflicting in nature is still
a hard task.

2.2 Multi-objective Evolutionary Optimization
Assume all the objective functions Fm are to be mini-

mized. Mathematically, multi-objective optimization prob-
lems (MOOPs) can be represented as the following vector
mathematical programming problems:

Minimize F (X) = {F1(X), F2(X), ..., Fm(X)}, (1)

where X denotes a solution and Fm(X) is generally a nonlin-
ear objective function. When the following inequalities hold
between two solutions X1 and X2, X2 is a non-dominated
solution and is said to dominate X1(X2 � X1):

∀m : Fm(X1) ≥ Fm(X2) and ∃n : Fn(X1) > Fn(X2). (2)

When the following inequality hold between two solutions
X1 and X2, X2 is said to weakly dominate X1(X2 � X1):

∀m : Fm(X1) ≥ Fm(X2). (3)

A feasible solution X∗ is said to be a Pareto-optimal solu-
tion if and only if there does not exist a feasible solution
X where X dominates X∗. The corresponding vector of
Pareto-optimal solutions is called Pareto-optimal front.

By making use of Pareto dominance relationship, multi-
objective evolutionary algorithms (MOEAs) are capable of
performing the fitness assignment of multiple objectives with-
out using relative preferences of multiple objectives. Thus,
all the objective functions can be optimized simultaneously.
As a result, MOEA seems to be an alternative approach to
solving production planning and inspection planning prob-
lems on the assumption that no prior domain knowledge is
available.

3. PROBLEM STATEMENT

3.1 The FMS Environment
An FMS consists of a set of identical and/or complemen-

tary numerically controlled machines and tool systems. All
components are connected through an AGV system. Fig-
ure 1 shows the layout of a simple FMS with several ma-
chines, AGVs and a tool system.

In order to design the production planning of FMSs, the
environment within which the FMS under consideration op-
erates can be described below.

• The term machine is to describe a machine cell. A ma-
chine cell consists of several identical devices/machines.
The types and number of machines are known. There

Figure 1: FMS with several machines, a coordinate
measuring machine (CMM), AGVs and a central
tool magazine.

is a sufficient input/output buffer space at each ma-
chine.

• A part type requires a number of operations. A number
of part types will be manufactured simultaneously in
batches. Parts can choose one or more machines at
each of their operation stages, and the transportation
of the parts within different machines is handled by an
AGV system.

• A machine can perform several types of operations,
and an operation can be performed on alternative ma-
chines.

• A machine can only process an operation at one time.
Operations to be performed in the machine are non-
preemptive. Operation lot splitting is ignored in this
paper.

• A process sequence is a series of machine indices cor-
responding to operations of all parts. Based on a pro-
cess sequence, each operation is operated on its corre-
sponding machine. An illustrative process sequence of
3 parts and 10 operations is presented in Figure 2, and
the operations are operated on 3 different machines.
An example of the series of machine indices to be op-
timized is Y =[ 1 1 1 3 1 2 2 2 3 3 ].

• Workload on each machine is contributed by those op-
erations assigned to a machine.

• A load/unload (L/U) station serves as a distribution
center for parts not yet processed and as a collection
center for parts finished. All vehicles start from the
L/U station initially and return to there after accom-
plishing all their assignments. There are sufficient in-
put/output buffer spaces at the L/U station.

• The number of AGVs is given and the transportation
time of AGVs are known. Some machines may not be
linked.

• AGVs carry a limited number of products at a time.
They move along predetermined paths, with the as-
sumption of no delay because of congestion. Preemp-
tion of trips is not allowed.
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• It is assumed that all the design, layout and set-up
issues within FMS have already been resolved.

• Real-time issues, such as traffic control, congestion,
machine failure or downtime, scraps, rework, and ve-
hicle dispatches for battery changer are ignored here
and left as issues to be considered during real-time
control.

Part index 1 2 3
Operation index 1 2 3 4 1 2 3 1 2 3
Process Sequence 1 1 1 3 1 2 2 2 3 3
(Machine index)

Figure 2: A process sequence of 3 parts and 10 op-
erations, operated on 3 different machines. For ex-
ample, the operation 4 of the part 1 is assigned to
the machine 3.

3.2 Mathematical Formulation of FPSs

3.2.1 Notations
In order to formulate FPSs, the following notations are

introduced:

• i : part index, i = 1, 2, 3, ..., I.

• j : operation index for part i, j = 1, 2, 3, ..., Ji.

• k, l : machine index k, l = 1, 2, 3, ..., K.

• Y : process sequence.

• pvi : production volume (unit) for part i.

• ptijk : processing time per unit to perform operation
j of part i using machine k.

• mk : maximum workload of machine k.

• twk : workload in machine k, twk = ptijk × pvi.

• rtwk : workload ratio in machine k, rtwk = twk
mk

.

• ew : average workload of machines.

• sikl :

{
1, if part i is to transfer from machine k to l ;

0, otherwise.

• xijk :


1, if machine k is selected to perform

operation j of part i ;

0, otherwise.

• abl : available capacity of AGV per trip, abl is set to
10 in this chapter.

• nikl : the number of trips between machine k and l for
part i,

nikl = sikl × d
pvi

abl
e,

where the bracket represents a ceiling operation.

• tmkl : transportation time from machine k to l. If ma-
chines k and l are not linked, it is set to be a negative
value for constraint handling.

• tikl : total transportation time between machines k
and l for part i,

tikl = nikl × tmkl.

3.2.2 Objectives
There are three objectives to be optimized in flexible pro-

cess sequencing problems, described below.

1. Minimization of total flow time. This objective is to
minimize the processing time and transportation time
for producing the parts. The total machine processing
time (e1) is defined as Equation 4, the transportation
time (e2) is defined as Equation 5, and the total flow
time (f1) is defined as Equation 6. Transportation
between unlinked machines are penalized in e2.

e1 =

I∑
i=1

Ji∑
j=1

K∑
k=1

pvi × ptijk × xijk, (4)

e2 =

I∑
i=1

Ji−1∑
j=1

K∑
k=1

K∑
l=1

tikl × xijk × xi(j+1)l, (5)

f1 = e1 + e2. (6)

2. Minimization of machine workload unbalance. Balanc-
ing the machine workload can avoid creating bottle-
neck machines. The objective function (f2) is defined
as Equation 7.

f2 =

K∑
k=1

(rtwk − ew)2. (7)

3. Minimization of greatest machine workload. Pursuing
this objective also implies attempting to minimize the
total flow time. The objective function (f3) is defined
as Equation 8.

f3 = max{rtwk}. (8)

3.2.3 Multi-objective Mathematical Model
The overall multi-objective mathematical model of FPSs

can be formulated as follows. Given the production vol-
ume pvi, the processing time ptijk, the maximum workload
mk, the available capacity of AGV per trip abl, the trans-
portation time tmkl and the tool costs cijk, find a series of
machine indices, Y , for operations of all parts such that

minimize f1, f2, f3, (9)

subject to

K∑
k=1

xijk = 1, ∀(i, j), (10)

tmkl ≥ 0, ∀(k, l), (11)

rtwk ≤ 1, ∀i. (12)
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The constraint, Equation 10, ensures that only one ma-
chine is selected for each operation of a part. Equation 11 en-
sures an AGV path exists between machines k and l. Equa-
tion 12 is to ensure the machine workload twk is smaller or
equal to its maximum machine workload mk.

If the total number of machines is x and the total number
of operations is y, then the complexity of the investigated
problem is O(xy).

4. MULTI-OBJECTIVE MEMETIC ALGO-
RITHM WITH FITNESS INHERITANCE
MEFI

4.1 Schemata-Guided Local Search Strategy
Based on schema theorem and the niche hypothesis [5],

a schemata-guided local search strategy is proposed to be
combined with MOGA for improving the convergence speed
to the Pareto-front. Extended from the niche hypothesis,
it is assumed that, given a MOOP with Q Pareto-optimal
solutions, Q Pareto-optimal solutions can be regarded as Q
niches of the MOOP. In the worst case, to ensure MOEAs
is capable of searching Q Pareto-optimal solutions, it is as-
sumed that the population were divided into Q species (sub-
populations). Thus, each species is expect to optimize its
own niche (Pareto-optimal solution), as shown in Figure 3.
Therefore, the optimal schemata of a species is its Pareto-
optimal solution.

Let the schema of species be Hq, where the fixed positions
are the maximum common string of all individuals in its
species and the others are ”don’t care”(*). Since species are
in the same population, a schemata of a species may be
disrupted by schemata of the other species due to genetic
operators. The disruption between species can be further
classified into the following two types:

1. Species disrupt noise: The fixed schemata of Horigin

are altered to ”don’t care”schemata by the correspond-
ing positions of the schemata Hother. Thus, a species
requires more time for fixing it’s ”don’t care”schemata.

2. Species hitchhiking noise: The ”don’t care”schemata
of Horigin are altered to fixed schema by the corre-
sponding positions of the schema Hother. If the altered
schemata are located in the similarity regions of their
optimal schemata, the change is good for the schemata
Horigin. On the contrary, the change is bad for the
schemata Horigin.

Based on the foregoing inference, it is desired that a species
should keep its good schemata (building blocks) while mak-
ing good efforts to alter its ”don’t care” schemata to its
ideal optimal schemata. As results, a schemata-guided local
search strategy is proposed based on this guideline. Infor-
mation of fixed and ”don’t care” schemata in species are
utilized to guide local search. However, the key question of
this local search strategy is that how do we classify popula-
tion to different species when true Pareto-optimal solutions
of MOOPs are unknown. To deal with this question, it is as-
sumed that the best individuals in each objective functions
are the pioneers of each species. These pioneers will be used
to classify all individuals in population to different species.

Given a maximum local search times MaxLS and a tem-
porary elite set E′, the procedure of the used schemata-
guided local search strategy is written as follows:
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Figure 3: The population were divided into several
species, and each species optimizes its own niche
(Pareto-optimal solution).

Step 1: (Identification) Identify the best individuals Bq, q =
1, 2, ..., Q, in each objective from the current popula-
tion. For FPSs, Q=3.

Step 2: (Classification) Classify the current population into Q
species by the best solutions in each objective.

Step 3: (Schemata computation) For each species, compute its
schemata Hq. Both fixed and ”don’t care” schemata
are identified.

Step 4: (Parameter setting) Let q = 1, counter = 0.

Step 5: (Perturbation) Perturb Bq into a new solution B′q. Ac-
cording to Hq, apply the mutation operator only on
”don’t care” locations of Bq with a mutation probabil-
ity pm.

Step 6: (Evaluation) Evaluate the objective functions of B′q.
Let counter = counter + 1.

Step 7: (Comparison) There is 3 cases in comparisons of Bq

and B′q. Case 1: If Bq dominates B′q and counter <
MaxLS, go to Step 5. Case 2: If Bq is dominated by
B′q, replace Bq by B′q. Case 3: If Bq and B′q doesn’t
dominated each other. Stored B′q in a temporary elite
set E′.

Step 8: (Termination test) Let q = q + 1 and counter=0, if
q>Q, stop the local search strategy. Otherwise, go to
Step 5.

4.2 Fitness Inheritance
An efficiency enhancement techniques called fitness inher-

itance [2] is used for speedup of MEFI. During the evolution
of EAs, the fitness of some proportion of individuals in the
subsequent population is inherited. This proportion is called
the inheritance proportion, pi.

Mathematically, for a multi-objective problem with z ob-
jective, the used fitness inheritance is defined as

fz =
w1fz,p1 + w2fz,p2

w1 + w2
, (13)

where fz is the fitness value in objective z, w1, w2 are the
weights for the two parents p1, p2, and f(z, p1), f(z, p2) is
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the fitness values of p1, p2 in objective z, respectively. In
this paper, w1 and w2 are set to 1.

According the literature of fitness inheritance, the pop-
ulation size of FIEA should be bigger than the population
size used for MOGA, as shown in the following equation:

Npop,FIEA =
Npop,MOGA

1− p3
i

(14)

4.3 MEFI for solving FPSs

4.3.1 Representation and Operators
A series of machine indices Y for operations of all parts

is directly encoded as a integer chromosome. The range of
each gene of Y is [1, K]. Each gene of Y stands for a machine
index.

The selection operator of MEFI uses a binary tourna-
ment selection which works as follows. Choose two indi-
viduals randomly from the population and copy the better
individual into the intermediate population. The one-point
crossover is used in MEFI. A simple mutation operator is
used to alter genes. For each gene, randomly generate a real
value from the range [0, 1] with the probability pm.

MEFI uses a generalized Pareto-based scale-independent
fitness function GPSIFF [6] by the following function:

F (X) = p− q + c, (15)

where p is the number of individuals which can be dominated
by the individual X, and q is the number of individuals
which can dominate the individual X in the objective space.
c is the number of all participant individuals.

Based on the proposed chromosome representation, Equa-
tion 10 is always satisfied. If Equation 11 is violated, the
transportation time between machines k and l, tmkl, is set
to be a large value, 107. In this way, f2 will be penalized.
For each machine k, if Equation 12 is not satisfied, one is
added to rtwk, as follows:

rtwk =

{
twk
mk

, if twk ≤ mk;
twk
mk

+ 1, otherwise.
(16)

4.4 Procedure of MEFI
Since it has been recognized that the incorporation of

elitism may be useful in maintaining diversity and improv-
ing the performance of multi-objective EAs [3], MEFI se-
lects a number of elitists from an elite set E in the selection
step. The elite set E with capacity Emax maintains the best
non-dominated solutions generated so far. In addition, an
external set E with no capacity is used to store all the non-
dominated solutions ever generated so far. The procedure
of MEFI is written as follows:

Step 1: (Initialization) Randomly generate an initial popula-
tion of Npop individuals and create two empty elite
sets E, E and an empty temporary elite set E′.

Step 2: (Evaluation) For each individual Y in the population,
excluding the inherited individuals, compute the value
of objective functions f1(Y ), f2(Y ), and f3(Y ).

Step 3: (Fitness assignment) Assign each individual a fitness
value by using GPSIFF.

Table 1: The parameter settings of MEFI and
MOGA.

Parameters MEFI MOGA
Npop 115 100
Emax 115 100
ps 0.25 0.25
pi 0.5 N/A
pc 0.6 0.6
pm 0.05 0.05
MaxLS 3 N/A

Step 4: (Local search) Apply the proposed schemata-guided lo-
cal search strategy. Non-dominated solutions obtained
by the local search strategy will be stored in temporary
elite set E′.

Step 5: (Update elite sets) Add the non-dominated individu-
als in both the population and E′ to E, and empty
E′. Considering all individuals in E, remove the dom-
inated ones in E. Add E to E, remove the dominated
ones in E. If the number of non-dominated individu-
als in E is larger than Emax, randomly discard excess
individuals.

Step 6: (Selection) Select Npop−Nps individuals from the pop-
ulation using the binary tournament selection and ran-
domly select Nps individuals from E to form a new
population, where Nps = Npop × ps and ps is a selec-
tion proportion. If Nps is greater than the number NE

of individuals in E, let Nps = NE .

Step 7: (Recombination) Perform the one-point crossover op-
eration with a recombination probability pc.

Step 8: (Fitness inheritance) Perform fitness inheritance on
the selected Npop × pi individuals. The inherited ob-
jective values are calculated according to Equation 13.

Step 9: (Mutation) Apply the mutation operator to each gene
in the individuals with a mutation probability pm.

Step 10: (Termination test) If a stopping condition is satisfied,
stop the algorithm and output E. Otherwise, go to
Step 2.

5. RESULTS AND DISCUSSION
Six benchmark problems: m3o10, m4o20, m5o100, m5o200,

m10o100 and m10o200, where mxoy stands for the x ma-
chine and y operation problem. A MOGA, MEFI without
the local search strategy and fitness inheritance, is imple-
mented to solve FPSs as the baseline performance. The pa-
rameter settings of MEFI and MOGA are given in Table 1.
Thirty independent runs with the same number of function
evaluations 100xy were performed per test problems.

The coverage metric C(A, B) of two solution sets A and
B [8] used to compare the performance of two corresponding
algorithms considering the six objectives:

C(A, B) =
|{a ∈ A, b ∈ B, a � b}|

|B| , (17)

Fig. 4 depicts the coverage metrics of C(MEFI, MOGA)
and C(MOGA, MEFI) from 30 runs. In solving the small
problem m3o10, Fig. 4 shows that the performance of MEFI
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Figure 4: Box plots based on the cover metric. (a)
C(MEFI, MOGA), (b) C(MOGA, MEFI).

and MOGA are almost the same. For another small prob-
lem m4o20, the non-dominated solutions obtained by MEFI
dominates 80% of the solutions obtained by MOGA in aver-
age, while the non-dominated solutions obtained by MOGA
only dominates 60% of the non-dominated solutions obtained
by MEFI in average. As the complexity of problems in-
creases, Fig. 4 shows that 80%-90% of the non-dominated
solutions obtained by MOGA are weakly dominated by the
non-dominated solutions obtained by MEFI in solving the
problems m4o20, m5o100, m5o200, m10o100 and m10o200.
On the contrast, the non-dominated solutions of MOGA
dominate nearly 3-10% of the non-dominated solutions ob-
tained by MEFI. Fig. 5 shows the non-dominated solutions
obtained by thirty runs of MEFI and MOGA in solving the
m10o200 problem. The results indicate that MEFI can con-
verge to better solutions more quickly than MOGA. It re-
veals that the proposed schemata-guided local search strat-
egy and fitness inheritance plays an important role in obtain-
ing good solutions and accelerating the convergence speed.

6. CONCLUSION
In this paper, a novel approach to solve flexible process

sequencing problems using an multi-objective memetic al-
gorithm MEFI is proposed. A schemata-guided local search
strategy and fitness inheritance are integrated in the pro-
posed algorithm for enhancing the performance. Experimen-
tal results demonstrated that the quality of non-dominated
solutions obtained by MEFI is better than that of MOGA
in terms of convergence speed and accuracy using the same
number of function evaluations. While prior domain knowl-
edge for the decomposition of problems or relative prefer-
ences of multiple objectives are not available, the proposed
approach is an expedient method to solve flexible process
sequencing problems. Moreover, the proposed approach can
obtain a set of non-dominated solutions for decision mak-
ers in a single run. Decision makers can easily distinguish
between the costs of different process sequences and choose
more than one satisfactory process sequences at a time.
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Figure 5: The non-dominated solutions obtained by
MEFI and MOGA in solving the m10o200 problem,
merged from 30 runs.
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Abstract—This paper describes a novel multi-objective
memetic algorithm for solving multi-objective flexible pro-
cess sequencing problems in flexible manufacturing systems
(FMSs). FMS can be described as an integrated manufacturing
system consisting of machines, computers, robots, tools, and
automated guided vehicles (AGVs). While FMSs give great
advantages through the flexibility, FMSs usually pose complex
problems on process sequencing of operations among multiple
parts. Considering the machining time of operations and
machine workload load balancing, the problem is formu-
lated as multi-objective flexible process sequencing problems
(FPSs). An efficient multi-objective memetic algorithm with
fitness inheritance mechanism is proposed to solve FPSs.
The experimental results demonstrate that our approach can
efficiently solve FPSs and fitness inheritance can speed up the
convergence speed of the proposed algorithm in solving FPSs.

Keywords—process planning, flexible manufacturing sys-
tems, multi-objective optimization, memetic algorithms, fitness
inheritance

1 Introduction
Computer-aided process planning (CAPP) is an automated

system for preparation of a plan that specifies machines,
machine conditions, operations, operation sequence, and tools
required to production these components [1]. CAPP techniques
are being developed in an attempt to overcome some of
the problems occurring in manual process planning, such
as long turn around times, inconsistent routing or tooling,
non-uniqueness in cost and labor requirements and scarcity
of skilled process planners. During the past two decades,
a number of CAPP systems have been developed for the
automated planning and increased efficiency of process plan-
ning function. Traditionally, the process sequencing has been
solved by either the experience of process planners or a fixed
and static process plan consisting of an ordered sequence of
operations [2]. However, the traditional mythologies are not
suitable in real flexible environment, because the techniques
have a few constraints in order to cope with dynamic situations
of the flexible environment [3]. Moreover, as the number of op-
erations increase, it poses more difficulties for decision makers
to plan a cost-effective process sequences for manufacturing.

In this paper, a memetic algorithm using fitness inheritance
(MAFI) is proposed to solve multi-objective flexible process

sequencing problems (FPSs) having three objectives: mini-
mizing total machining time, maximum machine workload
and machine workload unbalance. The fundamental difference
of the proposed approach from the traditional approaches is
that the problem decomposition and relative preferences are
not necessary. In addition, the proposed approach can obtain
a set of non-dominated solutions for decision makers in a
single run. Decision makers can easily distinguish between
the costs of different process sequences and choose more than
one satisfactory process sequences at a time. Six benchmark
problems with different complexities are used to evaluate
the performance of the proposed approach. A multi-objective
genetic algorithm (MOGA) without local search and fitness
inheritance is used for performance comparisons. It is shown
empirically that MAFI outperforms MOGA in terms of the
solution quality.

This paper is organized as follows: Section 2 presents the
background of process sequencing problems, multi-objective
optimization problems and evolutionary algorithms. Section
3 introduces the setup of flexible manufacturing system and
the mathematical formulation of FPSs. Section 4 presents the
multi-objective memetic algorithm for solving FPSs. Section 5
presents the experimental analysis of the proposed algorithm,
and Section 6 summarizes our conclusions.

2 Background

2.1 Process Sequencing Problems

Flexible process sequencing problems are well known
among the combinatorial optimization problems. Previous
research focused on two important key issues of process
sequencing problems, described as follows. The first key
issue is the objective functions of process sequencing. Sev-
eral approaches are proposed for process sequencing with
various objectives. For examples, Kusiak and Finke [2] have
developed a model for selecting a set of process plans with
the objective of minimizing the makespan. Bhaskaran [4]
provided a model for minimizing the total machine time and
the total number of processing steps. Zhang and Huang [5]
presented a fuzzy-based model for the selection of a set of
process plans considering the imprecise information of shop
floor. Furthermore, various heuristic approaches [6] have been
proposed for minimizing the makespan.



Another key issue that arises recently is the alternative
process sequences. In the view of real time scheduling, al-
ternative process sequences provide additional capability for
the decision maker (DM) to cope with unpredictable events
such as machine failures or rush orders. From the view of off-
line scheduling, alternative process sequences may be used
to improve the schedule quality by reducing the load on
bottleneck machines [4]. Generally speaking, finding a set of
optimal alternative process sequences economically plays an
important role in solving the process sequencing problems.
However, it is easier to obtain the alternative process sequences
with single objective than that with multiple objectives. It
is because, simultaneous optimization of several incommen-
surable and conflicting objectives in nature is much more
complex and difficult. On the other hand, flexible process
sequencing with multiple objectives makes more practical
applications in the design phase of industrial manufacturing.
As a result, it is essential but also a challenge for DM to
prepare a set of alternative process sequences considering the
trade-off between schedule quality and the costs of process
sequences.

The above issues lead to flexible process sequencing prob-
lems (FPSs), which simultaneously considers alternative pro-
cess plans with multiple objectives and the flexibility of pro-
cess sequences. Over the past decade, a number of models have
been developed to solve the process sequencing problems, but
only few models [3], [4] have been reported to design the
process sequencing problem considering the above issues. To
date, solving the problem of flexible process sequencing with
multiple objectives that are conflicting in nature is still a hard
task.

2.2 Multi-objective Evolutionary Optimization
Assume all the objective functions Fm are to be mini-

mized. Mathematically, multi-objective optimization problems
(MOOPs) can be represented as the following vector mathe-
matical programming problems:

Minimize F (X) = {F1(X), F2(X), ..., Fm(X)}, (1)

where X denotes a solution and Fm(X) is generally a nonlin-
ear objective function. When the following inequalities hold
between two solutions X1 and X2, X2 is a non-dominated
solution and is said to dominate X1(X2 � X1):

∀m : Fm(X1) ≥ Fm(X2) and ∃n : Fn(X1) > Fn(X2).
(2)

When the following inequality hold between two solutions X1

and X2, X2 is said to weakly dominate X1(X2 � X1):

∀m : Fm(X1) ≥ Fm(X2). (3)

A feasible solution X∗ is said to be a Pareto-optimal solution
if and only if there does not exist a feasible solution X where
X dominates X∗. The corresponding vector of Pareto-optimal
solutions is called Pareto-optimal front.

In the past few years, multi-objective evolutionary algo-
rithms (MOEAs) have been recognized to be well-suited for

Fig. 1. FMS with several machines, a coordinate measuring
machine (CMM), AGVs and a central tool magazine.

solving MOOPs because their abilities to exploit and explore
multiple solutions in parallel and to find a widespread set
of non-dominated solutions in a single run [7]. By making
use of Pareto dominance relationship, MOEAs are capable of
performing the fitness assignment of multiple objectives with-
out using relative preferences of multiple objectives. Thus, all
the objective functions can be optimized simultaneously. One
of the recent growing areas in evolutionary algorithms (EAs)
research is memetic agorithms (MAs). MAs are population-
based meta-heuristic search methods inspired by Darwinian
principles of natural evolution and Dawkins notion of a meme
defined as a unit of cultural evolution that is capable of local
refinements [8]. From an optimization point of view, MAs are
hybrid EAs that combine global and local search by using
an EA to perform exploration while the local search method
performs exploitation. Combining global and local search is
known as an efficient strategy in many successful optimization
approaches [9], [10].

3 Problem Statement
The aim of flexible process sequencing is to develop a cost-

effective and operative process sequences for the assignments
of operation to machines over planning phases. With the
assignments of operations to machines, three optimization ob-
jectives: minimizing total machining time, machine workload
unbalance, and greatest machine workload are considered in
this paper.

3.1 The FMS Environment
An FMS consists of a set of identical and/or complementary

numerically controlled machines and tool systems. All compo-
nents are connected through an AGV system. Figure 1 shows
the layout of a simple FMS with several machines, AGVs and
a tool system.

In order to design the production planning of FMSs, the en-
vironment within which the FMS under consideration operates
can be described below.



Part index 1 2 3
Operation index 1 2 3 4 1 2 3 1 2 3

Process Sequence 1 1 1 3 1 2 2 2 3 3
(Machine index)

Fig. 2. A process sequence of 3 parts and 10 operations,
operated on 3 different machines. For example, the operation
4 of the part 1 is assigned to the machine 3.

• The term machine is to describe a machine cell. A ma-
chine cell consists of several identical devices/machines.
The types and number of machines are known. There is
a sufficient input/output buffer space at each machine.

• A part type requires a number of operations. A number
of part types will be manufactured simultaneously in
batches. Parts can choose one or more machines at each
of their operation stages, and the transportation of the
parts within different machines is handled by an AGV
system.

• A machine can perform several types of operations, and
an operation can be performed on alternative machines.

• A machine can only process an operation at one time.
Operations to be performed in the machine are non-
preemptive. Operation lot splitting is ignored in this
paper.

• A process sequence is a series of machine indices corre-
sponding to operations of all parts. Based on a process
sequence, each operation is operated on its corresponding
machine. An illustrative process sequence of 3 parts and
10 operations is presented in Figure 2, and the operations
are operated on 3 different machines. An example of the
series of machine indices to be optimized is Y =[ 1 1 1
3 1 2 2 2 3 3 ].

• Workload on each machine is contributed by those oper-
ations assigned to a machine.

• A load/unload (L/U) station serves as a distribution
center for parts not yet processed and as a collection
center for parts finished. All vehicles start from the L/U
station initially and return to there after accomplishing all
their assignments. There are sufficient input/output buffer
spaces at the L/U station.

• The number of AGVs is given and the transportation time
of AGVs are known. Some machines may not be linked.

• AGVs carry a limited number of products at a time. They
move along predetermined paths, with the assumption of
no delay because of congestion. Preemption of trips is
not allowed.

• It is assumed that all the design, layout and set-up issues
within FMS have already been resolved.

• Real-time issues, such as traffic control, congestion, ma-
chine failure or downtime, scraps, rework, and vehicle
dispatches for battery changer are ignored here and left
as issues to be considered during real-time control.

3.2 Mathematical Formulation of FPSs
3.2.1 Notations: In order to formulate FPSs, the following

notations are introduced:

• i : part index, i = 1, 2, 3, ..., I .
• j : operation index for part i, j = 1, 2, 3, ..., Ji.
• k, l : machine index k, l = 1, 2, 3, ...,K.
• Y : process sequence.
• pvi : production volume (unit) for part i.
• ptijk : processing time per unit to perform operation j of

part i using machine k.
• mk : maximum workload of machine k.
• twk : workload in machine k, twk = ptijk × pvi.
• rtwk : workload ratio in machine k, rtwk = twk

mk
.

• ew : average workload of machines.

• sikl :

{
1, if part i is to transfer from machine k to l;
0, otherwise.

• xijk :


1, if machine k is selected to perform

operation j of part i;
0, otherwise.

• abl : available capacity of AGV per trip, abl is set to 10
in this chapter.

• nikl : the number of trips between machine k and l for
part i,

nikl = sikl × d
pvi

abl
e,

where the bracket represents a ceiling operation.
• tmkl : transportation time from machine k to l. If

machines k and l are not linked, it is set to be a negative
value for constraint handling.

• tikl : total transportation time between machines k and l
for part i,

tikl = nikl × tmkl.

3.2.2 Objectives: There are three objectives to be optimized
in flexible process sequencing problems, described below.

1) Minimization of total flow time. This objective is to
minimize the processing time and transportation time for
producing the parts. The total machine processing time
(e1) is defined as Equation 4, the transportation time
(e2) is defined as Equation 5, and the total flow time
(f1) is defined as Equation 6. Transportation between
unlinked machines are penalized in e2.

e1 =
I∑

i=1

Ji∑
j=1

K∑
k=1

pvi × ptijk × xijk, (4)

e2 =
I∑

i=1

Ji−1∑
j=1

K∑
k=1

K∑
l=1

tikl × xijk × xi(j+1)l, (5)

f1 = e1 + e2. (6)

2) Minimization of machine workload unbalance. Balanc-
ing the machine workload can avoid creating bottleneck



machines. The objective function (f2) is defined as
Equation 7.

f2 =
K∑

k=1

(rtwk − ew)2. (7)

3) Minimization of greatest machine workload. Pursuing
this objective also implies attempting to minimize the
total flow time. The objective function (f3) is defined
as Equation 8.

f3 = max{rtwk}. (8)

3.2.3 Multi-objective Mathematical Model: The overall
multi-objective mathematical model of FPSs can be formulated
as follows. Given the production volume pvi, the processing
time ptijk, the maximum workload mk, the available capacity
of AGV per trip abl, the transportation time tmkl and the tool
costs cijk, find a series of machine indices, Y , for operations
of all parts such that

minimize f1, f2, f3, (9)

subject to
K∑

k=1

xijk = 1, ∀(i, j), (10)

tmkl ≥ 0, ∀(k, l), (11)

rtwk ≤ 1, ∀i. (12)

The constraint, Equation 10, ensures that only one machine
is selected for each operation of a part. Equation 11 ensures
an AGV path exists between machines k and l. Equation 12
is to ensure the machine workload twk is smaller or equal to
its maximum machine workload mk.

If the total number of machines is x and the total number
of operations is y, then the complexity of the investigated
problem is O(xy).

4 Multi-objective Memetic Algorithm with Fit-
ness Inheritance MAFI

The proposed MAFI differs from MOGA in the local
search strategy and fitness inheritance. The used schemata-
guided local search strategy is presented in Section 4.1. Fitness
inheritance is summarized in Section 4.2. MAFI for solving
FPSs is presented in Section 4.3, including the representation
of chromosomes, genetic operators, constraint handling, and
the procedure of MAFI.

4.1 Schemata-Guided Local Search Strategy
Based on schema theorem and the niche hypothesis [11],

a schemata-guided local search strategy is proposed to be
combined with MOGA for improving the convergence speed
to the Pareto-front. Extended from the niche hypothesis, it is
assumed that, given a MOOP with Q Pareto-optimal solutions,
Q Pareto-optimal solutions can be regarded as Q niches of
the MOOP. In the worst case, to ensure MOEAs is capable
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Fig. 3. The population were divided into several species, and
each species optimizes its own niche (Pareto-optimal solution).

of searching Q Pareto-optimal solutions, it is assumed that
the population were divided into Q species (sub-populations).
Thus, each species is expect to optimize its own niche (Pareto-
optimal solution), as shown in Figure 3. Therefore, the optimal
schemata of a species is its Pareto-optimal solution.

Let the schema of species be Hq , where the fixed positions
are the maximum common string of all individuals in its
species and the others are ”don’t care”(*). Since species are in
the same population, a schemata of a species may be disrupted
by schemata of the other species due to genetic operators. The
disruption between species can be further classified into the
following two types:

1) Species disrupt noise: The fixed schemata of Horigin

are altered to ”don’t care” schemata by the correspond-
ing positions of the schemata Hother. Thus, a species
requires more time for fixing it’s ”don’t care” schemata.

2) Species hitchhiking noise: The ”don’t care” schemata
of Horigin are altered to fixed schema by the corre-
sponding positions of the schema Hother. If the altered
schemata are located in the similarity regions of their
optimal schemata, the change is good for the schemata
Horigin. On the contrary, the change is bad for the
schemata Horigin.

Based on the foregoing inference, it is desired that a species
should keep its good schemata (building blocks) while making
good efforts to alter its ”don’t care” schemata to its ideal
optimal schemata. As results, a schemata-guided local search
strategy is proposed based on this guideline. Information of
fixed and ”don’t care” schemata in species are utilized to guide
local search. However, the key question of this local search
strategy is that how do we classify population to different
species when true Pareto-optimal solutions of MOOPs are
unknown. To deal with this question, it is assumed that the
best individuals in each objective functions are the pioneers
of each species. These pioneers will be used to classify all
individuals in population to different species.

Given a maximum local search times MaxLS and a tem-
porary elite set E′, the procedure of the used schemata-guided



local search strategy is written as follows:
Step 1 : (Identification) Identify the best individuals Bq, q =

1, 2, ..., Q, in each objective from the current popu-
lation. For FPSs, Q=3.

Step 2 : (Classification) Classify the current population into
Q species by the best solutions in each objective.

Step 3 : (Schemata computation) For each species, com-
pute its schemata Hq . Both fixed and ”don’t care”
schemata are identified.

Step 4 : (Parameter setting) Let q = 1, counter = 0.
Step 5 : (Perturbation) Perturb Bq into a new solution B′q .

According to Hq , apply the mutation operator only
on ”don’t care” locations of Bq with a mutation
probability pm.

Step 6 : (Evaluation) Evaluate the objective functions of B′q .
Let counter = counter + 1.

Step 7 : (Comparison) There is 3 cases in comparisons
of Bq and B′q . Case 1: If Bq dominates B′q and
counter < MaxLS, go to Step 5. Case 2: If Bq is
dominated by B′q , replace Bq by B′q . Case 3: If Bq

and B′q doesn’t dominated each other. Stored B′q in
a temporary elite set E′.

Step 8 : (Termination test) Let q = q + 1 and counter=0, if
q¿Q, stop the local search strategy. Otherwise, go to
Step 5.

4.2 Fitness Inheritance
An efficiency enhancement techniques called fitness inheri-

tance [12] is used for speedup of MAFI. During the evolution
of EAs, the fitness of some proportion of individuals in the
subsequent population is inherited. This proportion is called
the inheritance proportion, pi.

Mathematically, for a multi-objective problem with z objec-
tive, the used fitness inheritance is defined as

fz =
w1fz,p1 + w2fz,p2

w1 + w2
, (13)

where fz is the fitness value in objective z, w1, w2 are the
weights for the two parents p1, p2, and f(z, p1), f(z, p2) is
the fitness values of p1, p2 in objective z, respectively. In this
paper, w1 and w2 are set to 1.

According the literature of fitness inheritance, the popula-
tion size of FIEA should be bigger than the population size
used for MOGA, as shown in the following equation:

Npop,FIEA =
Npop,MOGA

1− p3
i

(14)

4.3 MAFI for solving FPSs
A series of machine indices Y for operations of all parts is

directly encoded as a integer chromosome. The range of each
gene of Y is [1, K]. Each gene of Y stands for a machine
index.

The selection operator of MAFI uses a binary tournament
selection which works as follows. Choose two individuals
randomly from the population and copy the better individual

into the intermediate population. Crossover is a recombina-
tion process in which genes from two selected parents are
recombined to generate offspring chromosomes. The one-point
crossover is used in MAFI. A simple mutation operator is used
to alter genes. For each gene, randomly generate a real value
from the range [0, 1]. If the value is smaller than the mutation
probability pm, replace its index with a randomly generated
integer among its possible values.

MAFI uses a generalized Pareto-based scale-independent
fitness function GPSIFF [13] by the following function:

F (X) = p− q + c, (15)

where p is the number of individuals which can be dominated
by the individual X , and q is the number of individuals which
can dominate the individual X in the objective space. c is the
number of all participant individuals.

Based on the proposed chromosome representation, Equa-
tion 10 is always satisfied. If Equation 11 is violated, the
transportation time between machines k and l, tmkl, is set
to be a large value, 107. In this way, f2 will be penalized. For
each machine k, if Equation 12 is not satisfied, one is added
to rtwk, as follows:

rtwk =

{
twk

mk
, if twk ≤ mk;

twk

mk
+ 1, otherwise.

(16)

4.4 Procedure of MAFI
Since it has been recognized that the incorporation of

elitism may be useful in maintaining diversity and improving
the performance of multi-objective EAs [7], MAFI selects a
number of elitists from an elite set E in the selection step.
The elite set E with capacity Emax maintains the best non-
dominated solutions generated so far. In addition, an external
set E with no capacity is used to store all the non-dominated
solutions ever generated so far. The procedure of MAFI is
written as follows:

Step 1 : (Initialization) Randomly generate an initial popu-
lation of Npop individuals and create two empty elite
sets E, E and an empty temporary elite set E′.

Step 2 : (Evaluation) For each individual Y in the popu-
lation, excluding the inherited individuals, compute
the value of objective functions f1(Y ), f2(Y ), and
f3(Y ).

Step 3 : (Fitness assignment) Assign each individual a fit-
ness value by using GPSIFF.

Step 4 : (Local search) Apply the proposed schemata-
guided local search strategy. Non-dominated solu-
tions obtained by the local search strategy will be
stored in temporary elite set E′.

Step 5 : (Update elite sets) Add the non-dominated indi-
viduals in both the population and E′ to E, and
empty E′. Considering all individuals in E, remove
the dominated ones in E. Add E to E, remove
the dominated ones in E. If the number of non-
dominated individuals in E is larger than Emax,
randomly discard excess individuals.



Step 6 : (Selection) Select Npop−Nps individuals from the
population using the binary tournament selection and
randomly select Nps individuals from E to form a
new population, where Nps = Npop × ps and ps

is a selection proportion. If Nps is greater than the
number NE of individuals in E, let Nps = NE .

Step 7 : (Recombination) Perform the one-point crossover
operation with a recombination probability pc.

Step 8 : (Fitness inheritance) Perform fitness inheritance on
the selected Npop × pi individuals. The inherited
objective values are calculated according to Equa-
tion 13.

Step 9 : (Mutation) Apply the mutation operator to each
gene in the individuals with a mutation probability
pm.

Step 10 :(Termination test) If a stopping condition is satis-
fied, stop the algorithm and output E. Otherwise, go
to Step 2.

5 Results and discussion
Considering the real manufacturing environment, we de-

rived the AGV transportation time matrix and six benchmark
problems: m3o10, m4o20, m5o100, m5o200, m10o100 and
m10o200, where mxoy stands for the x machine and y opera-
tion problem. In order to further investigate the performance
of MAFI, a MOGA (MAFI without the local search strategy
and fitness inheritance) is also implemented to solve FPSs.
The solutions obtained by MOGA are used as the baseline
performance for comparisons. The parameter settings of MAFI
and MOGA are given in Table I. All the parameters of
MAFI and MOGA in each experiment are the same. Thirty
independent runs were performed per test problems, compared
with the same number of function evaluations 100xy.

The coverage metric C(A, B) of two solution sets A and
B [14] used to compare the performance of two corresponding
algorithms considering the six objectives:

C(A, B) =
|{a ∈ A, b ∈ B, a � b}|

|B|
, (17)

where � stands for weakly dominate in Pareto dominance
relationship. The value C(A, B) = 1 means that all indi-
viduals in B are weakly dominated by A. On the contrary,
C(A, B) = 0 denotes that none of individuals in B is weakly
dominated by A. Because the C measure considers the weakly
dominance relationship between two sets A and B, C(A, B) is
not necessarily equal to 1−C(B, A). The comparison results
of two solution sets using the coverage metric are depicted
using box plots. A box plot provides an excellent visual result
of a distribution. The box stretches from the lower hinge
(defined as the 25th percentile) to the upper hinge (the 75th
percentile) and therefore contains the middle half of the scores
in the distribution. The median is shown as a line across the
box.

For each run, the solutions set of two algorithms are
compared using the coverage metric. Fig. 4 depicts the cover-
age metrics of C(MAFI, MOGA) and C(MOGA,MAFI)

TABLE I
THE PARAMETER SETTINGS OF MAFI AND MOGA.

Parameters MAFI MOGA
Npop 115 100
Emax 115 100
ps 0.25 0.25
pi 0.5 N/A
pc 0.6 0.6
pm 0.05 0.05
MaxLS 3 N/A
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(b) C(MOGA, MAFI)

m3o10 m4o20 m5o100 m5o200 m10o100 m10o200

0

0.2

0.4

0.6

0.8

1

(a) C(MAFI, MOGA)

Fig. 4. Box plots based on the cover metric. (a) C(MAFI,
MOGA), (b) C(MOGA, MAFI).

from 30 runs. In solving the small problem m3o10, Fig. 4
shows that the performance of MAFI and MOGA are al-
most the same. For another small problem m4o20, the non-
dominated solutions obtained by MAFI dominates 80% of
the solutions obtained by MOGA in average, while the non-
dominated solutions obtained by MOGA only dominates 60%
of the non-dominated solutions obtained by MAFI in aver-
age. As the complexity of problems increases, Fig. 4 shows
that 80%-90% of the non-dominated solutions obtained by
MOGA are weakly dominated by the non-dominated solutions
obtained by MAFI in solving the problems m4o20, m5o100,
m5o200, m10o100 and m10o200. On the contrast, the non-
dominated solutions of MOGA dominate nearly 3-10% of the
non-dominated solutions obtained by MAFI. Fig. 5 shows the
non-dominated solutions obtained by thirty runs of MAFI and
MOGA in solving the m10o200 problem. The results indicate
that MAFI can converge to better solutions more quickly than
MOGA. It reveals that the proposed schemata-guided local
search strategy and fitness inheritance plays an important role
in obtaining good solutions and accelerating the convergence
speed.

6 Conclusion
In this paper, a novel approach to solve flexible process

sequencing problems using an multi-objective memetic al-
gorithm MAFI is proposed. A schemata-guided local search
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Fig. 5. The non-dominated solutions obtained by MAFI and
MOGA in solving the m10o200 problem, merged from 30
runs.

strategy and fitness inheritance are integrated in the proposed
algorithm for enhancing the performance. Experimental results
demonstrated that the quality of non-dominated solutions
obtained by MAFI is better than that of MOGA in terms of
convergence speed and accuracy using the same number of
function evaluations. The results indicate that the proposed
approach is an efficient approach to solving FPSs.

In addition, the advantages of the proposed approach are that
MAFI can optimized multiple objectives without decomposing
problems into sub-problems or using relative preferences of
multiple objectives. While prior domain knowledge for the
decomposition of problems or relative preferences of mul-
tiple objectives are not available, the proposed approach is
an expedient method to solve flexible process sequencing
problems. Moreover, the proposed approach can obtain a set
of non-dominated solutions for decision makers in a single
run. Decision makers can easily distinguish between the costs
of different process sequences and choose more than one
satisfactory process sequences at a time.
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ABSTRACT 
This paper describes a multi-objective evolutionary approach for 
solving multi-objective 3D deployment problems in differentiated 
wireless sensor networks (WSNs). WSN is a wireless network 
consisting of spatially distributed autonomous sensors to monitor 
physical or environmental conditions. Deciding the location of 
sensor to be deployed on a terrain with the consideration different 
criteria is an important issue for the design of wireless sensor 
network. A multi-objective genetic algorithm is proposed to solve 
3D differentiated WSN deployment problems with the objectives 
of the coverage of sensors, satisfaction of detection thresholds, 
and energy conservation. The preliminary experimental results 
demonstrated that the proposed approach is suitable for solving 
3D deployment problems of WSNs with different requirements. 

Categories and Subject Descriptors 
J.6 [COMPUTER-AIDED ENGINEERING]: Computer-aided 
design (CAD) 

General Terms 
Algorithms, Design, Performance 

Keywords 
Wireless sensor network, multi-objective optimization, genetic 
algorithms 

1. INTRODUCTION 
A wireless sensor network (WSN) is a wireless network 

consisting of spatially distributed autonomous sensors to monitor 
physical or environmental conditions. WSN constitute a large 
number of applications related to national security, surveillance, 
military, health care, and home automation. Sensor nodes of a 
WSN are deployed over a region to sense events on geographical 
areas and transmit collected data to a sink node for further 
operations. Depending on the requirements, sensors could be 
deployed in diverse scenarios [6,9]. Therefore, deciding the 
location of sensor to be deployed on a terrain is an important issue. 
Several different objectives should be considered and fulfilled in 
the design phase of WSNs, such as the coverage and accuracy, 
reaction time and survivability of the sensor network. However, 
these objectives may be in conflict with one another and of 
different importance to mission planners [8].  

Coverage is one of the fundamental issue in the deployment of 
WSNs. WSNs need to maintain sufficient coverage quality to 

capture the timely changing targets [10]. For enhanced coverage, 
a large number of sensors are typically deployed in the sensor 
field and, if the coverage areas of multiple sensors overlap, they 
may all report a target in their respective zones [5].  

Differentiated sensor network deployment, which considers the 
satisfaction of detection levels in different geographical 
characteristics, is also an important issue [7]. In many real-world 
WSN applications, the supervised area can request different 
detection levels, depending on the event's location. Therefore, the 
sensing requirements are not uniformly distributed within the area. 
In other words, all the points of the area under monitoring are 
considered with the different importance. As a result, the 
deployment strategy of WSN should take into consideration the 
geographical characteristics of the monitored events.  

Energy conservation for the lifetime of sensors is another rising 
issue [1]. Due to the limited energy resource in each sensor node, 
we need to utilize the sensors in an efficient manner so as to 
increase the lifetime of the network. There are two different 
approaches to the problem of conserving energy in sensor 
networks. The first approach is to plan a schedule of active 
sensors that enables other sensors to go into a sleep mode. The 
second approach is adjusting the sensing range of sensors for 
energy conservation. In this paper, we focus on adjusting the 
sensing range of each sensor in order to reduce the overlaps 
among sensing ranges while keep the detection ability above a 
predefined detection level. 

In this paper, a 3D differentiated WSN deployment considering 
coverage, satisfaction of detection levels, and energy conservation 
is formulated into a multi-objective optimization problem. We 
represent the sensor field as a three-dimensional grid of points. 
Three objectives are to be optimized: maximizing coverage of 
sensors, satisfying the required probability of detection threshold, 
and minimizing the detection power by adjustable sensing range. 
To solve the aforementioned multi-objective optimization 
problem, we developed a multi-objective genetic algorithm 
(MOGA) framework. The proposed approach can obtain a set of 
non-dominated solutions. As a result, mission planner can deploy 
sensor nodes considering different requirements of applications. 

2. RELATED WORK 
2.1 WSN Deployment Problem  

Coverage issue is one of the most important tasks in WSN. The 
ultimate goal is to have each location in the physical space of 
interest within the sensing range of at least one sensor. However, 
due to the number of sensors is limited, complete coverage cannot 
be guaranteed. Therefore, many approaches are proposed to deal 
with the 2D coverage problem. Oh et al. [8] proposed a genetic 
algorithm for the optimal selection of the number and type of 
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sensors available from a suite of sensors. Dhawan et al. [3] 
proposed a novel searching algorithm based on improved NSGA-
II to select an optimal cover set. It maintains the full coverage in 
large sensor networks by a small number of sensor nodes. For a 
practical approach, a probabilistic sensor detection model is 
adopted in combination with the detection error range and 
coverage threshold. Recently, Oktug et al. [9] proposed an 
approach to solve coverage problem by simulating sensor 
deployment strategies on a 3D terrain model and to find answers 
to questions that how many sensors are needed to cover a 
specified 3D terrain at a specified coverage percentage.  

In recent years, how to efficiently utilize limited energy in a 
wireless sensor network has become an important issue. In [2], the 
problem is to prolong maximum network lifetime when all grid 
points are covered and sensor energy resources are constrained. In 
[6], the method used to extend the network lifetime is to divide 
the sensors into a number of sets, such that only one set is 
responsible for monitoring the targets, and all other sensors are in 
sleep mode. In the sleep mode, it consumes the least energy. If all 
the sensor nodes operate in the active mode simultaneously, an 
excessive amount of energy will be wasted and the data collected 
will be redundant. In [4], two new energy-efficient models of 
different sensing ranges are proposed. They used scheduling 
models with adjustable sensing ranges of each sensor in order to 
reduce the overlaps among detection ranges.  

Different applications require different degrees of sensing 
coverage. While some applications may require a complete 
coverage in a region, others may only need a high percentage of 
coverage. Such WSN is called differentiated WSN [7]. In [11], 
three density control protocols by considering the tradeoff 
between energy usage and coverage was developed to select 
sensors. Few studies have considered the case of geographical 
irregularity of the sensed event. Aitsaadi et al. [7] presented a 
required minimum probability detection threshold of each grid 
point. They proposed a probabilistic event detection model and 
use a Tabu Search method to solve the differentiated WSN 
deployment problem. 

2.2 Multi-objective Evolutionary 
Optimization 

Assume the multi-objective functions are to be minimized. 
Mathematically, MOOPs can be represented as the following 
vector mathematical programming problems: 

)}.(...,),(),({)( 21 YFYFYFYFMinimize i=  (1)

where Y denotes a solution and Fi(Y) is generally a nonlinear 
objective function. Pareto dominance relationship and some 
related terminologies are introduced below. When the following 
inequalities hold between two solutions Y1 and Y2, Y2 is a non-
dominated solution and is said to dominate Y1 (Y2 Y1): 

).()(:)()(: 2121 YFYFjYFYFi jjii >∃∧≥∀ (2)

When the following inequality hold between two solutions Y1 and 
Y2, Y2 is said to weakly dominate Y1 (Y2 Y1): 

).()(: 21 YFYFi ii ≥∀
 

(3)

A feasible solution Y * is said to be a Pareto-optimal solution if 
and only if there does not exist a feasible solution Y where Y 

dominates Y *, and the corresponding vector of Pareto-optimal 
solutions is called Pareto-optimal front. 

By making use of Pareto dominance relationship, multi-
objective evolutionary algorithms (MOEAs) are capable of 
performing the fitness assignment of multiple objectives without 
using relative preferences of multiple objectives. Thus, all the 
objective functions can be optimized simultaneously. As a result, 
MOEA seems to be an alternative approach to solving production 
planning and inspection planning problems on the assumption that 
no prior domain knowledge is available. 

3. PROBLEM STATEMENT 
3.1 Notations 

In order to formulate problems, the following notations are 
introduced: 

 i : sensor index, i = 1,2,3,…,N.  
 j : grid point index, j = 1,2,3,…,M.  
 k : sensing range index, k = 1,2,3,…,K.  

 
3.2 Environment 

We assume that N sensors s1,s2,…, sN are deployed to cover the 
sensor field. Let the sensor field T consist of nx, ny, and nz grid 
points p1,p2,…, pM in the x, y, and z dimensions, respectively [5]. 
Each sensor has an initial sensor energy E and has the capability 
to adjust its sensor range. Sensing range options are r1,r2,…, rK, 
corresponding to energy consumptions of e1,e2,…, eK and 
detection error ranges f1,f2,…, fK (fk < rk) [6]. We assume that each 
grid point pj in sensor field is associated a required minimum 
probability detection threshold, denoted t(pj).  

3.3 Mathematical Formation of 3D 
Deployment Problem 
3.3.1 Coverage 

In many WSN applications, the main task is the surveillance of 
certain geographical areas [9]. Target location can be simplified 
considerably if the sensors are placed in such a way that every 
grid point in the sensor field is covered by sensors. In this way, 
the sensors reporting a target at time t uniquely identifies the grid 
location for the target at time t. The trajectory of a moving target 
can also be easily determined in this fashion from time series data 
[5].  

Assume that sensor si is deployed at grid point. For any grid 
point pj, the Euclidean distance between sensor si and grid point pj 
is denoted as  

222 )z(z)y(y)x(x)p,d(s jijijiji −+−+−=  (4) 

where xi, xj, yi, yj, zi and zj are coordinate location values. The way 
to compute the sensor and target coverage relationship is to 
consider that a sensor covers a target if the Euclidean distance 
between the sensor and target is no greater than a predefined 
sensing range. The following equation shows a binary detection 
model expressing the coverage cb(si, pj) of a grid point pj by 
sensor si.  
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, where rk(si) is the sensing range of the sensor si. In this paper, we 
use this binary detection model in coverage problem. Thus, the 
coverage rate optimization problem F1 can be defined by  

1
1.

M

b j
j

c (p )
Max F

M
==
∑

 

 
(6) 

, where cb(pj) is the coverage of all sensors at grid point pj by the 
Equation (5). This objective is to be maximized. 

3.3.2 Detection Probability Thresholds 
We suppose that the sensor field is characterized by the 

geographical irregularity of the sensed events. This assumption is 
justified by many realistic WSN applications case studies. To 
efficiently monitor the area, and since we consider a probabilistic 
detection model, we assume that, to each grid point pj in sensor 
field is associated a required minimum probability detection 
threshold, denoted t(pj). Some grid points pj in sensor field T will 
have a low detection probability if they are covered only by one 
sensor and far from other sensors. In this case, it is necessary to 
make the detection area overlapped to compensate for the low 
detection probability of the grid points that are far from any 
sensor. Ideally, a good WSN deployment algorithm should lead to 
obtain that each pj in T the measured detection probability of that 
point is greater than t(pj) [7].  
   In reality, binary detection model has limitations due to the 
imprecise detection probability, which plays a significant role in 
sensor detection [3]. Hence, a detection error range is introduced 
to measure the uncertainty of sensor detection [3]. More precisely, 
we assume that event detection ability of a sensor diminishes as 
its distance to the sensed point increases [7]. A probabilistic 
detection model is expressed as 
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, where α = d(si, pj) - (rk(si) - fk(si)), λ and β are parameters that 
measure the detection probabilities when an object is within a 
certain distance from the sensor, and fk(si) is the error ranges of 
the sensor si. Each sensor si has a detection probability cp(si, pj) at 
grid point pj. A grid point pj might be covered by more than one 
detection range of different sensors [2]. When a detection area is 
overlapped by multiple sensors, the closer are the sensors to each 
other, the higher is the detection probability of the grid points [3]. 
The conjunctive detection probability of all sensors at grid point 
pj is given by  

1
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The optimization of the satisfaction required probability of 
detection threshold  F2 is expressed by: 
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This objective is to be maximized.  

3.3.3 Energy Consumption 
In terms of energy consumption, we only consider the energy 

used in sensing, not including the power consumed by radio 
communication and computation. The sensing ranges of a sensor 
determine the energy consumed by the sensor [6]. We attempt to 
make the detection regions of sensors not overlapped, thereby 
minimizing the wasted overlap area and covering more grid points 
with a small number of sensors. We apply a energy model in our 
evaluation, in which the power consumption is proportional to the 
square of the sensing range rk [11]. The energy consumption 
model is expressed as follows:  

2)(sr)(se ikik ×= μ  (10) 

, where μ is an energy consumption parameter. The optimization 
of the detection power minimization with adjustable sensing range 
F3 can be formulated as  
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, where emax(si) is the maximum detection range of each sensor. 
This objective is to be minimized.  

4. MULTI-OBJECTIVE GENETIC 
ALGORITHM 
4.1 Chromosome Representation 

A chromosome has gene information for solving the problem in 
MOGA. Each chromosome has fixed gene size, which is 
determined by the number of sensors in the WSN. Each gene has 
a x, y, and z coordinate location and a sensing range. The ranges 
of each gene of coordinate location are [0, nx], [0, ny], and [0, nz] 
in the x, y, and z dimensions. Hence these sensors will have 
coordinate values to denote their location. Each gene of sensing 
range is one of r1,r2,…, rK, which represent the detection ability of 
the sensor. 

4.2 Fitness Assignment 
We use a generalized Pareto-based scale-independent fitness 

function (GPSIFF) considering the quantitative fitness values in 
Pareto space for both dominated and non-dominated individuals. 
GPSIFF makes the best use of Pareto dominance relationship to 
evaluate individuals using a single measure of performance. The 
used GPSIFF is briefly described below. Let the fitness value of 
an individual X be a tournament-like score obtained from all 
participant individuals by the following function:  

cqpXF +−=)(  (12) 

, where p is the number of individuals which can be dominated by 
the individual X, and q is the number of individuals which can 
dominate the individual X in the objective space. Generally, a 
constant c can be optionally added in the fitness function to make 
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fitness values positive. c is usually set to the number of all 
participant individuals.  

4.3 Genetic Operators 
The genetic operators used in the proposed approach are widely 

used in literature. The selection operator uses a binary tournament 
selection without replacement, which works as follows. Choose 
two individuals randomly from the population and copy the better 
individual into the intermediate population. 
  Crossover is a recombination process in which genes from two 
selected parents are recombined to generate offspring 
chromosomes. The uniform crossover is used in MOGA. In a 
uniform crossover operation, first requires a randomly created 
binary string, called crossover mask. The genes of offspring 
chromosomes are swapped from the parents according to this 
mask. If the crossover mask bit is 0, then the characters in the 
corresponding string position are not swapped and if the crossover 
mask bit is 1, than the mating string characters at that position are 
swapped.  
  A simple mutation operator is used to alter genes. For each gene, 
randomly generate a real value from the range [0, 1]. If the value 
is smaller than the mutation probability pm, replace its index with 
a randomly generated integer among its possible values.  

4.4 Procedure of MOGA 
The procedure of MOGA is written as follows:  

Input: population size Npop, recombination probability pc, 
mutation probability pm, the number of maximum generations 
Gmax.  
Output: The optimum solutions ever found in P.  
Step 1: Initialization Randomly generate an initial population P 
of Npop individuals.  
Step 2: Evaluation For each individual in the population, 
compute all objective function values F1, F2, and F3.  
Step 3: Fitness assignment Assign each individual a fitness 
value by using GPSIFF.  
Step 4: Selection Select Npop individuals from the population to 
form a new population using the binary tournament selection.  
Step 5: Recombination Perform the uniform crossover operation 
with a recombination probability pc.  
Step 6: Mutation Apply the mutation operator to each gene in the 
individuals with a mutation probability pm.  
Step 7: Termination test If a stopping condition is satisfied, stop 
the algorithm. Otherwise, go to Step 2. 

5. RESULT AND DISCUSSION 
In this section, we present some results of simulation 

experiments as the performance evaluation of our proposed 
algorithm. 

5.1 Simulation Environment and Parameters 
A 3D WSN deployment benchmark generator for WSN 

environment is designed to generate different scale of sensor 
fields with different models of detection probability thresholds.  

In this paper, a sensor field with 50×50×50 grid points is used. 
The same terrain with four different required minimum detection 

probability thresholds are illustrated as four different benchmarks. 
The detection probability thresholds considered in this paper are 
decreasing linear, normal, Poisson, and exponential distributions, 
respectively. Figure 1 illustrates a terrain with linear decreasing 
thresholds. For the sensors of WSN, we assume each sensor has 
five adjustable sensing ranges 6, 8, 10, 12, 14, and the detection 
error ranges are half of the sensing range of each sensor. The 
power consumption parameter μ is 1. The probabilistic detection 
model parameter β is 0.5 and the detection radio wave parameter λ 
is 0.5. 
  The parameter settings of MOGA are listed as follows: 
population size Npop=200, recombination probability pc=0.9, 
mutation probability pm=0.01, the number of maximum 
generations Gmax=500. The number of sensor nodes to be 
deployed is 20. Thirty independent runs are conducted. 

  Figure 2-3 depicts the box plots of obtained non-dominated 
solutions and the maximum and minimum objective values 
obtained in different objective functions. Figure 4-6 depicts the 
convergence speed of a typical run in solving the 3D WSN 
deployment problem with four different required minimum 
detection probability thresholds. The results indicate that different 
detection probability thresholds pose different difficulties for 
MOGA. The problems with normal and Poisson distributions are 
more difficult to find a good deployment plan than problems with 
decreasing linear and exponential distributions. 
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Figure 2. Box plots of non-dominated solutions for 
solving the 3D deployment problem with linear and 
exponential distributions probability thresholds.  

Figure 1. A terrain with decreasing linear detection 
probability thresholds. 

2062



F1 F2 F30

20

40

60

80

100

V
al

ue
s(

%
)

Objectives

Normal

F1 F2 F30

20

40

60

80

100

V
al

ue
s(

%
)

Objectives

Poisson

 

 
 

0 100 200 300 400 50030

35

40

45

50

55

Generation

F 1(%
)

Linear
Exponential
Normal
Poisson

 

 

0 100 200 300 400 50030

40

50

60

70

80

90

100

Generation

F 2(%
)

Linear
Exponential
Normal
Poisson

 

 

0 100 200 300 400 50030

35

40

45

50

55

Generation

F 3(%
)

Linear
Exponential
Normal
Poisson

 

 

6. CONCLUSION 
In this paper, a multi-objective evolutionary approach is 

proposed to solve 3D differentiated WSN deployment problems. 
Experimental results demonstrated MOGA is capable of 
optimizing coverage, satisfaction of detection levels, and energy 
conservation and provide mission planers a set of non-dominated 
solutions for deployment of sensor nodes. The results also 
indicates that some problems with unusual detection probability 
thresholds requirements may require more computation time or 
different techniques for MOGA than those of problems with usual  
detection probability thresholds requirements. 
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Abstract—This paper describes a multi-objective evolutionary 
approach for solving multi-objective 3D deployment problems in 
differentiated wireless sensor networks (WSNs). WSN is a 
wireless network consisting of spatially distributed autonomous 
sensors to monitor physical or environmental conditions. 
Deciding the location of sensor to be deployed on a terrain with 
the consideration of different criteria is an important issue for 
the design of wireless sensor network. A multi-objective genetic 
algorithm is proposed to solve 3D differentiated WSN 
deployment problems with the objectives of the coverage of 
sensors, satisfaction of detection levels, and energy conservation. 
The preliminary experimental results demonstrated that the 
proposed approach is suitable for solving 3D deployment 
problems of WSNs with different requirements. 

Keywords- Wireless sensor network, multi-objective 
optimization, genetic algorithms 

I.  INTRODUCTION 
A wireless sensor network (WSN) is a wireless network 

consisting of spatially distributed autonomous sensors to 
monitor physical or environmental conditions. WSN constitute 
a large number of applications related to national security, 
surveillance, military, health care, and home automation. 
Sensor nodes of a WSN are deployed over a region to sense 
events on geographical areas and transmit collected data to a 
sink node for further operations. Depending on the 
requirements, sensors could be deployed in diverse scenarios 
[4,9]. Therefore, deciding the location of sensor to be deployed 
on a terrain is an important issue. Several different objectives 
should be considered and fulfilled in the design phase of WSNs, 
such as the coverage and accuracy, reaction time and 
survivability of the sensor network. However, these objectives 
may be in conflict with one another and of different importance 
to mission planners [10].  

Coverage is one of the fundamental issue in the deployment 
of WSNs. WSNs need to maintain sufficient coverage quality 
to capture the timely changing targets [13]. For enhanced 
coverage, a large number of sensors are typically deployed in 
the sensor field and, if the coverage areas of multiple sensors 
overlap, they may all report a target in their respective zones 
[3].  

Differentiated sensor network deployment, which considers 
the satisfaction of detection levels in different geographical 
characteristics, is also an important issue [1]. In many real-

world WSN applications, such as underwater sensor 
deployment, the supervised area may require different 
detection levels, depending on the event's location. Therefore, 
the sensing requirements are not uniformly distributed within 
the area. In other words, all the points of the area under 
monitoring are considered with the different importance. As a 
result, the deployment strategy of WSN should take into 
consideration the geographical characteristics of the monitored 
events.  

Energy conservation for the lifetime of sensors is another 
rising issue [5]. Due to the limited energy resource in each 
sensor node, we need to utilize the sensors in an efficient 
manner so as to increase the lifetime of the network. There are 
two different approaches to the problem of conserving energy 
in sensor networks. The first approach is to plan a schedule of 
active sensors that enables other sensors to go into a sleep 
mode. The second approach is adjusting the sensing range of 
sensors for energy conservation. In this paper, we focus on 
adjusting the sensing range of each sensor in order to reduce 
the overlaps among sensing ranges while keep the detection 
ability above a predefined detection level.  

In this paper, a 3D differentiated WSN deployment 
considering coverage, satisfaction of detection levels, and 
energy conservation is formulated into a multi-objective 
optimization problem. We represent the sensor field as a three-
dimensional grid of points. Three objectives are to be 
optimized: maximizing coverage of sensors, satisfying the 
required probability of detection level, and minimizing the 
detection power by adjustable sensing range. To solve the 
aforementioned multi-objective optimization problem, we 
developed a multi-objective genetic algorithm (MOGA) 
framework. The proposed approach can obtain a set of non-
dominated solutions for mission planner to deploy sensor nodes 
considering different requirements of applications. 

II. RELATED WORK 

A. WSN Deployment Problem 
Coverage issue is one of the most important tasks in WSN. 

The ultimate goal is to have each location in the physical space 
of interest within the sensing range of at least one sensor. 
However, due to the number of sensors is limited, complete 
coverage cannot be guaranteed. Therefore, many approaches 
are proposed to deal with the 2D coverage problem. Oh et al. 
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[10] proposed a genetic algorithm for the optimal selection of 
the number and type of sensors available from a suite of 
sensors. Dhawan et al. [7] proposed a novel searching 
algorithm based on improved NSGA-II to select an optimal 
cover set. It maintains the full coverage in large sensor 
networks by a small number of sensor nodes. For a practical 
approach, a probabilistic sensor detection model is adopted in 
combination with the detection error range and coverage 
threshold. Recently, Oktug et al. [9] proposed an approach to 
solve coverage problem by simulating sensor deployment 
strategies on a 3D terrain model and to find answers to 
questions that how many sensors are needed to cover a 
specified 3D terrain at a specified coverage percentage.  

Different applications require different degrees of sensing 
coverage. While some applications may require a complete 
coverage in a region, others may only need a high percentage 
of coverage. Such WSN is called differentiated WSN [1]. Take 
underwater sensor deployment [2] as an example, sensor field 
of underwater is characterized by the geographical irregularity 
of the sensed events because some area may be inaccessible or 
the event area may not be uniformly distributed. To efficiently 
monitor such area with differentiated detection levels, 
fulfillment of detection levels in different area is the major 
concerns instead of maximizing the coverage of sensors. In 
[11], three density control protocols by considering the tradeoff 
between energy usage and coverage was developed to select 
sensors. Few studies have considered the case of geographical 
irregularity of the sensed event. Aitsaadi et al. [1] proposed a 
probabilistic event detection model. In this model, each grid 
point has a required minimum probability detection threshold.  
A tabu Search method is proposed to solve this differentiated 
WSN deployment problem. 

In recent years, utilizing limited energy efficiently in a 
wireless sensor network has become an important issue. In [8], 
the problem is to prolong maximum network lifetime when all 
grid points are covered and sensor energy resources are 
constrained. In [4], they proposed a method to extend the 
network lifetime is to divide the sensors into a number of sets, 
such that only one set is responsible for monitoring the targets, 
and all other sensors are in sleep mode. In the sleep mode, it 
consumes the least energy. If all the sensor nodes operate in the 
active mode simultaneously, an excessive amount of energy 
will be wasted and the data collected will be redundant. In [12], 
two new energy-efficient models of different sensing ranges 
are proposed. They used scheduling models with adjustable 
sensing ranges of each sensor in order to reduce the overlaps 
among detection ranges.  

B. Multi-objective Evolutionary Optimization 
Assume the multi-objective functions are to be minimized. 

Mathematically, MOOPs can be represented as the following 
vector mathematical programming problems  

)}.(...,),(),({)( 21 YFYFYFYFMinimize i  (1)

where Y denotes a solution and fi(Y) is generally a nonlinear 
objective function. Pareto dominance relationship and some 
related terminologies are introduced below. When the 
following inequalities hold between two solutions Y1 and Y2, Y2 

is a non-dominated solution and is said to dominate Y1 (Y2 
Y1): 

).()(:)()(: 2121 YFYFjYFYFi jjii
(2)

When the following inequality hold between two solutions Y1 
and Y2, Y2 is said to weakly dominate Y1 (Y2 Y1): 

).()(: 21 YFYFi ii  
(3)

A feasible solution Y * is said to be a Pareto-optimal solution if 
and only if there does not exist a feasible solution Y where Y 
dominates Y *, and the corresponding vector of Pareto-optimal 
solutions is called Pareto-optimal front. 

By making use of Pareto dominance relationship, multi-
objective evolutionary algorithms (MOEAs) are capable of 
performing the fitness assignment of multiple objectives 
without using relative preferences of multiple objectives. Thus, 
all the objective functions can be optimized simultaneously. As 
a result, MOEA seems to be an alternative approach to solving 
production planning and inspection planning problems on the 
assumption that no prior domain knowledge is available [6]. 

III. PROBLEM STATEMENT 

A. Notations 
In order to formulate problems, the following notations are 

introduced:  

 i : sensor index, i = 1,2,3,…,N.  

 j : grid point index, j = 1,2,3,…,M.  

 k : sensing range index, k = 1,2,3,…,K.  

B. Environment 
We assume that N sensors s1,s2,…, sN are deployed to cover 

the sensor field. Let the sensor field T consist of nx, ny, and nz 
grid points p1,p2,…, pM in the x, y, and z dimensions, 
respectively [3]. Each sensor has an initial sensor energy E and 
has the capability to adjust its sensor range. Sensing range 
options are r1,r2,…, rK, corresponding to energy consumptions 
of e1,e2,…, eK and detection error ranges f1,f2,…, fK (fk < rk) [4]. 
We assume that each grid point pj in sensor field is associated a 
required minimum probability detection level, denoted t(pj). 

C. Mathematical Formation of 3D Deployment Problem 
1) Maximization of Coverage 

In many WSN applications, the main task is the 
surveillance of certain geographical areas [9]. Target location 
can be simplified considerably if the sensors are placed in such 
a way that every grid point in the sensor field is covered by 
sensors. In this way, the sensors reporting a target at time t 
uniquely identifies the grid location for the target at time t. The 
trajectory of a moving target can also be easily determined in 
this fashion from time series data [3].  

Assume that sensor si is deployed at grid point. For any grid 
point pj, the Euclidean distance between sensor si and grid 
point pj is denoted as  
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where xi, xj, yi, yj, zi and zj are coordinate location values. The 
way to compute the sensor and target coverage relationship is 
to consider that a sensor covers a target if the Euclidean 
distance between the sensor and target is no greater than a 
predefined sensing range. The following equation shows a 
binary coverage model expressing the coverage cb(si, pj) of a 
grid point pj by sensor si.  

otherwise,
)(sr),pd(sif,

),p(sc ikji
jib 0

1
 

 
(5)

, where rk(si) is the sensing range of the sensor si. 

The coverage rate optimization problem F1 can be defined 
by  

1
1.

M

b j
j

c (p )
Max F

M
 

 
(6)

, where cb(pj) is the coverage of all sensors at grid point pj by 
the Equation (5). This objective is to be maximized. 

2) Maximization of Differentiated Detection Levels 
Considering differentiated detection levels, assumed that 

each grid point pj in sensor field T is associated a required 
minimum detection level, denoted t(pj).  A terrain may have 
different required detection levels, as illustrated in Figure 1. 
Ideally, a good  deployment for differentiated WSN should 
satisfy the following condition: for each pj in T, the measured 
detection probability of  pj should be greater than or equal to 
t(pj) [1].  

 

 

 
In literature, a 0/1 binary detection model for grid points is 

often used if a grid is covered by a sensor. However, in reality, 
the detection of events may be influence by weather or 
obstacles. In such cases, the 0/1 binary detection model has 
limitations due to the imprecise detection probability, which 
plays a significant role in sensor detection [7]. Hence, a 
detection error range is introduced to measure the uncertainty 

of sensor detection [7]. Each grid point covered by sensors has 
different detection probabilities according to their realistic 
conditions, such as distance to sensors or weather conditions. If 
a gird point in sensor field T is covered only by one sensor and 
far from other sensors, it may have a low detection probability. 
In this case, it is necessary to reallocate sensors, so that the 
detection area of sensors can be overlapped to compensate for 
the low detection probability of those grid points that are far 
from any sensor. 

In this paper, we adopted a probabilistic detection model 
for sensor deployment [1]. Assume that event detection 
probability of a sensor diminishes as its distance to the sensed 
point increases. A probabilistic detection model of sensors is 
expressed as  

jiiki

ikikjiikik

jiikik

jip

,psd)(sf)(srif,

)(sf)(sr,psd)(sf)(srif,e

,psd)(sf)(srif,

),p(sc

k
1

0  
(7)

, where  = d(si, pj) - (rk(si) - fk(si)),  and  are parameters that 
measure the detection probabilities when an object is within a 
certain distance from the sensor, and fk(si) is the error ranges of 
the sensor si. Each sensor si has a detection probability cp(si, pj) 
at grid point pj. A grid point pj might be covered by more than 
one detection range of different sensors [8]. When a detection 
area is overlapped by multiple sensors, the closer are the 
sensors to each other, the higher is the detection probability of 
the grid points [7]. The conjunctive detection probability of all 
sensors at grid point pj is given by 

1

1 1 .
N

p j p i j
i

c (p ) ( c (s , p ))   
(8)

The optimization of the satisfaction required probability of 
detection level F2 is expressed by:  

1
2
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.
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j
j

M

j
j
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0
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t(p ) if c (p ) t(p )
DP(p )

otherwise
 

This objective is to be maximized. 

3) Minimization of Energy Consumption 
In terms of energy consumption, we only consider the 

energy used in sensing, but not including the power consumed 
by radio communication and computation. The sensing ranges 
of a sensor determine the energy consumed by the sensor [4]. 
We attempt to make the detection regions of sensors not 
overlapped, thereby minimizing the wasted overlap area and 
covering more grid points with a small number of sensors. We 
apply an energy model in our evaluation, in which the power 
consumption is proportional to the square of the sensing range 
rk [11]. The energy consumption model is expressed as follows:  

2)(sr)(se ikik , (10)

Figure 1. Terrain with different required detection 
levels: decreasing linear, normal, Poisson, and 
exponential distributions. 

189189

Authorized licensed use limited to: Chung Hwa University. Downloaded on November 3, 2009 at 08:10 from IEEE Xplore.  Restrictions apply. 



where  is an energy consumption parameter. The optimization 
of the detection power minimization with adjustable sensing 
range F3 can be formulated as  

1
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max
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k i
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e (s )
Min F

e (s )

 

 
 

(11)

, where emax(si) is the maximum detection range of each sensor. 
This objective is to be minimized. 

IV. MULTI-OBJECTIVE GENETIC ALGORITHM 

A. Chromosome Representation 
A chromosome has gene information for solving the 

problem in MOGA. Each chromosome has fixed gene size, 
which is determined by the number of sensors in the WSN. 
Each gene has a x, y, and z coordinate location and a sensing 
range. The ranges of each gene of coordinate location are [0, 
nx], [0, ny], and [0, nz] in the x, y, and z dimensions. Hence 
these sensors will have coordinate values to denote their 
location. Each gene of sensing range is one of r1,r2,…, rK, 
which represent the detection ability of the sensor. 

B. Fitness Assignment 
We use a generalized Pareto-based scale-independent 

fitness function (GPSIFF) considering the quantitative fitness 
values in Pareto space for both dominated and non-dominated 
individuals. GPSIFF makes the best use of Pareto dominance 
relationship to evaluate individuals using a single measure of 
performance. The used GPSIFF is briefly described below. Let 
the fitness value of an individual Y be a tournament-like score 
obtained from all participant individuals by the following 
function:  

( )F Y p q c  (12)

, where p is the number of individuals which can be dominated 
by the individual Y, and q is the number of individuals which 
can dominate the individual Y in the objective space. Generally, 
a constant c can be optionally added in the fitness function to 
make fitness values positive. c is usually set to the number of 
all participant individuals. 

C. Genetic Operators 
The genetic operators used in the proposed approach are 

widely used in literature. The selection operator uses a binary 
tournament selection without replacement, which works as 
follows. Choose two individuals randomly from the population 
and copy the better individual into the intermediate population.  

Crossover is a recombination process in which genes from 
two selected parents are recombined to generate offspring 
chromosomes. The uniform crossover is used in MOGA. In a 
uniform crossover operation, first requires a randomly created 
binary string, called crossover mask. The genes of offspring 
chromosomes are swapped from the parents according to this 
mask. If the crossover mask bit is 0, then the characters in the 
corresponding string position are not swapped and if the 

crossover mask bit is 1, than the mating string characters at that 
position are swapped.  

A simple mutation operator is used to alter genes. For each 
gene, randomly generate a real value from the range [0, 1]. If 
the value is smaller than the mutation probability pm, replace 
its index with a randomly generated integer among its possible 
values.  

D. Procedure of MOGA 
The procedure of MOGA is written as follows:  

Input: population size Npop, recombination probability pc, 
mutation probability pm, the number of maximum generations 
Gmax.  

Output: The optimum solutions ever found in P.  

Step 1: Initialization Randomly generate an initial population 
P of Npop individuals.  

Step 2: Evaluation For each individual in the population, 
compute all objective function values F1, F2, and F3.  

Step 3: Fitness assignment Assign each individual a fitness 
value by using GPSIFF.  

Step 4: Selection Select Npop individuals from the population 
to form a new population using the binary tournament selection.  

Step 5: Recombination Perform the uniform crossover 
operation with a recombination probability pc.  

Step 6: Mutation Apply the mutation operator to each gene in 
the individuals with a mutation probability pm.  

Step 7: Termination test If a stopping condition is satisfied, 
stop the algorithm. Otherwise, go to Step 2. 

V. RESULT AND DISCUSSION 
In this section, we present some results of simulation 

experiments as the performance evaluation of our proposed 
algorithm.  

A. Simulation Environment and Parameters 
A 3D WSN deployment benchmark generator for WSN 

environment is designed to generate different scale of sensor 
fields with different models of detection probability levels.  

In this paper, a sensor field with 50×50×50 grid points is 
used. The same terrain with four different required minimum 
detection probability levels are illustrated as four different 
benchmarks. The detection probability levels considered in this 
paper are decreasing linear, normal, Poisson, and exponential 
distributions, respectively. Figure 2 illustrates a terrain with 
linear decreasing levels. For the sensors of WSN, we assume 
each sensor has five adjustable sensing ranges 6, 8, 10, 12, 14, 
and the detection error ranges are half of the sensing range of 
each sensor. The power consumption parameter  is 1. The 
probabilistic detection model parameter  is 0.5 and the 
detection radio wave parameter  is 0.5. 

  The parameter settings of MOGA are listed as follows: 
population size Npop=200, recombination probability pc=0.9, 
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mutation probability pm=0.01, the number of maximum 
generations Gmax=500 and 1000. Thirty independent runs are 
conducted for each problem. 

To identify the difficulties of problems and evaluate the 
performance of our algorithm, the number of sensor nodes to 
be deployed is limited to 20 and 50, respectively. Figures 3-7 
show the results of deployment using 20 sensors. Figures 8-12 
show the results of deployment using 50 sensors. 

  Figures 3,4,8,9 depict the box plots of obtained non-
dominated solutions and the maximum and minimum objective 
values obtained in different objective functions, using 20 and 
50 sensors. Figures 5-7 and 10-12 depict the convergence 
speed of a typical run in solving the 3D WSN deployment 
problem with four different required minimum detection 
probability levels, using 20 and 50 sensor nodes. The results 
indicate that different detection levels pose different difficulties 
for MOGA. The problems with normal and Poisson detection 
levels are more difficult to find a good deployment plan than 
problems with decreasing linear and exponential detection 
levels using the same number of sensors. The number of 
sensors required for a terrain with normal and Poisson 
detection levels should be bigger than the same terrain with 
decreasing linear and exponential detection levels. 

 

F1 F2 F30

10

20

30

40

50

60

70

80

90

100

V
al

ue
s(

%
)

Objectives

Linear

F1 F2 F30

10

20

30

40

50

60

70

80

90

100

V
al

ue
s(

%
)

Objectives

Exponential

 

F1 F2 F30

10

20

30

40

50

60

70

80

90

100

V
al

ue
s(

%
)

Objectives

Normal

F1 F2 F30

10

20

30

40

50

60

70

80

90

100

V
al

ue
s(

%
)

Objectives

Poisson

 

 

0 50 100 150 200 250 300 350 400 450 50034

36

38

40

42

44

46

48

50

52

54

Generation

F 1(%
)

Linear
Exponential
Normal
Poisson

 

 

0 50 100 150 200 250 300 350 400 450 50030

40

50

60

70

80

90

100

Generation

F 2(%
)

Linear
Exponential
Normal
Poisson

 

 

Figure 2. A terrain with decreasing linear detection 
levels. 

Figure 3. Box plots of non-dominated solutions for 
solving the 3D deployment problem with linear and 
exponential detection levels, using 20 sensors.  

Figure 4. Box plots of non-dominated solutions for 
solving the 3D deployment problem with normal and 
Poisson detection levels, using 20 sensors.  

Figure 6. The mean objective value F2 of non-
dominated solutions in each generation, for four 
problems with different detection levels, using 20 
sensors. 

Figure 5. The mean objective value F1 of non-
dominated solutions in each generation, for four 
problems with different detection levels, using 20 
sensors. 
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VI. CONCLUSION 
In this paper, a multi-objective evolutionary approach is 

proposed to solve 3D differentiated WSN deployment 

Figure 12. The mean objective value F2 of non-
dominated solutions in each generation, for four 
problems with different detection levels, using 20 
sensors. 

Figure 11. The mean objective value F2 of non-
dominated solutions in each generation, for four 
problems with different detection levels, using 50 
sensors. 

Figure 10. The mean objective value F1 of non-
dominated solutions in each generation, for four 
problems with different detection levels, using 50 
sensors. 

Figure 9. Box plots of non-dominated solutions for 
solving the 3D deployment problem with normal and 
Poisson detection levels, using 50 sensors.  

Figure 8. Box plots of non-dominated solutions for 
solving the 3D deployment problem with linear and 
exponential detection levels, using 50 sensors.  

Figure 7. The mean objective value F3 of non-
dominated solutions in each generation, for four 
problems with different required detection levels, using 
20 sensors. 
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problems. Experimental results demonstrated MOGA is 
capable of optimizing coverage, satisfaction of detection levels, 
and energy conservation. Moreover, MOGA can provide 
mission planers a set of non-dominated solutions for 
deployment of sensor nodes. The results also indicate that some 
problems with unusual detection levels requirements may 
require more sensor nodes for MOGA than those of problems 
with usual detection levels requirements. Our future work will 
develop specialized techniques for 3D WSN deployment 
problems with unusual detection levels. 
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Abstract— Economic dispatch is to determine an efficient, low-
cost and reliable operation of a power system by dispatching the 
available electricity generation resources to supply the demands. 
Traditionally, the primary objective of economic dispatch is to 
minimize the total cost of generation while satisfying the 
operational constraints of the available generation resources. 
However, due to environmental awareness and environmental 
policies, the design and operation of electric utilities are forced to 
restructure their power system systems to account for their 
emission impacts. In this paper, a combined heat and power 
system is considered. A combined heat and power 
environmental/economic dispatch (CHPEED) problem is 
formulated. Four objectives: fuel cost, emission, power overhead 
and heat overhead are considered in CHPEED problems. A 
multi-objective evolutionary approach is proposed to solve the 
CHPEED problems.  

Keywords-Cogeneration, Heat and power dispatch, 
Economic/environmental dispatch, multi-objective optimization, 
genetic algorithms 

I.  INTRODUCTION 
Economic dispatch (ED) is to determine an efficient, low-

cost and reliable operation of a power system by dispatching 
the available electricity generation resources to supply the 
demands in such a manner that the cost of operation is 
minimized while all operational constraints are satisfied. 
However, due to increasing concerns on environmental issues 
and the implementation of the Clean Air Act Amendments, 
environmental constraints have topped the list of utility 
management concerns. This issue that has attracted much 
attention is pollution minimization due to the pressing public 
demand for clean air.  Therefore, operating power systems at 
absolute minimum fuel cost can no longer be the only criterion 
for dispatching electric power nowadays [1]. 

In the past decades, increasing demand for power and heat 
resulted in the existence of cogeneration units [2]. 
Cogeneration is also referred to as a combined heat and power 
(CHP) system. It produces electricity and useful heat 
simultaneously. Some industrial processes have large heat 
requirements, either as process steam or piped hot fluid, as well 
as large power demands [3]. Traditional, the primary objective 
of combined heat and power economic dispatch (CHPED) is 
similar to economic dispatch problems. The objective of 

CHPED is to find the optimal point of power and heat 
generation with minimum fuel cost such that both heat and 
power demands are met while the combined heat and power 
units are operated in a bounded heat versus power plane. The 
mutual dependencies of heat and power generation introduce a 
complication in the integration of cogeneration units into the 
power system economic dispatch [2].  

The generation of power and heat from fossil fuel releases 
several contaminants, such as Sulfur Oxides, Nitrogen Oxides 
and Carbon Dioxide, into the atmosphere [4]. However, the 
increasing public awareness of the environmental protection 
has forced the utilities to modify their design or operational 
strategies to reduce pollution and environmental emissions of 
the thermal power plants [5]. Therefore, it becomes very 
complicated when dealing with increasingly complex dispatch 
problems for conventional techniques.  

As a result, economic/environmental dispatch is a multi-
objective problem with conflicting objectives because pollution 
minimization is conflicting with minimum cost of generation 
[1]. In this paper, a combined heat and power 
environmental/economic dispatch (CHPEED) problem, 
considering the fuel cost, emission, power overhead and heat 
overhead, is formulated. A multi-objective evolutionary 
approach is proposed in this paper to optimize these four 
objectives simultaneously.  

II. RELATED WORK 

A. Environmental/Economic Dispatch Problem 
Environmental issue has become one of the most important 

factors in environmental/economic dispatch (EED) problem. 
Emissions are taken into consideration except fuel cost for it is 
more and more important to save environment from the 
pollutants caused by power plants. In [6], it treats the emission 
as a constraint with a permissible limit. This formulation, 
however, has a severe difficulty in getting the trade-off 
relations between cost and emission [5]. In [7-10], the emission 
is treated as another objective in addition to usual cost 
objective. However, the EED problem was converted to a 
single objective problem either by linear combination of both 
objectives or by considering one objective at a time for 
optimization. Unfortunately, this approach requires multiple 



runs as many times as the number of desired Pareto-optimal 
solutions and tends to find weakly non-dominated solutions [5]. 
In [11-13], both fuel cost and emission are taken into 
consideration simultaneously. The approach proposed in [11-
13] handles both fuel cost and emission simultaneously as 
competing objectives. Stochastic search and fuzzy-based multi-
objective optimization techniques have been proposed for the 
EED problem. However, the algorithms do not provide a 
systematic framework for directing the search towards Pareto-
optimal front and the extension of these techniques to include 
more objectives is a very involved question. In addition, these 
techniques are computationally involved and time-consuming 
[5]. Genetic algorithm based multi-objective optimization 
techniques have been adopted in [14, 15] where a set of good  
non-dominated solutions can be obtained from each evolution 
generation. However, GA-based techniques suffer from 
premature convergence and the technique presented in [14] is 
computationally involved due to ranking process during the 
fitness assignment procedure. In [5], a new multi-objective 
particle swarm optimization (MOPSO) technique for 
environmental/economic dispatch (EED) problem is proposed. 
The proposed MOPSO technique evolves a multi-objective 
version of PSO by proposing redefinition of global best and 
local best individuals in multi-objective optimization domain. 

When some industrial processes have large heat 
requirements, the heat load becomes as important as power 
load. As a result, the combined heat and power economic 
dispatch (CHPED) problem of a system has been raised to 
determine the unit heat and power production, so that the 
system production cost is minimized while the heat and power 
demands and other constraints are met. In [2], a self adaptive 
real-coded genetic algorithm (SARGA) is implemented to 
solve the problem. However, environmental emission is not 
considered in this paper. 

Nevertheless, these EED and CHPED problems only 
considered a fixed number of power/cogeneration units or heat-
alone units while optimizing fuel costs and emissions. None of 
them consider environmental/economic dispatch with a 
variable number of units.   

B. Multi-objective Evolutionary Optimization 
Assume the multi-objective functions are to be minimized. 

Mathematically, MOOPs can be represented as the following 
vector mathematical programming problems  

)}.(...,),(),({)( 21 YFYFYFYFMinimize i=  (1)

where Y denotes a solution and fi(Y) is generally a nonlinear 
objective function. Pareto dominance relationship and some 
related terminologies are introduced below. When the 
following inequalities hold between two solutions Y1 and Y2, Y2 
is a non-dominated solution and is said to dominate Y1 (Y2 
; Y1): 

).()(:)()(: 2121 YFYFjYFYFi jjii >∃∧>∀ (2)

When the following inequality hold between two solutions Y1 
and Y2, Y2 is said to weakly dominate Y1 (Y2; Y1): 

).()(: 21 YFYFi ii ≥∀
 

(3)

A feasible solution Y * is said to be a Pareto-optimal solution if 
and only if there does not exist a feasible solution Y where Y 
dominates Y *, and the corresponding vector of Pareto-optimal 
solutions is called Pareto-optimal front. 

By making use of Pareto dominance relationship, multi-
objective evolutionary algorithms (MOEAs) are capable of 
performing the fitness assignment of multiple objectives 
without using relative preferences of multiple objectives. Thus, 
all the objective functions can be optimized simultaneously. As 
a result, MOEA seems to be an alternative approach to solving 
production planning and inspection planning problems on the 
assumption that no prior domain knowledge is available [13]. 

III. PROBLEM STATEMENT 
The CHPEED problem is to minimize four competing 

objective functions, fuel cost, emission, power overhead and 
heat overhead, while satisfying several equality and inequality 
constraints. The CHPEED problem is formulated as follows. 

A. Problem objectives 
1) Minimization of fuel cost 

The total US$/h fuel cost Fcost can be expressed as 
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, where Ci, Cj and Ck are the unit production costs of the 
conventional power, cogeneration and heat-alone units, 
respectively; Pi and Oj are power generations of conventional 
power and cogeneration units; Hj and Tk are heat generation of 
cogeneration and heat-alone units. 

2) Minimization of emission 
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, where Ei, Ej and Ek are the emission (kg/h) caused by the 
conventional power, cogeneration and heat-alone units, 
respectively. 
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, where α , β  and γ  represent to the emission function 
coefficients of the conventional power unit. 

3) Minimization of power overhead and heat overhead 
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, where Hd and Pd are heat and power demands; Np, Nc and Nh 
denote the number of conventional power, cogeneration and 
heat-alone units, respectively. 

B. Problem constraints 
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, where Pi
min and Pi

max are the minimum and maximum power 
generation limits of the conventional units; Oj

min and Oj
max are 

the minimum and maximum power generation limits of the 
cogeneration units; Hj

min and Hj
max are the minimum and 

maximum heat generation limits of the cogeneration units; Tk
min 

and Tk
max are the minimum and maximum heat generation 

limits of the heat-alone units; ap, bp and cp are fuel cost 
coefficients of the conventional power unit ; ac , bc , cc , dc , ec 
and fc are fuel cost coefficients of the cogeneration unit; ah, bh 
and ch are fuel cost coefficients of the heat-alone unit. The 
value of fuel cost coefficients are given in Table I. 

 

 

 

TABLE I.  GENERATOR FUEL COST COEFFICIENTS. 

unit 
coefficients

Conventional power Cogeneration Heat-alone

a 451.32513 2650 0 

b 46.15916 14.5 23.4T1 

c 0.10587 0.0345 0 

d 4.2 

e 0.03 

f 

 

0.031 

 

IV. MULTI-OBJECTIVE GENETIC ALGORITHM 

A. Chromosome Representation 
A chromosome has gene information for solving the 

problem in MOGA. Each chromosome has dynamic gene size, 
which is determined by the max number of all units in 
combined heat and power (CHP) systems. The first gene is 
numbers of conventional power unit and the second one stands 
for numbers of cogeneration, and the third one represents 
numbers of heat-alone unit. The remains of the genes are the 
dispatch value of all units. 

B. Fitness Assignment 
We use a generalized Pareto-based scale-independent 

fitness function (GPSIFF) considering the quantitative fitness 
values in Pareto space for both dominated and non-dominated 
individuals. GPSIFF makes the best use of Pareto dominance 
relationship to evaluate individuals using a single measure of 
performance. The used GPSIFF is briefly described below. Let 
the fitness value of an individual Y be a tournament-like score 
obtained from all participant individuals by the following 
function:  

( )F Y p q c= − +  (20)

, where p is the number of individuals which can be dominated 
by the individual Y, and q is the number of individuals which 
can dominate the individual Y in the objective space. Generally, 
a constant c can be optionally added in the fitness function to 
make fitness values positive. c is usually set to the number of 
all participant individuals. 

C. Genetic Operators 
The genetic operators used in the proposed approach are 

widely used in literature. The selection operator uses a binary 
tournament selection without replacement, which works as 
follows. Choose two individuals randomly from the population 
and copy the better individual into the intermediate population.  

Crossover is a recombination process in which genes from 
two selected parents are recombined to generate offspring 



chromosomes. The order crossover (OX) in GA literature is 
used in our approach.  

A simple mutation operator is used to alter genes. For each 
gene, randomly generate a real value from their given range. If 
the value is smaller than the mutation probability pm, replace its 
index with a randomly generated integer among its possible 
values.  

D. Procedure of MOGA 
The procedure of MOGA is written as follows:  

Input: population size Npop, recombination probability pc, 
mutation probability pm, the number of maximum generations 
Gmax.  

Output: The optimum solutions ever found in P.  

Step 1: Initialization Randomly generate an initial population 
P of Npop individuals.  

Step 2: Evaluation For each individual in the population, 
compute all objective function values F1, F2, and F3.  

Step 3: Fitness assignment Assign each individual a fitness 
value by using GPSIFF.  

Step 4: Selection Select Npop individuals from the population 
to form a new population using the binary tournament selection.  

Step 5: Recombination Perform the order crossover operation 
with a recombination probability pc.  

Step 6: Mutation Apply the mutation operator to each gene in 
the individuals with a mutation probability pm.  

Step 7: Termination test If a stopping condition is satisfied, 
stop the algorithm. Otherwise, go to Step 2. 

V. RESULTS AND DISCUSSIONS 

A. Simulation Environment and Parameter Settings 
This power system considers a type of conventional power 

unit, cogeneration unit and heat-alone unit, respectively. The 
power generation limits of the conventional power unit are 0 
and 150 MW and heat generation limits of heat-alone units are 
0 and 2695.2 MWth. The feasible operating regions of the 
cogeneration unit are given in figure 1. The value of emission 
coefficients α, β and γ are given as 13.85932, 0.32767 and 
0.00419, respectively. The emission factors of heat-alone units 
are obtained from the average heat generation from residential 
boilers in urban areas, with an equivalent fuel mix as input [16]. 
The emission factors μNOx, μCO2 and μCO are given as 0.2 
kg/MW, 0.27 kg/MW and 0.04 kg/MW, respectively. 

The feasible operating regions of the cogeneration unit 
from Figure 1 can be expressed as inequality constraints as 
follows: 
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Figure 1.  Feasible operating regions of cogeneration unit. 

Based on the given environment and constraints, three 
benchmark problems “demand (200, 115)”, “demand (700, 
615)” and “demand (2000, 1115)” are designed to validate our 
approach. The notation “demand (P, H)” represents that the 
power demand is P and the heat demand is H.  

The parameter settings of MOGA are listed as follows: 
population size Npop=50, recombination probability pc=0.9, 
mutation probability pm=0.01, the number of maximum 
generations Gmax=100. Thirty independent runs are conducted 
for each problem.  

Figures 2-4 shows the distributions of non-dominated 
solutions in four objectives by means of boxplot. The results 
indicate that the proposed approach is capable of obtaining a 
set of wide-spread and non-dominated solutions.  

Figures 5-8 depict a typical run of MOGA in solving 
“demand (2000, 1115)”. The maximum, mean and minimum 
objective values of individuals during a typical run are shown 
in the figures. The results indicate that the proposed approach 
converge steadily and rapidly. 
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Figure 2.  Boxplot of non-dominated solutions in solving “demand 
(200,115)” problem. 
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Figure 3.  Boxplot of non-dominated solutions in solving “demand 
(700,615)” problem. 
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Figure 4.  Boxplot of non-dominated solutions in solving “demand 
(2000,1115)” problem. 
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Figure 5.  The maximum, mean, and minimum fuel cost of a typical run 
in solving “demand (2000,1115)” problem. 
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Figure 6.  The maximum, mean, and minimum emission of a typical run 
in solving “demand (2000,1115)” problem. 
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Figure 7.  The maximum, mean, and minimum power overhead of a 
typical run in solving “demand (2000,1115)” problem. 
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Figure 8.  The maximum, mean, and minimum heat overhead of a typical 
run in solving “demand (2000,1115)” problem. 

VI. CONCLUSION 
In this paper, a multi-objective evolutionary approach is 

proposed to solve the combined heat and power 
environmental/economic dispatch problem. The problem is 
formulated as multi-objective optimization problem with 
competing economic and environmental objectives. 
Experimental results demonstrated the proposed method is 
capable of optimizing fuel cost, emission, power overhead and 
heat overhead simultaneously. Moreover, the proposed 
approach can provide decision makers a set of non-dominated 
solutions to choose a suitable dispatch plan.  
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ABSTRACT 
 

This paper describes a novel force-driven 
evolutionary approach for solving multi-objective 3D 
deployment problems in differentiated wireless sensor 
networks (WSNs). WSN is a wireless network 
consisting of spatially distributed autonomous sensors 
to monitor physical or environmental conditions. 
Deciding the location of sensor to be deployed on a 
terrain with the consideration of different criteria is an 
important issue for the design of wireless sensor 
network. A multi-objective genetic algorithm with a 
force-driven method is proposed to solve 3D 
differentiated WSN deployment problems with the 
objectives of the coverage of sensors, satisfaction of 
detection levels, and energy conservation. The 
preliminary experimental results demonstrated that the 
proposed approach is capable of obtaining a set of 
non-dominated solutions for multi-objective 3D 
differentiated WSN deployment problems.  
 
1. INTRODUCTION 
 

A wireless sensor network (WSN) is a wireless 
network consisting of spatially distributed autonomous 
sensors to monitor physical or environmental 
conditions. Sensor nodes of a WSN are deployed over 
a region to sense events on geographical areas and 
transmit collected data to a sink node for further 
operations. Depending on the requirements, sensors 
could be deployed in diverse scenarios [4,9]. Therefore, 
deciding the location of sensor to be deployed on a 
terrain is an important issue. Several different 
objectives should be considered and fulfilled in the 
design phase of WSNs, such as the coverage and 

accuracy, reaction time and survivability of the sensor 
network. However, these objectives may be in conflict 
with one another and of different importance to 
mission planners [10].  

Coverage is one of the fundamental issue in the 
deployment of WSNs. WSNs have to maintain 
sufficient coverage quality in order to capture the 
timely changing targets [13]. For enhanced coverage, a 
large number of sensors are typically deployed in the 
sensor field and, if the coverage areas of multiple 
sensors overlap, they may all report a target in their 
respective zones [3].  

Differentiated sensor network deployment, which 
considers the satisfaction of detection levels in 
different geographical characteristics, is also an 
important issue [1]. In some specially designated WSN 
applications, such as underwater sensor deployment, 
mudflows and landslide monitoring, depending on the 
event's location, the supervised area may require 
different detection levels. Therefore, the sensing 
requirements of these applications are not uniformly 
distributed within the area. As a result, the deployment 
strategy of WSN should take into consideration the 
geographical characteristics of the monitored events.  

Energy conservation for the lifetime of sensors is 
another rising issue [5]. Due to the limited energy 
resource in each sensor node, utilizing sensors in an 
efficient manner so as to increase the lifetime of the 
network is an important task in the design phase of 
WSNs. There are two different approaches: scheduling 
and adjusting methods, to the problem of conserving 
energy in sensor networks. We focus on adjusting the 
sensing range of each sensor in order to reduce the 
overlaps among sensing ranges while keep the 
detection ability above a predefined detection level.  

In this paper, a 3D differentiated WSN deployment 
problem is formulated into a multi-objective 
optimization problem. Three objectives are to be 
optimized: maximizing coverage of sensors, satisfying 
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the required probability of detection level, and 
minimizing the detection power by adjustable sensing 
range. A multi-objective genetic algorithm (MOGA) 
framework with a novel force-driven method is 
proposed to solve these problems.  
 
2. RELATED WORK 
 
2.1. WSN Deployment Problem 
 

Coverage issue is one of the most important tasks in 
WSN. The ultimate goal is to have each location in the 
physical space of interest within the sensing range of at 
least one sensor. However, due to the number of 
sensors is limited, complete coverage cannot be 
guaranteed. Therefore, many approaches are proposed 
to deal with the 2D coverage problem [7, 10]. Recently, 
Oktug et al. [9] proposed an approach to solve 
coverage problem by simulating sensor deployment 
strategies on a 3D terrain model and to find answers to 
questions that how many sensors are needed to cover a 
specified 3D terrain at a specified coverage percentage.  

Different applications require different degrees of 
sensing coverage. While some applications may 
require a complete coverage in a region, others may 
only need a high percentage of coverage. Such WSN is 
called differentiated WSN [1]. Take underwater sensor 
deployment [2] as an example, sensor field of 
underwater is characterized by the geographical 
irregularity of the sensed events because some area 
may be inaccessible or the event area may not be 
uniformly distributed. To efficiently monitor such area 
with differentiated detection levels, fulfillment of 
detection levels in different area is the major concerns 
instead of maximizing the coverage of sensors [11]. 
Aitsaadi et al. [1] proposed a probabilistic event 
detection model. In this model, each grid point has a 
required minimum probability detection threshold.  A 
tabu search method is proposed to solve this 
differentiated WSN deployment problem. 

In recent years, utilizing limited energy efficiently 
in a wireless sensor network has become an important 
issue. Several techniques, such as scheduling models 
and sleep models [4, 8, 12], have been proposed to 
extend the lifetime of WSNs.  
 
2.2. Multi-objective Evolutionary Optimization 
 

Assume the multi-objective functions are to be 
minimized. Mathematically, multi-objective 
optimization problems (MOOPs) can be represented as 
the following vector mathematical programming 
problems  

1 2( ) { ( ), ( ), ..., ( )}iMinimize F Y F Y F Y F Y= , (1)
where Y denotes a solution and Fi(Y) is generally a 
nonlinear objective function. Pareto dominance 
relationship and some related terminologies are 
introduced below. When the following inequalities 
hold between two solutions Y1 and Y2, Y2 is a non-
dominated solution and is said to dominate Y1 (Y2 

Y1): 
).()(:)()(: 2121 YFYFjYFYFi jjii >∃∧≥∀  (2)

When the following inequality hold between two 
solutions Y1 and Y2, Y2 is said to weakly dominate Y1 
(Y2 Y1): 

).()(: 21 YFYFi ii ≥∀
 

(3)
A feasible solution Y* is said to be a Pareto-optimal 
solution if and only if there does not exist a feasible 
solution Y where Y dominates Y*. 

By making use of Pareto dominance relationship, 
multi-objective evolutionary algorithms (MOEAs) [6] 
are capable of performing the fitness assignment of 
multiple objectives without using relative preferences 
of multiple objectives.  

 

 
3. PROBLEM STATEMENT 
 
3.1. Notations 
 

In order to formulate problems, the following 
notations are introduced:  

• i : sensor index, i = 1,2,3,…,N.  

• j : grid point index, j = 1,2,3,…,M.  

• k : sensing range index, k = 1,2,3,…,K.  

 
3.2. Environment 
 

We assume that N sensors s1,s2,…, sN are deployed 
to cover the sensor field. Let the sensor field T consist 

Figure 1. Terrain with different required 
detection levels: decreasing linear, normal, 
Poisson, and exponential distributions. 



of nx, ny, and nz grid points p1,p2,…, pM in the x, y, and 
z dimensions, respectively [3]. Each sensor has an 
initial sensor energy E and has the capability to adjust 
its sensor range. Sensing range options are r1,r2,…, rK, 
corresponding to energy consumptions of e1,e2,…, eK 
and detection error ranges f1,f2,…, fK (fk < rk) [4]. We 
assume that each grid point pj in sensor field is 
associated a required minimum probability detection 
level, denoted t(pj). 

 
3.3. Mathematical Formation of 3D 
Deployment Problem 
 
3.3.1. Maximization of Coverage.  

In many WSN applications, the main task is the 
surveillance of certain geographical areas [9]. Target 
location can be simplified considerably if the sensors 
are placed in such a way that every grid point in the 
sensor field is covered by sensors [3]. Assume that 
sensor si is deployed at grid point. For any grid point pj, 
the Euclidean distance between sensor si and grid point 
pj is denoted as  

222 )z(z)y(y)x(x)p,d(s jijijiji −+−+−= (4)

, where xi, xj, yi, yj, zi and zj are coordinate location 
values. The following equation shows a binary 
coverage model expressing the coverage cb(si, pj) of a 
grid point pj by sensor si.  

⎩
⎨
⎧ <

=
otherwise,

)(sr),pd(sif,
),p(sc ikji

jib 0

1
 

(5)

, where rk(si) is the sensing range of the sensor si. 
The coverage rate optimization problem F1 can be 

defined by  

1
1.

M

b j
j

c (p )
Max F

M
==
∑

 (6)

, where cb(pj) is the coverage of all sensors at grid 
point pj by the Equation (5). This objective is to be 
maximized. 

 
3.3.2. Maximization of Differentiated Detection 

Levels.  
Considering differentiated detection levels, assumed 

that each grid point pj in sensor field T is associated a 
required minimum detection level t(pj).  A terrain may 
have different required detection levels, as illustrated 
in Figure 1. A good  deployment for differentiated 
WSN should satisfy the following condition: for each 
pj in T, the measured detection probability of  pj should 
be greater than or equal to t(pj) [1].  

A probabilistic detection model for sensor 
deployment [1] is adopted into our model. Assume that 

event detection probability of a sensor diminishes as its 
distance to the sensed point increases. A probabilistic 
detection model of sensors is expressed as  

( )
( )
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0 if

if
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k i k i i j

λα
k i k i i j

p i j
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⎪
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⎪
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(7)

, where α = d(si, pj) - (rk(si) - fk(si)), λ and β are 
parameters that measure the detection probabilities 
when an object is within a certain distance from the 
sensor, and fk(si) is the error ranges of the sensor si. 
Each sensor si has a detection probability cp(si, pj) at 
grid point pj. A grid point pj might be covered by more 
than one detection range of different sensors [8]. When 
a detection area is overlapped by multiple sensors, the 
closer are the sensors to each other, the higher is the 
detection probability of the grid points [7]. The 
conjunctive detection probability of all sensors at grid 
point pj is given by 

1

1 1 .
N

p j p i j
i

c (p ) ( c (s , p ))
=

= − −∏  
(8)

The optimization of the satisfaction required 
probability of detection level F2 is expressed by:  
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This objective is to be maximized. 
 
3.3.3. Minimization of Energy Consumption  

In terms of energy consumption, we only consider 
the energy used in sensing, but not including the power 
consumed by radio communication and computation. 
The sensing ranges of a sensor determine the energy 
consumed by the sensor [4]. We adopted an energy 
model in our evaluation. The power consumption is 
proportional to the square of the sensing range rk [11]. 
The energy consumption model is expressed as follows:  

2)(sr)(se ikik ×= μ , (10)

where μ is an energy consumption parameter. The 
optimization of the detection power minimization with 
adjustable sensing range F3 can be formulated as  

1
3

max
1
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k i
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N
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Min F

e (s )
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=
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∑

∑
 (11)



, where emax(si) is the maximum detection range of each 
sensor. This objective is to be minimized. 
 
4. FORCE-DRIVEN MULTI-OBJECTIVE 
GENETIC ALGORITHM (FD-MOGA) 
 
4.1. Chromosome Representation 
 

A chromosome has gene information for solving the 
problem in FD-MOGA. Each chromosome has fixed 
gene size, which is determined by the number of 
sensors in the WSN. Each gene has a x, y, and z 
coordinate location and a sensing range. The ranges of 
each gene of coordinate location are [0, nx], [0, ny], and 
[0, nz] in the x, y, and z dimensions. Hence these 
sensors will have coordinate values to denote their 
location. Each gene of sensing range is one of r1,r2,…, 
rK, which represent the detection ability of the sensor. 

 
4.2. Fitness Assignment 
 

We use a generalized Pareto-based scale-
independent fitness function (GPSIFF) considering the 
quantitative fitness values in Pareto space for both 
dominated and non-dominated individuals. Let the 
fitness value of an individual Y be a tournament-like 
score obtained from all participant individuals by the 
following function:  

( )F Y p q c= − +  (12)

, where p is the number of individuals which can be 
dominated by the individual Y, and q is the number of 
individuals which can dominate the individual Y in the 
objective space. c is set to the number of all participant 
individuals. 
 
4.3. Genetic Operators 
 

The genetic operators used in the proposed 
approach are widely used in literature. The selection 
operator uses a binary tournament selection without 
replacement. The uniform crossover is used in FD-
MOGA. A simple mutation operator is used to alter 
genes. For each gene, randomly generate a real value 
from the range [0, 1]. If the value is smaller than the 
mutation probability pm, replace its index with a 
randomly generated integer among its possible values. 
 
4.4. Repulsion and Attraction Force Mutation 
 

To prevent sensors from overly centering in some 
positions in individuals, a force-driven method is 
introduced. The proposed force-driven method consists 

of two forces: repulsion force and attraction force.  
While the density of sensors within a certain space is 
high, a repulsion force mutation is to increase the 
degree of spread between sensors. On the contrary, 
while the density of sensors is low, an attraction force 
mutation is used to centralize sensors within a certain 
space. The procedure of repulsion and attraction force 
mutation is written as follows:  
Step 1: Space Division Divide the sensor field T into 
bnx, bny, and bnz large grid space bp1,bp2,…, bpL, 
where nx> bnx, ny> bny, and nz> bnz. 
Step 2: Position Compute the position of sensors 
within each large grid space bpl, l = 1,2,…, L. Partition 
the sensors within the large grid space bpl into a set Sl. 
Step 3: Statistics Calculate the number of sensors, bl, 
in each set Sl .  
Step 4: Repulsion Mutation If the number bl of 
sensors in a large grid space bpl is bigger than one, 
repulse the positions of sensors in Sl from their 
centroid with one grid point in every dimension, and 
increase one level of sensing range in these sensor. 
Step 5: Attraction Mutation If the number bl of 
sensors in large grid space bpl is equal to one, let the 
sensors adjacent to the large grid space bpl be attracted 
and move to the position of the sensor in Sl with one 
grid point for every dimension, and decrease one level 
of sensing range in these sensors.  
 
4.5. Procedure of FD-MOGA 
 

An elitism strategy is adopted. An elite set E with 
capacity Emax will maintain all the best non-dominated 
solutions generated so far. The procedure of FD-
MOGA is written as follows:  
Input: population size Npop, recombination probability 
pc, mutation probability pm, the number of maximum 
generations Gmax.  
Output: The optimum solutions ever found in P.  
Step 1: Initialization Randomly generate an initial 
population P of Npop individuals, and create an empty 
elite sets E.  
Step 2: Evaluation For each individual in the 
population, compute all objective function values F1, 
F2, and F3.  
Step 3: Fitness assignment Assign each individual a 
fitness value by using GPSIFF.  
Step 4: Update elitist Add the non-dominated 
individuals in E. Considering all individuals in E, 
remove the dominated ones in E. If the number of non-
dominated individuals in E is larger than Emax, 
randomly discard excess individuals.  
Step 5: Selection Select Npop - Nps individuals from the 
population to form a new population using the binary 



tournament selection and random select Nps individuals 
from E to form a new population, where Nps = Npop×ps 
and ps is a selection proportion. If Nps is greater than 
the number NE of individuals in E, let Nps = NE..  
Step 6: Recombination Perform the uniform 
crossover operation with a recombination probability 
pc.  
Step 7: Mutation Apply the simply mutation operator 
to each gene in the individuals with a mutation 
probability pm.  
Step 8: Repulsion and Attraction Mutation Execute 
the repulsion and attraction mutation to each individual 
with two probabilities pr and pa. 
Step 9: Termination test If a stopping condition is 
satisfied, stop the algorithm. Otherwise, go to Step 2. 

 

 
 
5. RESULT AND DISCUSSION 
 
5.1. Simulation Environment and Parameters 

 
A 3D WSN deployment benchmark generator for 

WSN environment is designed to generate different 
scale of sensor fields with different models of 
detection probability levels. A sensor field with 
50×50×50 grid points is generated. The same terrain 
with four different required minimum detection 
probability levels: decreasing linear, normal, Poisson, 
and exponential distributions, are illustrated as four 
different benchmarks. Figure 2 illustrates a terrain with 
linear decreasing levels. For the sensors of WSN, we 
assume each sensor has five adjustable sensing ranges 
6, 8, 10, 12, 14, and the detection error ranges are half 
of the sensing range of each sensor. The power 
consumption parameter μ is 1. The probabilistic 
detection model parameter β is 0.5 and the detection 
radio wave parameter λ is 0.5. 

  The parameter settings of the proposed algorithm 
are listed as follows: population size Npop=200, 

maximum number elite set of individuals Emax=10000, 
selection elite set proportion ps=0.2, division of large 
grid space 5×5×5, recombination probability pc=0.9, 
mutation probability pm=0.01, repulsion probability 
pr=0.1, attraction probability pa=0.1, the number of 
maximum generations Gmax=500 and 1000. Thirty 
independent runs are conducted for each problem. The 
number of sensor nodes to be deployed is limited to 20. 
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Figures 3-4 depict the box plots of obtained non-

dominated solutions. The results indicate that different 
detection levels pose different difficulties for FD-
MOGA. The problems with normal and Poisson 
detection levels are more difficult to find a good 
deployment plan than problems with decreasing linear 
and exponential detection levels using the same 
number of sensors. The number of sensors required for 
a terrain with normal and Poisson detection levels 
should be bigger than the same terrain with decreasing 
linear and exponential detection levels. 

A naïve MOGA without elitism and repulsion and 
attraction mutation is also implemented. The coverage 
metric C(A,B) of two solution sets A and B [6] used to 
compare the performance of two corresponding 

Figure 3. Box plots of non-dominated solutions for 
solving the 3D deployment problem with linear and 
exponential detection levels, using 20 sensors.  

Figure 4. Box plots of non-dominated solutions for 
solving the 3D deployment problem with normal and 
Poisson detection levels, using 20 sensors.  

Figure 2. A terrain with decreasing linear detection 
levels. 



algorithms, FD-MOGA and MOGA, considering all 
the objectives.  

( ) { }.,,,
B

baBbAaBAC ∈∈
=  (13)

The value C(A, B)=1 means that all individuals in B 
are weakly dominated by A.  Figure 5 depict box plots 
of coverage metric of FD-MOGA and MOGA in 
solving the 3D deployment problems with four 
detection levels, using 20 sensors. The result 
demonstrates the effectiveness of the elitism and force-
driven mutation used in FD-MOGA.  
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6. CONCLUSION 
 

In this paper, a force-driven multi-objective 
evolutionary approach is proposed to solve 3D 
differentiated WSN deployment problems. 
Experimental results demonstrated FD-MOGA is 
capable of optimizing coverage, satisfaction of 
detection levels, and energy conservation. Moreover, 
FD-MOGA can provide mission planers a set of non-
dominated solutions for deployment of sensor nodes. 
The results also indicate that some problems with 
unusual detection levels requirements may require 
more sensor nodes for FD-MOGA than those of 
problems with usual detection levels requirements. Our 
future work will develop specialized techniques for 3D 
WSN deployment problems with unusual detection 
levels. 
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Figure 5. Box plots of coverage metric of FD-MOGA 
and MOGA for solving the 3D deployment problems 
with four detection levels, using 20 sensors. 
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一、參加會議經過 

 

7月8日註冊報到，與會人士共計約千名來自學術界和工商業界之專業人士與學生。

8日及9日分別依不同的主題舉辦專題討論和tutorial，10-12日分別依不同的主題在不同的

會議室舉行口頭報告。9日晚間舉辦壁報論文發表暨歡迎會。會議中邀請到三位知名專

家前來給予專題演講，其中最盛大的為11日早上遺傳演算法之父John Holland教授舉辦有

關遺傳演算法之過去與未來。11日晚間所有專家學者被邀請至港口會場進行簡單的社交

討論。12日中午發表論文。隨後前往美國拉斯維加斯參與 WORLDCOMP2009 發表論

文。 
 

二、與會心得 

 

透過參加此次國際會議與來自各國的學者交流研究心得並且同時建立溝通管道。與本次

會議中，與會的各國學者就其研究領域充份探討及意見交流，本人更於會後與美國麻省

理工學院、伊利諾大學香檳校區、華盛頓大學聖路易士校區、英國諾丁罕大學、德國維

爾茨堡大學、新加坡南洋理工大學、澳洲健保局專家、及台灣大學與交通大學等各國學

者共同討論研究方向，並獲邀請前往參訪其所屬大學。會議所見所得對於未來個人學術

研究開拓更寬廣的視野。個人能參與該會議備感榮幸。 

 

三、建議 

由此次的經驗，個人認為補助參與國際會議的政策對提昇台灣學者之研究能量和知

名度有非常正面的助益，個人認為此一政策應持續推行，並且應鼓勵台灣學者教授積極

攜帶博士生於寒暑期參訪各國學者且積極參與國際會議，不僅可增加台灣學者與碩博士

研究生的國際觀和研究能力，更有助於促進台灣學術研究和學術交流之風氣。 
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1. 會議論文集光碟片 一片。 
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