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Summary 
This report describes the results achieved in the third year of three-year research proposal. As 

mentioned in the proposal, an important issue in the design of high reliable system-on-chip (SoC) is 
how to identify the system failure behaviors, verify the robustness of the system, the safety-critical 
components and the feasibility of the fault-robust design as early in the development phase to 
reduce the re-design cost. Therefore, a system-level fault-tolerant verification platform is required 
to assist the designers in assessing the dependability of a system with an efficient manner. The study 
is to propose a system-level fault injection framework and risk model in SystemC design platform to 
assist the dependability assessment. The proposed fault injection framework consists of two kinds 
of fault injection techniques: simulation-based and software-implemented fault injection schemes. 
In this year, we propose a risk model to facilitate the measure of the robustness and scales of 
failure-induced risks in a system, which can be used to identify the critical components and major failure 
modes for protection so as to effectively reduce the impact of failures to the system. Next, we complete the 
development of the simulation-based and software-implemented fault injection, robustness 
verification and risk assessment tool based on the devising SystemC and IP-based fault injection 
methodologies and failure mode and effects analysis (FMEA) process under the environment of 
CoWare Platform Architect. The proposed tool can significantly reduce the effort and time for 
validating the robustness and safety of SoC. Our tool can perform automatically the fault injection 
campaigns, and classify the failure modes of the system failure behaviors. In addition to that, the 
tool dramatically increases the efficiency of carrying out the FMEA and system robustness 
validation. We demonstrate the feasibility of the proposed verification framework with an 
experimental ARM-based system that is modeled at different levels of abstraction.  



Abstract: As system-on-chip (SoC) becomes prevalent in the intelligent system applications, 
the reliability issue of SoC is getting more attention in the design industry due to the rapid 
increasing rate of radiation-induced soft errors while the SoC fabrication enters the very deep 
submicron technology. Therefore, the SoC dependability becomes a critical issue in safety-critical 
applications. Validating such systems is imperative to guarantee the dependability of the systems 
before they are being put to use. Moreover, it is beneficial to assess the SoC robustness in early 
design phase in order to significantly reduce the cost and time of re-design. To fulfill such needs, in 
this study, we propose a useful IP-based SoC-level risk model using failure mode and effects 
analysis (FMEA) method to assess the robustness of a SoC in SystemC transaction-level modeling 
(TLM) design level. The proposed risk model is able to facilitate the measure of the robustness and 
scales of failure-induced risks in a system, which can be used to identify the critical components 
and major failure modes for protection so as to effectively reduce the impact of failures to the 
system. A case study is used to demonstrate our risk model under CoWare Platform Architect 
environment. A system verification tool was created to assist us in measuring the robustness of the 
system, in locating the weaknesses of the system, and in understanding the effect of faults on 
system failure behavior during the SoC design phase. The contribution of this work is to promote 
the dependability verification to TLM abstraction level that can significantly enhance the simulation 
performance, and provide the comprehensive results to validate the system dependability in early 
design phase for safety-critical applications. 
Keywords: FMEA, risk assessment, SystemC, safety-critical application, system-on-chip. 
 

1. Introduction 
As system-on-chip (SoC) becomes more and more 
complicated, the SoC could encounter the reliability 
problem due to the increased likelihood of faults or 
radiation-induced soft errors especially when the 
chip fabrication enters the very deep submicron 
technology [1-3]. Since SoC becomes prevalent in 
the intelligent system applications, such as 
intelligent automotive systems or intelligent robots, 
which require a stringent dependability while the 
systems are in operation. Thus, it is essential to 
perform the failure mode and effects analysis 
(FMEA) method to locate the vulnerability of the 
SoC and provide the practical fault-tolerant 
strategies to improve its reliability and safety [4]. 
However, due to the high complexity of the SoC, the 
incorporation of the FMEA and fault-tolerant 
demand into the SoC will further raise the design 
complexity. Therefore, we need to adopt the 
behavioral level or higher level of abstraction to 
describe/model the SoC, such as using SystemC, to 
tackle the complexity of the SoC design and 
verification. An important issue in the design of SoC 
is how to validate the system dependability as early 
in the development phase to reduce the re-design 
cost. As a result, a SoC-level dependability 
verification platform is required to facilitate the 

designers in assessing the robustness of a SoC with 
an efficient manner. Normally, the FMEA method 
and fault injection approach are employed to analyze 
the impact of failures to the system and measure the 
risks of the system.  

Previously, the issue of SoC-level risk 
assessment is seldom addressed especially in 
SystemC transaction-level modeling (TLM) design 
level. In paper [4], the authors presented a FMEA 
method at SoC-level design in RTL description to 
design in compliance with IEC61508. A memory 
sub-system embedded in fault-robust 
microcontrollers for automotive applications was 
used to demonstrate the feasibility of their FMEA 
method. However, the scheme presented in [4] can 
only apply to RTL and gate level, which limits the 
scope of its application. Furthermore, the 
complexity of oncoming SoC increases rapidly, so it 
may still require considerable time and efforts to 
implement a SoC using RTL description. In paper 
[5], the authors proposed a dependability benchmark 
for automotive engine control applications. They 
showed the feasibility of the proposed dependability 
benchmark using a prototype of diesel electronic 
control unit (ECU) control engine system. The fault 
injection campaigns were conducted to measure the 
dependability of benchmark prototype. The domain 



of application for dependability benchmark 
specification presented in paper [5] confines to the 
automotive engine control systems which are built 
by commercial off-the-shelf (COTS) components. 
While dependability evaluation is performed after 
physical systems have been built, the costs of 
re-designing systems due to inadequate 
dependability can be prohibitively expensive. 

To cope with the above problems, we raise the 
modeling level of SoC design to SystemC TLM 
level. At TLM design level, we can more effectively 
deal with the issues of design complexity, simulation 
performance, development cost and dependability 
for safety-critical SoC applications. In this study, an 
IP-based SoC-level risk model combining FMEA 
with fault injection method is proposed to identify 
and assess the potential failure modes in a SoC 
modeled at SystemC TLM design level, and 
measure the risk scales of consequences resulting 
from various failure modes. Since the modeling of 
SoCs is raised to the level of TLM abstraction, the 
performance of fault injection and simulation is 
enhanced significantly. As a result, the risk 
assessment can be carried out efficiently in early 
design phase to validate the robustness of the SoC 
and identify the critical components and failure 
modes to be protected if necessary. Our risk model 
is valuable in that it provides the capability to 
quickly assess the SoC dependability, and if the 
measured dependability cannot meet the system 
requirement, the results of FMEA will be used to 
help us develop a feasible and cost-effective 
risk-reduction process. 

The remaining report is organized as follows. In 
Section 2, the SystemC untimed/timed functional 
TLM and the concept of Transactor are presented. A 
SoC-level risk model is proposed in the following 
section. We briefly describe a system verification 
platform in Section 4. A case study with the 
experimental results and a thorough vulnerability 
and risk analysis are given in Section 5. The 
conclusions appear in Section 6. 

2 SystemC Functional TLM 
SystemC [6], a system-level modeling language, 
provides a wide variety of modeling levels of 
abstraction and allows us to model a system utilizing 
one or a mixture of various abstraction levels. It is 
quite common that the modules within a SoC are 
modeled at different levels of abstraction using 
SystemC design language. The primary goal of TLM 

is to reduce the modeling complexity and increase 
the simulation speeds, while offering enough 
accuracy for the design task. The Open SystemC 
Initiative (OSCI) [7] categorizes the TLM in 
SystemC into the following levels: Programmers 
View (PV), Programmers View with Timing (PV+T) 
and Cycle Callable (CC), where the modeling level 
of abstraction and simulation speed is from high to 
low among these three levels. The PV level is 
equivalent to untimed functional TLM and PV+T 
level is the level of timed functional TLM. 

We adopt the CoWare Platform Architect [11] 
for system design platform. The Platform Architect 
provides the modeling levels of PV and PV+T and 
allows the mixture of these two levels in the 
IP-based SoC design. Fig. 1 shows the ARM-based 
systems modeled with the mixed abstraction levels 
of PV and PV+T, where the ‘Transactor’ likes bridge 
to connect the PV and PV+T levels and its function 
is to convert the bus protocols between PV and 
PV+T levels. In Fig. 1, the AHB and APB 
components are modeled at PV+T abstraction level 
with AMBA protocol; whereas the ‘IP’ slave 
modules are modeled at PV level with PV protocol. 
The PV bus can be utilized to connect the slave 
modules as shown in Fig. 1(a) and (c). Then, the 
‘Transactor’ behaves like bridge between PV bus 
and AHB or APB. Fig. 1(b) and (d) do not use the 
PV bus for slave modules. Instead, each slave 
module connects to the AHB or APB through the 
‘Transactor’. The reason of employing the PV 
modeling level is to speed up both the modeling 
process itself as well as the simulation of the 
resulting specification.  

 
Fig. 1: ARM-based system modeled with mixed 
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levels of PV and PV+T, where IP represents the 
slave module.  

3 SoC-Level Risk Assessment 
When SoCs are applied to safety-critical 
applications, fault-robust designs with the 
dependability validation are required to guarantee 
that the developed SoCs are able to comply with the 
dependability or safety requirements defined by the 
international norms, such as IEC61508 [8, 9]. For 
the complicated IP-based SoCs or embedded 
systems, it is unpractical and not cost-effective to 
protect the entire SoC or system. Analyzing the 
vulnerability of SoCs or systems can help designers 
not only invest limited resources on the most crucial 
region but also understand the gain derived from the 
investment.  

In this section, we propose a SoC-level risk 
model to quickly assess the SoC’s vulnerability at 
SystemC TLM level. Conceptually, our risk model is 
based on the FMEA method with the 
simulation-based fault injection approach to 
measure the robustness of SoCs. From the 
assessment results, the rank of component 
vulnerability related to the risk scale of causing the 
system failure can be acquired. The notations used 
in the risk model are developed below. 

 n: number of components to be investigated in 
the SoC; 

 z: number of possible failure modes of the SoC; 
 C(i): the ith component, where 1 ≤ i ≤ n; 
 FR_C(i): failure rate of the ith component; 
 SFR_C(i): the part of SoC failure rate 

contributed from the failure rate of the ith 
component; 

 SFR: SoC failure rate; 
 R(t): SoC reliability; 
 FM(k): the kth failure mode of the SoC, where 1 

≤ k ≤ z; 
 NE: no effect which means that a fault/error 

happening in a component has no impact on 
the SoC operation at all; 

 P (i, FM(K)): probability of FM(K) if a failure 
occurs in the ith component; 

 P (i, NE): probability of no effect for a failure 
occurring in the ith component; 

 P(i, SF): probability of SoC failure for a failure 
occurring in the ith component; 

 S_FM(k): severity rate of the kth failure mode, 
where 1 ≤ k ≤ z; 

 RPN_C(i): risk priority number of the ith 
component; 

 RPN_FM(k): risk priority number of the kth 
failure mode. 

The potential SoC failure modes can be 
identified from the fault injection campaigns. We 
can inject the faults into a specific component so as 
to result in the failures of that component, and then 
investigate the effect of component’s failures on the 
SoC behaviors. Throughout the injection campaigns 
for each component, we can identify the failure 
modes of the SoC, which are caused by the failures 
of components in the SoC. The parameters of z and 
P(i, FM(k)) can be derived from the fault injection 
campaigns. The derivation process by fault injection 
experiments is described as follows: 
Several notations are developed first: 

 S_FM: a set of SoC failure modes used to record 
the possible SoC failure modes happened in the 
fault injection campaigns. 

 counter(i, k): a counter array for the ith 
component used to count the number of the kth 
SoC failure mode occurred in the fault injection 
experiment of the ith component, where 1 ≤ i ≤ n, 
and k represents the kth SoC failure mode in the 
set S_FM. 

 no_fi(i): the number of fault injection campaigns 
performed in the ith component, where1 ≤ i ≤ n. 

Fault injection process: 

z = 0; S_FM = Φ; 
for i = 1 to n //fault injection experiment for 

the ith component;// 
for j = 1 to no_fi(i) 
{injecting a fault into the ith component, and 
investigating the effect of component’s failure on 
the SoC behavior; then, identifying which failure 
mode of the SoC encountered due to this fault 
injection.  

 if (the SoC failure mode caused by this injection 
campaign is new, and therefore, it cannot be 
found in the set S_FM; in other words, this 
type of failure mode does not occur in the 
previous injection campaigns) 

 then {z = z + 1; adding this SoC failure mode to 
the set S_FM; k = z; counter(i, k) = counter(i, 
k) + 1} 

 else {find the value of k by locating the position 
of current SoC failure mode in the set S_FM; 
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then counter(i, k) = counter(i, k) + 1} 
}        � 

After carrying out the above injection 
experiments, the set S_FM is obtained. Next, the 
parameter of P(i, FM(K)) can be computed by 

)(_
),())(,(

ifino
kicounterKFMiP =  

Where 1 ≤ i ≤ n and 1 ≤ k ≤ z. The following 
expressions are exploited to evaluate the terms of 
P(i, SF) and P(i, NE). 
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The derivation of the component’s failure rate is out 
of the scope of this study, so we here assume the 
data of FR_C(i), for 1 ≤ i ≤ n, are given. The part of 
SoC failure rate contributed from failure rate of the 
ith component can be calculated by 

),()(_)(_ SFiPiCFRiCSFR ×=  

It is evident that the SoC failure rate and SoC 
reliability can be written as 
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The meaning of the parameter S_FM(k) and the 
role it playing can be explained from the aspect of 
FMEA process [10]. The method of FMEA is to 
identify all possible failure modes of a SoC and 
analyze the effects or consequences of the identified 
failure modes. In general, an FMEA records each 
potential failure mode, its effect in the next level, 
and the cause of failure. We note that the faults 
occurring in different components could cause the 
same SoC failure mode, whereas the severity degree 
of the consequences resulting from various SoC 
failure modes could not be identical. The parameter 
S_FM(k) is exploited to express the severity rate of 
the consequence resulting from the kth failure mode, 
where 1 ≤ k ≤ z.  

We illustrate the risk evaluation with FMEA 

idea using the following example. An ECU running 
engine control software is employed for automotive 
engine control. Its outputs are used to control the 
engine operation. The ECU could encounter several 
types of output failures due to hardware or software 
faults in ECU. The various types of failure mode of 
ECU outputs would result in different levels of 
risk/criticality on the controlled engine. A risk 
assessment is performed to identify the potential 
failure modes of ECU outputs as well as the 
likelihood of failure occurrence, and estimate the 
resulting risks of the ECU-controlled engine. 

In the following, we propose an effective 
SoC-level FMEA method to assess the risk-priority 
number (RPN) for the components inside the SoC 
and for the potential SoC failure modes. A 
component’s RPN aims to rate the risk of the 
consequences caused by component’s failures. In 
other words, a component’s RPN represents how 
serious is the impact of component’s failures on the 
system safety. A risk assessment should be carried 
out to identify the critical components within a SoC 
and try to mitigate the risks caused by those critical 
components. Once the critical components and their 
risk scales have been identified, the risk-reduction 
process, for example fault-tolerant design, should be 
activated to improve the system dependability. RPN 
can also give the protection priority among the 
analyzed components. As a result, a feasible 
risk-reduction approach can be developed to 
effectively protect the critical components and 
enhance the system robustness and safety. 

 The parameter RPN_C(i), i.e. risk scale of 
failures occurring in the ith component, can be 
computed by  

∑
=

××=
z

k
kFMSkFMiPiCFRiCRPN

1
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where 1 ≤ i ≤ n. The expression of RPN_C(i) 
contains three terms which are, from left to right, 
failure rate of the ith component, probability of 
FM(K) if a failure occurs in the ith component, and 
severity rate of the kth failure mode. As stated 
previously, a component’s failure could result in 
several different failure modes, and each identified 
failure mode has its potential impact on the system 
safety. So, RPN_C(i) is the summation of the 
following expression FR_C(i) × P (i, FM(K)) × 
S_FM(k), for k from one to z. The term of FR_C(i) × 
P (i, FM(K)) represents the occurrence rate of the kth 
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failure mode, which is caused by the ith component 
failing to perform its intended function.  

The RPN_FM(k) represents the risk scale of the 
kth failure mode, which can be calculated by  

∑
=

××=
n

i
kFMiPiCFRkFMSkFMRPN

1
))(,()(_)(_)(_  

where 1 ≤ k ≤ z.  expresses 

the occurrence rate of the kth failure mode in a SoC. 
This sort of assessment can reveal the risk levels of 
the failure modes to its system and identify the 
major failure modes for protection so as to reduce 
the impact of failures to the system. 

∑
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4 System Verification Platform 
We have created an effective robustness verification 
tool under the environment of CoWare Platform 
Architect [11] for dependability validation of system 
design with SystemC. Figure 2 shows the 
operational flow of the verification tool. The tool 
platform provides the capability to quickly handle 
the operation of fault injection campaigns and 
dependability analysis for the systems modeled by 
one or a mixture of the following levels of 
abstraction [12, 13]: bus-cycle accurate level, 
untimed functional TLM with primitive channel 
sc_fifo, and timed functional TLM with hierarchical 
channel. So, the tool is able to deal with the fault 
injection at different modeling levels of abstraction 
and offers the time-triggered or event-triggered 
methodologies to decide when to inject a fault. This 
injection tool can significantly reduce the effort and 
time for performing the fault injection campaigns. 
Besides that, the verification platform dramatically 
increases the efficiency of carrying out the system 
robustness validation and risk assessment.  

5 Case Study 
An ARM-based SoC platform provided by CoWare 
Platform Architect [11] was used to demonstrate the 
feasibility of our risk model. The illustrated SoC 
platform was modeled at the timed functional TLM 
abstraction level. This case study is to investigate 
two components, AMBA AHB and the memory 
sub-system, to assess their risk scales to the 
SoC-controlled system. We exploited the system 
verification platform to perform the fault injection 
process associated with the risk model presented in 

Section 3 to identify the potential failure modes and 
obtain the values of z and P(i, FM(k)) for the 
components of AMBA AHB and memory 
sub-system. The possible SoC failure modes 
classified from the fault injection process could be 
fatal failure (FF), such as system crash or process 
hang, silent data corruption (SDC), correct 
data/incorrect time (CD/IT), and deadlock (DL) 
(note that we declare the failure mode as DL if the 
execution of benchmark exceeds the 1.5 times of 
normal execution time). In the following, we 
summarize the data used in this case study. 

 n = 2, {C(1), C(2)} = {AMBA AHB, memory 
sub-system}. 

 z = 4, {FM(1), FM(2), FM(3), FM(4)} = {FF, 
SDC, CD/IT, DL}. 

 The benchmarks employed in the fault injection 
process are: JPEG (pixels: 255 × 154), matrix 
multiplication (M-M: 50 × 50), quicksort (QS: 
3000 elements) and FFT (256 points). 

5.1 AMBA AHB Vulnerability Assessment 
The system bus, such as AMBA AHB, provides an 
interconnected platform for IP-based SoC. 
Apparently, the robustness of system bus plays an 
important role in the SoC reliability.  

The results of fault injection process for AHB 
system bus under various benchmarks are shown in 
Table 1, which has been published in our previous 
paper [14]. The results of a particular benchmark in 
Table 1 were derived from the six thousand fault 
injection campaigns, where each injection campaign 
injected 1-bit flip fault to bus signals. The fault 
duration lasts for the length of one-time data 
transaction. The statistics derived from six thousand 
times of fault injection campaigns have been 
verified to guarantee the validity of the analysis. We 
also found that the rank of vulnerability of bus 
signals is ‘HADDR’ > ‘HSIZE’ > ‘HDATA’ for all 
benchmarks, if the fault targets are restricted to 
those three categories of bus signals.  

From Table 1, it is evident that the susceptibility 
of the SoC to bus faults is benchmark-dependent and 
the rank of system bus vulnerability over different 
benchmarks is JPEG > M-M > FFT > QS. However, 
all benchmarks exhibit the same trend in that the 
probabilities of FF show no substantial difference, 
and while a fault arises in the bus signals, the 
occurring probabilities of SDC and FF occupy the 
top two ranks. The results of the last row offer the 

 6



average statistics over four benchmarks employed in 
the validation process. Since the probabilities of SoC 
failure modes are benchmark-variant, the average 
results illustrated in Table 1 give us the expected 
probabilities for the system bus vulnerability of the 
developing SoC, which are very valuable for us to 
gain the robustness of the bus system and the critical 
bus signals to be protected. From the experimental 
results, we see that the ‘HADDR’ is the top priority 
to protect. The robustness measure of the bus system 
is only 0.2678, which means that a fault occurring in 
the bus system, the SoC has the probability of 
0.2678 to be survived for that fault. Last but not 
least, we note that the SDC is the most popular 
failure mode for the demonstrated SoC responding 
to the bus faults or errors.  

Table 1: P (1, FM(K)), P (1, SF) and P (1, NE) for 
the used benchmarks. 

 FF 
(%) 

SDC 
(%) 

CD/IT 
(%) 

DL 
(%) 

SF 
(%)

NE 
(%) 

JPEG 18.57 45.90 0.16 15.88 80.51 19.49

M-M 18.95 55.06 2.15 3.57 79.73 20.27

FFT 20.18 21.09 15.74 6.38 63.39 36.61

QS 20.06 17.52 12.24 5.67 55.50 44.50

Avg. 19.41 38.16 7.59 8.06 73.22 26.78

5.2 Memory Sub-System Vulnerability 
Assessment 

The memory sub-system could be affected by the 
radiation articles, which may cause the bit-flipped 
soft errors. However, the bit errors won’t cause 
damage to the system if one of the following 
situations occurs:  

 Situation 1: The benchmark never reads the 
affected words after the bit errors happen.  

 Situation 2: The first access to the affected 
words after the occurrence of bit errors is the 
‘write’ action.  

Otherwise, the bit errors could cause damage to the 
system. Clearly, if the first access to the affected 
words after the occurrence of bit errors is the ‘read’ 
action, the bit errors will be propagated and could 
finally lead to the failures of SoC operation. So, 
whether the bit errors will become fatal or not, it all 
depends on the occurring time of bit errors, the 

locations of affected words, and the benchmark’s 
memory access patterns after the occurrence of bit 
errors.  

According to the above discussion, two 
interesting issues arise; one is the propagation 
probability of bit errors and another is the failure 
probability of propagated bit errors. We define the 
propagation probability of bit errors as the 
probability of bit errors which will be read out and 
propagated to influence the execution of the 
benchmarks. The failure probability of propagated 
bit errors represents the probability of propagated bit 
errors which will finally result in the failures of SoC 
operation. We then performed two types of 
experiments to assess the propagation probability 
and failure probability of bit errors. 

Type 1 experiment: we develop the experimental 
process as described below to measure the 
propagation probability of bit errors. The following 
notations are used in the experimental process. 

 Nbench: the number of benchmarks used in the 
experiments. 

 Ninj(j): the number of fault injection campaigns 
performed in the jth benchmark’s experiment. 

 Cp-b-err: counter of propagated bit errors. 
 Np-b-err: the number of propagated bit errors. 
 Sm: address space of memory sub-system. 
 Nd-t: the number of read/write data transactions 

occurring in the bus system during the 
benchmark execution. 

 Terror: the occurring time of bit error. 
 Aerror: the address of affected memory word. 
 Sp-b-err(j): set of propagated bit errors conducted 

in the jth benchmark’s experiment. 
 Pp-b-err: propagation probability of bit errors. 

Experimental Process: We injected a bit-flipped 
error into a randomly chosen memory address at 
random read/write transaction time for each 
injection campaign. As stated earlier, this bit error 
could either be propagated to the system outside the 
memory sub-system or not. If yes, then we add one 
to the parameter Cp-b-err. The parameter Np-b-err is set 
by users and employed as the terminated condition 
for the current benchmark’s experiment. When the 
value of Cp-b-err reaches to Np-b-err, the process of 
current benchmark’s experiment is terminated. The 
Pp-b-err can then be derived from Np-b-err divided by 
Ninj. The values of Nbench, Sm and Np-b-err are given 
before performing the experimental process. 
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for j = 1 to Nbench 
{ 
Step 1: Run the jth benchmark in the experimental 

SoC platform under CoWare Platform 
Architect to collect the desired bus 
read/write transaction information that 
include address, data and control signals of 
each data transaction into an operational 
profile during the program execution. The 
value of Nd-t can be obtained from this step. 

Step 2: Cp-b-err = 0; Ninj(j) = 0; 
While Cp-b-err < Np-b-err do 

 {Terror can be decided by randomly choosing 
a number x between one and Nd-t. It means 
that Terror is equivalent to the time of the xth 
data transaction occurring in the bus system. 
Similarly, Aerror is determined by randomly 
choosing an address between one and Sm. A 
bit is randomly picked up from the word 
pointed by Aerror, and the bit selected is 
flipped. 
If ((Situation 1 occurs) or (Situation 2 
occurs))  
then {the injected bit error won’t cause 
damage to the system;} 
else {Cp-b-err = Cp-b-err + 1; 

record this propagated bit error to 
Sp-b-err(j) including Terror, Aerror and bit 
location.} 

//Situation 1 and 2 are described in the 
beginning of Section 5.2. The operational 
profile generated in Step 1 is exploited to 
help us investigate the resulting situation 
caused by the current bit error. From the 
operational profile, we check the memory 
access patterns beginning from the time of 
occurrence of bit error to identify which 
situation the injected bit error will lead to. // 
Ninj(j) = Ninj(j) + 1;} 
}       � 

The Type 1 experimental process was carried 
out to estimate Pp-b-err, where Nbench, Sm and Np-b-err 
were set as the values of 4, 524288, and 500 
respectively. Table 2 shows the propagation 
probability of bit errors for four benchmarks. It is 
evident that the propagation probability is 
benchmark-variant and a bit error in memory would 
have the probability between 0.866% and 3.551% to 
propagate the bit error from memory to system. The 
results imply that most of the bit errors won’t cause 

damage to the system. 

Table 2: Propagation probability of bit errors. 

Benchmark Ninj  Np-b-err  Pp-b-err  

M-M 14079 500 3.551% 

QS 23309 500 2.145% 

JPEG 27410 500 1.824% 

FFT 57716 500 0.866% 

Type 2 experiment: From Type 1 experimental 
process, we collect Np-b-err bit errors for each 
benchmark to the set Sp-b-err(j). Those propagated bit 
errors are used to assess the failure probability of 
propagated bit errors. Therefore, Np-b-err 
simulation-based fault injection campaigns are 
conducted under CoWare Platform Architect, and 
each injection campaign injects a bit error into the 
memory according to the error scenarios recorded in 
the set Sp-b-err(j). Therefore, we can examine the SoC 
behavior for each injected bit error.       � 

We should point out that the function of Type 1 
experiment can be accomplished by Type 2 
experiment. However, Type 2 experiment is based 
on the simulation-based fault injection approach, 
which requires higher simulation time than Type 1 
experiment. As can be seen from Table 2 and 4, if 
we use only Type 2 experiment to assess the 
propagation probability and failure probability of bit 
errors as illustrated in Table 2, 4, and 5, a huge 
number of simulation-based fault injection 
campaigns should be conducted. As a result, an 
enormous amount of simulation time is required to 
complete the injection campaigns. Instead, we 
developed a software tool used in Type 1 experiment 
to quickly identify which situation the injected bit 
error will lead to. Using this approach, the number 
of simulation-based fault injection campaigns 
performed in Type 2 experiment decreases 
dramatically. Since the performance of software tool 
adopted in Type 1 experiment is higher than that of 
simulation-based fault injection campaign employed 
in Type 2 experiment. Therefore, we can save a 
considerable simulation time. The data of Table 2 
indicate that without the help of Type 1 experiment, 
we need to carry out a few ten thousand 
simulation-based fault injection campaigns in Type 2 
experiment. As opposite to that, with the assistance 

 8



Table 3: Comparison of experimental time between 
ours & pure simulation-based approach. 

of Type 1 experiment, only five hundred injection 
campaigns are required in Type 2 experiment. Table 
3 gives the experimental time of our approach and 
pure simulation-based fault injection approach, 
where the data in the column of ratio are calculated 
by the experimental time of our approach divided by 
the experimental time of pure simulation-based 
approach. It is evident that the performance of our 
experimental approach is quite effective compared 
to the pure simulation-based approach. 

Given Np-b-err and Sp-b-err(j), the Type 2 
experimental results are illustrated in Table 4. From 
Table 4, we can identify the potential failure modes 
and the distribution of failure modes for each 
benchmark. It is clear that the susceptibility of a 
system to the memory bit errors is 
benchmark-variant, and the M-M is the most critical 
benchmark among the four adopted benchmarks, 
according to the results of Table 4.  

Bench Type 1 + 2 (min.) Type 2 (min.) Ratio 

M-M 3123 15252 20.476% 

QS 8353 27194 30.716% 

JPEG 75968 157608 48.201% 

FFT 32577 96193 33.866% 

Total 120021 296247 40.514% 

Table 4: Type 2 experimental results. 

Benchmark FF SDC CD/IT DL NE 

M-M 0 484 0 0 16 

QS 0 138 103 99 160 

JPEG 0 241  1  126 132 

FFT 0 177  93  156 74 
We then manipulated the data of Table 2 and 4 

to acquire the results of Table 5. Table 5 shows the 
probability distribution of failure modes if a bit error 
occurs in the memory sub-system. Each datum in 
the row of ‘Avg.’ was obtained by mathematical 
average of the benchmarks’ data in the 
corresponding column. This table offers the 
following valuable information: the robustness of 
memory sub-system, the probability distribution of 
failure modes and the impact of benchmark on the 
SoC dependability. Probability of SoC failure for a 
bit error occurring in the memory is between 
0.738% and 3.438%. We also found that the SoC has 
the highest probability to encounter the SDC failure 
mode for a memory bit error. In addition, the 
vulnerability rank of benchmarks for memory bit 
errors is M-M > QS > JPEG > FFT.  

 Table 5: P (2, FM(K)), P (2, SF) and P (2, NE) for 
the used benchmarks. 

 FF (%) SDC (%) CD/IT (%) DL (%) SF (%) NE (%)

M-M 0.0 3.438 0.0 0.0 3.438 96.562

QS 0.0 0.592 0.442 0.425 1.459 98.541

JPEG 0.0 0.879 0.004 0.460 1.343 98.657

FFT 0.0 0.307 0.161 0.270 0.738 99.262

Avg. 0.0 1.304 0.152 0.289 1.745 98.255

Table 6: The statistics of memory read/write for the 
used benchmarks. 

 Table 6 illustrates the statistics of memory 
read/write for the adopted benchmarks. The results 
of Table 6 confirm the vulnerability rank of 
benchmarks as observed in Table 5. Situation 2 as 
mentioned in the beginning of Section 5.2 indicates 
that the occurring probability of Situation 2 
increases as the probability of performing the 
memory write operation increases. Consequently, 
the robustness of a benchmark rises with an increase 
in the probability of Situation 2. 

 #R/W #R R(%) #W W(%)

M-M 265135 255026 96.187% 10110 3.813%

QS 226580 196554 86.748% 30027 13.252%

JPEG 1862291 1436535 77.138% 425758 22.862%

FFT 467582 240752 50.495% 236030 49.505%

5.3 SoC-Level Risk Assessment 
For simplicity of presentation, two components, 
AMBA AHB system bus and memory, are utilized to 
demonstrate the proposed risk model to assess the 
scales of failure-induced risks in a system. The 
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following data were used to show the risk 
assessment for the selected components: {FR_C(1), 
FR_C(2)} = {0.001/hour, 0.005/hour} {S_FM(1), 
S_FM(2), S_FM(3), S_FM(4)} = {10, 8, 4, 6}. 
According to the expressions presented in Section 3, 
the SoC failure rate, reliability and RPN are obtained 
below: 

SFR_C(1) = 0.001/h × 0.7322 = 7.322 × 10-4/h 

SFR_C(2) = 0.005/h × 0.01745 = 8.725 × 10-5/h 

SFR = SFR_C(1) + SFR_C(2) = 8.1945 × 10-4/h 

e tSFRtR ×−=)(  

RPN_C(1) = 0.001/h × ((19.41 × 10 + 38.16 × 8 + 
7.59 × 4 + 8.06 × 6) × 10-2) = 5.781 × 10-3/h 

RPN_C(2) = 0.005/h × ((0.0 × 10 + 1.304 × 8 + 
0.152 × 4 + 0.289 × 6) × 10-2) = 6.387 × 10-4/h 

RPN_FM(1) = 10 × ((0.001/h × 19.41 + 0.005/h × 
0.0) × 10-2) = 1.941 × 10-3/h 

RPN_FM(2) = 8 × ((0.001/h × 38.16 + 0.005/h × 
1.304) × 10-2) = 3.5744 × 10-3/h 

RPN_FM(3) = 4 × ((0.001/h× 7.59 + 0.005/h × 
0.152) × 10-2) = 3.34 × 10-4/h 

RPN_FM(4) = 6 × ((0.001/h × 8.06 + 0.005/h × 
0.289) × 10-2) = 5.703 × 10-4/h 

Compared RPN_C(1) with RPN_C(2), it is 
evident that the failure of AMBA AHB is more 
critical than the failure of memory sub-system. So, 
the result suggests that the AHB system bus is more 
urgent to be protected than the memory. Moreover, 
the data of RPN_FM(k), k from one to four, infer 
that SDC is the most crucial failure mode in this 
illustrated example. Throughout the above 
vulnerability and risk analyses, we can identify the 
critical components and failure modes, which are the 
major targets for design enhancement. In this case 
study, the top priority of the design enhancement is 
to raise the robustness of the AHB ‘HADDR’ bus 
signals to significantly reduce the rate of SDC 
occurrence and the scales of system risks if the 
system reliability/safety is not adequate. 

We should notice that the case study presented 
here uses only two components for easy 

demonstration of our idea. In the future, for 
completeness, the work will include more 
components, such as ARM CPU, in the vulnerability 
and risk analyses.  

6 Conclusions 
In this work, we have presented a valuable 
SoC-level risk model, and exploited an ARM-based 
SoC platform to demonstrate its feasibility and 
usefulness. The main contributions of this study are 
first to raise the level of dependability validation to 
the untimed/timed functional TLM, and therefore, 
the efficiency of the validation process is 
dramatically increased; second to develop a useful 
risk model to assess the scales of failure-induced 
risks in a system; third to conduct a thorough 
vulnerability analysis of the AMBA bus and 
memory sub-systems based on a real ARM-based 
system platform modeled in SystemC TLM 
abstraction level. The analyses help us measure the 
robustness of the bus and memory sub-systems and 
locate the critical bus signals to be guarded.  
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Self-Evaluation of Research Results: 
 The above report summarizes the third-year 

results accomplished from this three-year 
research project. The research results have 
been published in one journal and three 
conferences. The extended version of the 
results will be submitted to be considered for 
journal publication. We definitely achieve the 
main goals set in the proposal. 

 We propose a risk model at SoC level to 
facilitate the measure of the robustness and 
scales of failure-induced risks in a system, 
which can be used to identify the critical 
components and major failure modes for 
protection so as to effectively reduce the 
impact of failures to the system. We develop 
system-level robustness verification and risk 
assessment tool under the environment of 
CoWare Platform Architect. The tool platform 
takes the fault scenario description from the 
user and then automatically generates the 
system platform supplemented with the fault 
injection capability. Our tool can not only 
facilitate the failure mode and effect analysis 
(FMEA) and the fault-tolerant validation 
process, but raise the validation efficiency. 
The embedded fault-tolerant systems have 
found fertile ground in intelligent system 
applications, such as intelligent driver 
assistance vehicle system or intelligent robot 
system, which require a stringent 
dependability while the systems are in 
operation. Since more works depend on the 
intelligent machines, the reliability issue 
becomes more important than ever. The 
robustness and safety verification platform 
developed from this research can be applied to 
the design and analysis of the fault-tolerant 
systems modeled at high level of abstraction to 
enhance the overall system dependability. The 
previous study for the robustness verification 
approach mainly focuses on the VHDL 
modeling level and rarely discusses the 
verification in SystemC-level design. Our 
study fulfills this lack. 
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