FHRERATPEELRE CLET TS 2R

AR BRI BREBY FrHEREMNES T IBR BT
ik
FLEEEL R

Call S AR

P F % 5t NSC 98-2221-E-216-012-

#oF R - 98#087 01 px99E 07" 3P
#H o7 HE =P EAETaa Y)

FEAFEL SRR
£ A4 BRI
FESE AR RLAFUT T A - JEME AR L ER

AriEmy 4 -f{izer@ AR iy
ALy 4 - iEmm Ao FY
iriemy 4 -fize@ A o X pdr
FAFeEy 4 -J @A f o Ko

o= & R O 100# 017 01 P

FRERFPELR e EHAL VS
PP PP P PPPEEEE PP P DD PP P
= D3
% AR RES BRI BY EY &R D
NG MiE A AR R IRE %
% %
D R D I B QP B B B QD X B QP

T L
4 %% NSC 98—2221—E—216—012—
HEHEF: 98&F 8 * 1px 99& T7* 3lp

S R
SR A A Rl
SRR AR Ea, FRE, LR, B

Table of Contents

(@0 1 (=] 01 K01 =T 0] o P
) T -1 - o=
022 T oY =T Y P
(60 T UL (=T =Y L0 T -V -
(4) MethOdOIOgY ...vuie it e e e e e e e e e e e e e e e
(5) FiIndings and diSCUSSIONSvu e ees et e e e e e e ee e e e e e e e e e e een e

Sl BValUB I ON ... e e e e e e e e

o A W W W W

Contents of Report

(1) Preface

Error correction codes usually put the same protection on the information bits. This
property is called Equal Error Protection (EEP). However, in some applications, a portion of the
information bits are more important than the others and thus require more protection on them.
Channel codes that provide this property are called Unequal Error Protection (UEP) codes. For
a UEP code, information bits are usually divided into two classes, one called More Important
Bits (MIB) and the other called Less Important Bits (LIB). In UEP applications, a UEP code
can reduce the total amount of redundancy as compared to EEP codes. This project focused on
designing new decoding scheduling algorithms to make a single UEP-LDPC code satisfy
variable combinations of MIB/LIB BER requirements.

(2) Objective

For most studies of UEP LDPC codes in the literature, flooding scheduling is used. The
simulation results demonstrate different BERs for MIB and LIB of the transmitted message.
However, the gap between BERs for MIB and LIB only depend on the code design, i.e. the
degree distributions. In our simulation of UEP LDPC codes decoded using SSS and IDS, we do
observe lower BER and faster convergence compared to flooding. Still, the gap between BERs
for MIB and LIB is fixed once the degree distributions of the variable nodes are chosen.

In some cases, we might want to change the BER requirements for MIB and LIB while the
LDPC code is already determined, say from the standards. Then the decoder iteration must be
run long enough until both of the requirement is satisfied. The additional number of iterations
wastes time and power. So, we are motivated by this observation to design new decoding
scheduling algorithms to make a single UEP-LDPC code satisfy variable combinations of
MIB/LIB BER requirements.

In this project, we propose to use RBP as the scheduling for UEP-LDPC code to improve
the convergence speed. Besides, we set additional rules to the node-selection order such that
BERs of MIB and of LIB can be adjusted. The rules include setting LLR ranking thresholds,
updating quota, and weighted residues. The intuition is to let MIB and LIB nodes to have
different updating priorities which can be controlled by the parameters of our algorithms.

(3) Literature review

Several studies in the literature proposed solutions for the UEP problem. Multilevel coding
with multi-stage decoding can provide UEP property. As for single level coding, two
independent codes can be used for MIB and LIB independently. This method is called
Time-sharing. For MIB, a lower rate code is used for better protection while the LIB uses a

3

higher rate code. Time-sharing is simple but the problem is that the MIB which corresponds to
the header part of a packet or image is usually short in length. It is obvious that a short error
correction code suffers from serious performance degradation. Another scheme is to use
rate-compatible codes with puncturing (RCPC/RCPT codes). In this scheme, a lower-rate
mother code can be punctured into a higher rate code to adjust the level of protection.
RCPC/RCPT is more flexible in terms of code-rate selection for MIB and LIB if compared with
time sharing. However, the performance of RCPC/RCPT codes also suffers from shortened
blocklength.

From the above discussion, we can conclude that a single code that can provide UEP
property is desirable. It turns out that the irregular LDPC code is a natural fit for UEP
applications. Rahnavard et al. proposed a partially regular UEP LDPC code where the variable
nodes are divided into three groups, MIB, LIB and Parity Bits (PB).

LDPC codes are usually decoded by running an iterative message-passing algorithm over
the underlying bi-partite graph of the code. This iterative algorithm is also called Belief
Propagation (BP). The problem of determining the order that the variable nodes and the check
nodes update their message is called scheduling. Traditional message-passing schedule adopts
the flooding strategy. Although flooding has almost become the standard LDPC decoder
scheduling, several studies show that different scheduling strategies can outperform flooding in
terms of convergence speed and frame error rate (FER). These strategies include Standard
Sequential Scheduling (SSS) and Informed Dynamic Scheduling (IDS).

The first IDS algorithm was proposed by Elidean et al. as the Residual Belief Propagation
(RBP) algorithm. RBP updates the node that has the largest difference between its message in
the current iteration and its message in the previous iteration. This is a greedy algorithm with
the intuition of finding the node whose LLR is increasing the fastest such that the iteration can
be speed up. RBP was found to converge even faster than SSS. However, its performance for a
large number of iterations becomes worse since the greedy algorithm sometimes converges to
the wrong codeword. Node-wise RBP (NW-RBP) updates the variable nodes in sequence as in
RBP but updates the check nodes in parallel. The NW-RBP is less greedy than the RBP and
turns out to be a good trade-off between convergence speed and error performance.

(4) Methodology

We use C++ to implement a software simulation environment for UEP-LDPC codes. The
simulator can take the input of any arbitrary LDPC parity check matrix and run simulation over
AWGN. The simulation environment can use flooding or RBP in the message update and the
three proposed algorithms will then be implemented.

The system consists of a binary LDPC encoder followed by a signal mapper and then the
coded bits are sent over the channel. The channel is additive white Gaussian Noise channel
(AWGN). At the receiving side, first the received symbols are de-mapped assuming that perfect
channel side information can be obtained at the receiver. Then the LLRs are passed to the

4

iterative LDPC decoder running according to the proposed IDS algorithm and stopping criteria.

We generated the optimal degree distribution using UEP density evolution (DE). With this
degree distribution, we will construct the UEP-LDPC codes using random construction with
graph-conditioning methods. Graph conditioning aims to avoid short cycles and small stopping
sets such that the resulting BER of the LDPC codes have low error floors. The block length will
be medium length between 1,000 and 3,000 bits for practical reasons. Several different code
rates will be selected.

We propose three scheduling algorithms to make the bit error rates of UEP-LDPC flexible.
The intuition is to change the preference of the message update order of MIB and LIB bits. The
algorithms are described as follows:

(@)

(b)

(©)

LLR Ranking Threshold (LRT)

In this method, in addition to the residue queue, we create two queues, QMIB
and QLIB, for MIB and LIB respectively. QMIB and QLIB are sorted according to
the LLR of the variable nodes in non-decreasing order. When performing RBP, the
message with the largest residue is updated if LLR of the corresponding variable
node is below the pre-determined ranking thresholds, LRTMIB or LRTLIB.
Otherwise, that message is not updated and second message is examined to see if it
satisfies LRT and so forth. The threshold is a ranking percentage inside the queue.
For example, LRTMIB=0.2 means that the variable nodes with LLR in the smaller
20% of QMIB are considered for updates while the larger 80% of QMIB are skipped.
In other words, LRT constrains the more reliable (high LLR) nodes from updating
their messages even if that message has the largest residue.

Node Quota (NQ)

In this method, we set two quotas, TMIB and TLIB, for the edges that point to
MIB and LIB respectively. When performing RBP, after the message with the largest
residue is updated, the corresponding quota decreases by one. If the corresponding
quota is zero, that message must not be chosen for message update. The next message
in the residue queue will be chosen and checked for its quota. When both TMIB and
TLIB are become zero, we will reset the quotas to start the next round. Through the
NQ algorithm, we can adjust the number of updates of MIB and LIB and hence
change their BERSs.

Weighted Residue (WR)

In this method, we set different weighting, WMIB and WLIB, for the edges that
point to MIB and LIB respectively. Similar to RBP, the message with the largest
residue is updated only that the residue is multiplied by its weighting. For example,
we may apply a large weighting on MIB edges, then MIB edges will have higher
priority than LIB edges. Through the WR algorithm, we can adjust the number of
updates of MIB and LIB and hence change their BERs.

(5) Findings and discussions

Figure 1 shows a set of simulation of a UEP LDPC code using two different LRT
thresholds. The LDPC code used is rate-1/2 and the code length is 1944 bits. Among the 972
information, 140 bits are the MIB and the other 832 bits are the LIB. MIB has degree 20 and
LIB has degree 2 and 3. In LRT case A, we choose the thresholds as LRTMIB=0.25 and
LRTLIB=1. In LRT case B, LRTMIB=0.15 and LRTLIB=1. From Figure 1, it is observed that
by skipping the high LLR MIB updates, we are able to maneuver the gap between the BERs of

MIB and LIB.

BEit Error Rate

Figure 2 shows the effect of the NQ method on the same UEP LDPC code in Figure 1. The
Eb/No is 1.4dB. We choose the quotas as TMIB=1822, TLIB=712. It is found that so far the
NQ algorithm can only slightly change the gap between the BERs of MIB and LIB. However, it
could slow down the convergence. We think that the NQ algorithm worth more studying since

it may play a role in the future

--------------- Fe======-7

]
::i| == LIB{REF)
I = MIBRER
: LIB(LRT, case &)
MIB(LRT, case A)
LIB(LRT, caze B)

MIB(LRT, case B) |

--

1.4
E, /M, (dB)
Figure 1. With the LRT algorithm, we can adjust the
BER curves of MIB by setting different ranking
threshold. The BER curves of LIB virtually remain
the same. Therefore, the gap between LIB and MIB
can be maneuvered.

if we consider a combination of the three algorithms.

T MIBRER) 1]
1 —= LIBNG)
— MIBNG)

Bit Error Rate

0 5 10 15 20 26 30 35 40 45 a0
lteration Murmber

Figure 2. With the NQ algorithm, the BER of MIB
can move upwards while the BER of LIB virtually
remains the same. Therefore, the gap between LIB
and MIB is slightly reduced.

Figure 3 shows the potential of the WR method on the same UEP LDPC code in Figure 1.
The Eb/No is 1.6dB. We choose the weightings as WMIB=300, WLIB=1. Basically the
parameters make the MIB much more preferred in the residue queue than the LIB. It is
interesting to find that this choice of parameters brings the MLB and LIB BER curves very
close to each other. The UEP LDPC code behaves almost like an EEP LDPC code. We have not
fully understood how to set the appropriate weightings to control the gap and that is what we

will work on.

Bit Error Rate

3 & LUBREP)
21— MIB(REF)
--1—a LB(NG)
—+ MIBNG)

l
5 10 15 20 25 30 34 40 45 a0
[teration Murmber

Figure 3. With the WR algorithm, the BER of MIB
can move upwards and become very close to the LIB
curve. Therefore, the gap between LIB and MIB is
significantly reduced and the UEP LDPC code
behaves almost like an EEP LDPC code.

Self Evaluation

We successfully demonstrated that the proposed LRT, NQ and WR algorithms can be used to
change the BER gap of MIB and LIB. However, how to quantitatively choose the appropriate
parameters to achieve the design goal is still open. We will need more simulation results and
mathematical derivations to solve the optimization problem.

Future work can be study on combining the three algorithms to further improve the
performance of the designed UEP-LDPC code. Also we might work on dynamic thresholds as

iteration proceeds. How to design a good algorithm while keeping the computational complexity
affordable is also an issue.

WEREHFTTHEFT S EFREL

Pga s

3 s - 98-2221-E-216-012-

i B2 X

A~ >
VP

2ot 3

e

BRI Y B PR S R 0 E R

N

T Pl B b
&% 7 PR LS s | BERE | g |7 PR TR
B (s (27 % gt | A % oM 2
pegg) | 2 o & ¥ ...
F)
B 0 0 100%
e PiEBREL |0 0 100% a
¥~ T
ik 0 0 100%
P 0 0 100%
o ; ﬁ%f iy 0 0 100% .
S P 0 0 100%
P i g 0 0 100% “
B
#1 4 0 0 100% + =
4 5 0 100%
gprih A4 s 0 0 100% o
=X
(2R BLuersE |0 0 100%
biEpm 0 0 100%
B)2 0 0 100%
o e PALARRBATED |0 0 100% j
¥m ¥ T
it g 0 0 100%
L1 0 0 100% Y
4 @giﬂﬁﬁ: 0 0 100% .
S 9B 0 0 100%
BN (,l\
" i 0 0 100% “
HoAS
#1 4 0 0 100% e
A 0 0 100%
gorg a4 (gaa 0 0 100%
A =
(hEE) [BLeETE |0 0 100% '
L iEmm 0 0 100%

H A%
(miz gz
5 hoyE B s d S
HREE S ERREE
V=g g NP LB T
SR R D B
Vicne S TSN | 2
EE G F A

}ljo)

g

’i X538 P

frebs

—

#R%EL S(7 FRredn)

/e

Re|grga epe A1 8

21

Fi

B ye s IR

T e

3
1
4e
g |FiHE/ iy
i
p

PEASHAEZ 2 (BR) Ak

OO O OO O o (o

R 640 %A] 7 h S R 2

%ﬁpzpzﬁ@fgwwﬁa\&ﬁﬁws%nﬂ»Pfé% TS i
B (f Jﬂ% +‘:'\'5=ELFIJ‘§\~&£"%\LE’_‘§—§KE\‘ HF B 2T) ﬂ;@i
EagmalF LY R AR FRAHE IR EE - 17— IFEF

L g P 52 Ry hAp AR ~ E 290 0 Rt - F 5=k
W= Pk
(kg = p 4 (3P > 12100 3 5 12)

[8 5% 4 Pz

(I %@ o

(J# © & 7]
R

2. PR 3k n B IIE A AV R 1R
we e d Oagdz5m WERY i
%4}1 [£ D\z' %3—:‘ ._ﬁ
B D s s W
w1 (12100 3 5 2)

. B F AR IR LG FFR G 0 R S LR
B (et 52 L& Wi PPN HFE27 i) (1
500 # % ')

FREEHS B Ak RO 2 AR E O RF KA AR R B kY
Ak g BE. G Fayy

B, {LiF» 1 AR &GS 2 R &L iS5

