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Abstract

In this study, an automatic birdsong recognition system based on syllable features was developed. In this system, after the

syllables have been segmented, three syllable features, namely mean, QI and QE, were computed from the MFCCs of each

syllable. The first feature has been applied in many studies, however, QI and QE are novel features. Adding the advantages of

the fuzzy c-mean (FCM) clustering algorithm and the linear discriminant analysis (LDA), the presented feature vector was

used to construct an automatic birdsong recognition system. In the experiment, the proposed system was applied to a

birdsong database with 420 bird species and achieved an average recognition rate of 83.3%.

Keywords: Birdsong, MFCC, syllable, linear discriminant analysis, transition matrix

1. Introduction

The investigation of bird species diversity is the
key in monitoring environment and ecosystem
recovery, and automatic bird species recognition by
recognizing their birdsongs has become an invaluable
study method in the long-term investigation of bird
species. The vocalization types of bird species
include birdsong and birdcall. Birdsong being
complicated, varied, agreeable and pleasant to listen
to, is usually generated by a male bird and is used to
declare his turf or attract a mate. Birdcall, on the
other hand, is monotonous, brief, repeated, fixed and
sexless and is used to contact or alert companions.
The time duration and acoustic structure of a birdcall
are usually short and simple while the duration of a
birdsong is longer and is composed of a succession of
melodious musical notes.

Although MFCCs have been well-applied in bird
species recognition, further study on this feature is
necessary to increase the recognition rate. In (Lee et
al. 2003; Lee et al., 2001; Skowronski and Harris,
2002, 2003; Bou-Ghazale and Hansen, 2000) optimal

theories were used to obtain the center frequencies

and bandwidths of the triangular filters. The discrete
cosine transform (DCT) was replaced with the
wavelet transform in (Ricotti, 2005). Filter weighting
was applied in (Hung and Wang, 2001) to assign a
weight for each order of MFCCs. In (Kwan et al.,
2006) the MFCCs as well as their first-order and
second-order differences were used to form the
feature vector. Combination of MFCCs with a lot of
low-level  descriptive  parameters  such  as
zero-crossing rate, short time energy, syllable length,
spectrum centroid, bandwidth and so on was applied
in (Somervuo, 2006) for recognizing 14 bird species.

In this study, neither modifying the steps for
computing the MFCCs nor combining the MFCCs
with other types of features, three features were
computed from the MFCCs of a syllable to form the
syllable feature vector. The proposed method aimed
at easy computation and small time complexity.
Integrating with the advantages of FCM clustering
algorithm and the LDA, the proposed system
achieved an average recognition rate over 83% when
recognizing the birdsongs of 420 bird species. The

remaining of this paper is as follows: Section 2



describes the structure of the proposed system.
Experimental results are shown in Section 3. Section

4 is the conclusion.

2. The Proposed System

The block diagram of the proposed system

containing the training part and the testing
(recognition) part is shown in Fig. 2.1. Three terms
named mean, QI and QE were computed to form the
feature vectors of each syllable, and the recognition
was achieved by comparing the matching degrees
between the feature vector of the test syllable and the
template syllables. Each step in the diagram is

described in detail in the following.

2.1 Syllable Segmentation

Due to the resistance to signal fading and
echoing, the frequency domain analysis of the
birdsong signal is better than in the time domain
approach. So the frequency domain approach was
utilized in this study. The segmentation process
applied in this study is described in the following.
Step 1 Compute the short time Fourier transform of
x(f) with frame size N = 512, and form the
spectrogram of the signal. The Hamming window for

short time analysis has the form of

0.54—0.46 cos| -7 0<n<N-1(1)
N-1

wn] =
0 , otherwise
Step 2 For each frame m, find the frequency Bin
bin, with the greatest magnitude.
Step 3 Initialize the syllable index j, j = 1.
Step 4 Compute the frame ¢ at which the maximum

magnitude occurs

), 2

t=arg max (X [bin,]

and set the amplitude of syllable j as

A; =20-logy,| X [bin,](dB). (3)
in which A is the number of frames of x(¢), and X[-]
denotes the spectrum of x(7).
Step 5 Start from frame ¢ and move backward and

forward up to frames #; and ¢ such that both
20-log,o|X[bin, ] and 20-log, | X[bin, ]| are smaller

than (4, - 20) (dB).

Step 6 Start from frames 4, and #, find frames
h —a and t,+f (e, f > 0) such that both

are

20-log,,

X[blnh —a—l]

and 20- IOglo‘X[bmr,wﬂ]

greater than (A,- —20) . Then h,—a and t,+p
are called the head frame and tail frame of syllable ;.
Step 7 Set

|\ X[bin,]=0,m=h,—a,h,—a+1-t,+ -1t +p

4
Step8 Letj=;+1.
Step 9 Repeat Step 4 to Step 8 until A< A4,-20.

2.2. Feature Extraction

After syllable segmentation, three features
named mean, QI and QE were computed to form the
feature vector of the syllable as described in the

following.

2.2.1. Compute the MFCCs of each frame

The steps for computing the MFCCs of each
frame are as follows:
Step 1 Compute the fast Fourier transform (FFT) of

each framed signal.

X[k]= Nz_lx[n]m{n]e’jz’mk“v, 0<k<N, (5

Step 2 Compute the energy of each triangular filter
band

N/2-1

E,= . ¢ IIXTA]

k=0

Z,OSj<J! (6)

where ¢ [k] denotes the amplitude(weight) of the



™ triangular filter at frequency bin k as shown in Fig.
2.2, E, denotes the energy of /" filter band, and J is
the number of triangular filters.

Step 3 Compute the MFCCs by Cosine
transformation

J-1
c,(m) = Zcos(mj(j + O.5)j log,,(E,),0<m <15

J=0

U]

where ¢ (m) denotes the m" order MFCC of the i"

frame.
In the following, three features named mean, QI
and QE computed from the MFCCs were used to

form the feature vector of a syllable.

2.2.2. Computing the mean, QI, and QE

In this study, three features, namely mean, QlI,

and QE were used to form the feature vector.

Feature 1: mean of MFCCs
After computing the first 15 (order) MFCCs of
each frame, the coefficients of the same order of all

" order

frames were averaged. The average of m'
MFCCs a(m) was obtained by the following

equation:

a(m)=%§c[(m), 0<m<L, ©))

where W is the number of frames and L = 15 is the
order of MFCCs applied in this study. Due to the

scale diversity between different orders of MFCCs, a
normalization process for a(m), a(m), is required.

Feature 2: QI of MFCCs

For saving on computation complexity,
consecutive frames were used as a time unit to
compute QIl. The process for computing QI is
described in the following.

Step 1 Quantize the MFCCs of each order in all

frames (c,(m),c,(m),...,c,, (m)) into O levels (from

level 0 to level O-1).

vlm) = Crmax (m) ~ Chin (m) , (9)
(m) 0

where  max = arg max c,(m) »  min=argminc,(m)

i=1,2,...W i=1,2,..W
and v(m) is the quantization interval of the m™ order

MFCCs.
Step 2 Segment the W frames into S equal sections,
then compute the mean of each order of MFCCs in
every section.

S swis

am=— > ¢ (m),0<m<L, 1<s<8,(10)
W s gwisa

where s is the section index.
Step 3 Find the level 7 (m) at which the value

a,(m) locates, where

1,(m)-v(m) < a (m)=an,(m) <, (m)+1)-v(m),
0<m<L,1<s<S8
(11)

Step4 Form the sequence [, (m),1,(m),..., I (m)

min

for each order of MFCCs.
Step 5 Those sequences obtained in Step 4 for all
the 15 orders of MFCCs form the second feature Ql.

QI =[1(0),---,15 (0)111(1)v~--1[5 (1), ""II(L —1),“-:[5 (L _1)
(12)

Feature 3: QE of MFCCs
The process for obtaining QE is described in the

following.

Step 1 Perform the same quantization process (Step

1) used in computing feature 2.
Step2 Find the level 7,(m) at which the value

¢;(m) locates, where

1,0m)v(m) < ¢, (m) = i (m) < (1, (m) +1)v(m), (13
0<m<L,1<i<W

Step 3  For each order of MFCCs, record the frames
that transit from level x to level y, 0<x,y<Q-1,



and denote itas G, (x,y)- Thatis

G, (x,») ={i‘x v(m) <c;(m) — ¢y, (m) < (x+1) -v(m),
y-v(m)<c,,(m)—cp, (m)<(y+1)-v(m),1<i<W}
(14)
Step 4 Compute the level transition matrix 7,,(X,Y)
for each order of MFCC by using G, (x, )

G, (x, , 0<m<L. (15
Tm(xn)’):Q,lQ,l(iy)‘

221G, (x, )

x=0 y=l

Step 5 Compute and sort the eigenvalues of 7,,(X.Y),
A2 =222, 0<m<L.
Step 6 Form the feature vector QE by using all the
eigenvalues

QE =4y, A8 A A2 A e A2, (16)

2.2.3. Construct the feature vector by using mean,

QI and QE

Combining the three features forms a
15+S-L+Q-L dimensional feature vector. The Linear
Discriminant Analysis (LDA) was applied to the
feature vector form by QI and QE.

The LDA (Duda et al., 2000) transforms data
from the original space to a new space which is better
for classification. To find such a transformation

matrix W, it requires maximizing the Fisher criterion

tV(WTSbW) ) (17)

max J (W) = max -
w wotr(W'S W)

The matrices S, and S, , called within-class
scatter matrix and between-class scatter matrix, are

computed by the following equations:

c N

S, = 22 (6 —r)(/ —w))" (18)
S, = Z (-, —p)" (19)

in which x/ denotes the i vector in class j, n, is

the mean vector of class j, C is the number of classes,

N; is the number of vectors in class j and p is the

mean of all data vectors. It was found that the optimal

matrix w,, solved by Eq. (17) is composed of the
principal eigenvectors of the matrix §'S, . The
principal eigenvectors of a matrix are defined by the
corresponding eigenvalues. The eigenvectors whose
corresponding eigenvalues are the largest d
eigenvalues of a matrix form the 4 principal
eigenvectors of the matrix. Determination of ¢ can be

accomplished by the following equation
d=mind> 420> 4 (20)
) i1

where 2, is the ™ largest eigenvalue, m is the
number of eigenvalues and @is a parameter to be set.
After the LDA of QI and QE, the dimension of
the feature vector formed by the three features was
reduced. To obtain representative feature vectors for a
birdsong requires the clustering of the syllable feature
vectors. In this study, the clustering process was
accomplished by using the fuzzy c-mean (FCM)
clustering method. The FCM, proposed by Dunn in
1973 and enhanced by Bezdek in 1981, is an
un-supervised clustering algorithm iterative tuning
the cluster centers and the cluster memberships of
data vectors. The clustering process is described in
the following.
Step 1: Select the cluster number c.
Step 2: Set the initial fuzzy pseudopartition at £ = 0
satisfying

Z/’lis't) :1’ j=1121"-1']’ (Zla)

i=1

J
O<z,ul§_’) <J, i=12,..,c. (21b)

J=L

In these two equations, ) denotes the membership

grade of feature vector v_ belonging to cluster i at

time ¢, and J is the number of feature vectors to be



clustered.

Step 3: Set the initial performance index J, =0,
as 0.

Step 4: Calculate the c cluster centers v{ .. v

by
J
Z(lu;t))m VA'/’
vO—F L i=le, 1<m<2.(22)
i J
(t)ym
D)
j=1

Step 5: Update the membership grade for each
feature vector v_,

J

-1

1
o ZC: Vs/ _Vl(z) 2 \m-1 (23)
M =
’ k=1 HV‘ —Vf{t) i
Step 6: Compute the performance index
J ¢ 2
s =S5y v, vf] e

j=1 i=1

Step 7: If ‘Jﬁl’*l) —-JW|>¢ (athreshold), then z = ¢ +

1, go to step 4.
Step 8: Stop

Applying the FCM algorithm requires the
determination of the optimal cluster number, that is,
to treat the cluster validity problem. In this study, the
WB index proposed in (Tan, 2000) was applied to
solve it. The WB index has the purpose of finding

cluster number ¢ that minimizes the intra-group
variance W(u,v) and maximizes the inter-group

variance B(u,v). Thatis, to find ¢, such that

B(¥) - (25)

c,,, =argmaxWB =argm
" ¢ W (u,v)

ax

c

The two terms W (u,v) and B(u,v) are defined as

W)=Y 3 v, -v[ (26)

i=1 j=1

v, —vi‘

1

1 il e Z(;u,y : ,un;,') .
B(,U,V)Zi( 12505 V/i _Vm
C2 ;m;l ‘S/Z‘+ Sm H
(27)
in which
J 2
24
C =i i=12..c (28)
where
s, = {1, =1}, (29)
and
L iy = ma (30)
0, otherwise

and C; isacombination computation.

After the FCM clustering, several mean vectors
were obtained as the feature vectors of each bird
species. Before applying them, the LDA was applied
again to extract the principle components of the
feature vector and improve the recognition rate. In
the following, the song of Pallas's Leaf Warbler was

used as an example for the feature extraction process.

2.3. Recognition

In the recognition process, after the same feature
extraction procedure (without the clustering process),
as shown in Fig. 1.1, the feature vector of a testing
syllable was matched to those of the template bird
species. A template bird species usually has several
syllable feature vectors and so do the matching
degrees defined by the inverse of the Euclidean
distance between the feature vectors of the testing
syllable and the template syllables. The recognition
of the testing syllable was accomplished by finding
the template bird species that had syllable with the

largest matching degree.

3. Experimental Results

The bird species vocalization database used in



this study was obtained from a commercial CD
(Kabaya and Matsuda, 2001) containing both birdcall
and birdsong files of 420 bird species recorded in the
field in Japan. Each file contains vocalizations of the
same bird species. The sampling rate of these
vocalization signals was 44.1 kHz with 16-bit
resolution and a monotone type PCM format.

In the experiment, the frame size was set as 512
samples with one-half frame overlapping. Half the
syllables of each birdsong file were randomly
selected for training and the remaining for testing.
The recognition rate RR was defined as
RR(%)

_ number of syllables recognized correctly 100%
number of all syllables

(31)

The proposed two-stage structure shown in Fig.
1.1 performed LDA of QI and QE before the FCM
clustering. Usually the threshold G used in the LDA is
set as 0.95. In this experiment various values from
0.6 to 0.95 were tested to examine the RRs. The RRs
and corresponding feature dimensions using the
proposed structure are shown in Table 2.1. It can be
seen that when & was 0.95, the RR of the feature
mean was increased from 79.52% to about 82% if Ql,
QE or both was added. In addition, a RR of 83.3%
was achieved and the feature dimension was reduced
to 31 when @was 0.75. For objectivity, this structure
with @equaling 0.75 was performed 20 times, and the
statistics of the resulting RRs are shown in Table 2.2.
Table 2.2 shows that a maximum RR of 84.34% can
be achieved under a relatively low standard deviation
of RRs. Meanwhile, feature vector with dimension of

31 is more practical for real application.

4. Conclusions
The investigation of bird species diversity is the
key in monitoring environment and ecosystem

recovery, and automatic bird species recognition

based on their songs has become an invaluable study
method in the long-term investigation of bird species.
In the design of a voice recognition system, a
well-known feature that has been widely applied is
the MFCC. Nevertheless, designing a MFCC-based

birdsong recognition system requires advanced

feature extraction processes for obtaining a

satisfactory recognition rate because birdsongs are
usually recorded in a noise environment, are
incomplete or interrupted. In this study, two novel
features based on the MFCCs were presented. Adding
the techniques of LDA and the FCM algorithm, the
mean, QI and QE were applied to develop a birdsong
recognition system. The proposed system was applied

for birdsong recognition with 420 bird species.

References

Anderson, S.E., Dave, A.S. Margoliash, D., 1996.
Template-based automatic recognition of birdsong
syllables from continuous recordings. Journal of the
Acoustical Society of America. 100 (2) 1209-1219.

Bou-Ghazale, S.E., Assaleh, K., 2002. A robust endpoint
detection of speech for noisy environments with
application to automatic speech recognition. In: IEEE
International Conference on Acoustics, Speech, and
Signal Processing, vol. 4. pp. 3808-3811.

Bou-Ghazale, S.E., Hansen, J.H.L., 2000. A comparative
study of traditional and newly proposed features for
recognition of speech under stress. IEEE Transactions
on Speech and Audio Processing. 8, 429-442.

Catchpole, C.K., Slater, P.J.B., 1995. Bird Song: Biological
Themes and Variations. Cambridge University Press.

Duda, R., Hart, P., Stork, D., 2000. Pattern Classification.
New York: Wiley.

Fagerlund, S., 2007. Bird species recognition using support
vector machines. EURASIP Journal on Advances in
Signal Processing. 2007, Article ID 38637, 8 pages.

Harmd, A., 2003. Automatic identification of bird species
based on sinusoidal modeling of syllables. In: IEEE
International Conference on Acoustics, Speech, Signal
Processing, vol. 5. pp. 545-548.



Harmé, A., Somervuo, P., 2004. Classification of the
harmonic structure in bird vocalization. In: IEEE
International Conference on Acoustics, Speech, and
Signal Processing, vol. 5. pp. V701-V704.

He, S.N., Yu, J.B., 2002. A novel Chinese continuous
speech endpoint detection method based on time
domain features of the word structure. In: IEEE
International Conference on Communications, Circuits
and Systems and West Sino Expositions, vol. 2. pp.
992-996.

Hung, J.W., Tsai, W.Y., 2008. Constructing Modulation
Frequency Domain-Based Features for Robust Speech
Recognition. IEEE Transactions on Audio, Speech, and
Language Processing. 16 (3), 563-577.

Hung, W.W.,, Wang, H.C., 2001. On the use of weighted
filter bank analysis for the derivation of robust MFCCs.
IEEE Signal Processing Letters. 8, 70-73.

Kabaya, T., Matsuda, M., 2001. The Songs & Calls of 420
Birds in Japan. SHOGAKUKAN Inc., Tokyo.

Kwan, C., et al., 2006. An automated acoustic system to
monitor and classify birds. EURASIP Journal on
Applied Signal Processing. 2006, Article ID 96706,
1-19.

(*)Lee, C.H., Chou, C.H., Han, C.C., Hunag, R. Z., 2006.
Automatic recognition of animal vocalizations using
averaged MFCC and linear discriminant analysis.
Pattern Recognition Letters. 27 (2), 93-101.

Lee, C.H., Hyun, D.H., Choi, E.S., Go, JW, Lee, C.Y.,
2003. Optimizing feature extraction for speech
recognition. IEEE Transactions on Speech and Audio
Processing. 11, 80-87.

Lee, S.M., Fang, S.H., Hung, JW, Lee, L.S., 2001.
Improved MFCC feature extraction by PCA-optimized
filter-bank for speech recognition. In: IEEE Workshop,
Automatic Speech Recognition and Understanding. pp.
49-52.

Mcllraith, A.L., Card, H.C., 1997a. Bird song identification
using artificial neural networks and statistical analysis.
In: Canadian Conference on Electrical and Computer
Engineering, vol. 1. pp. 63-66.

Mcllraith, A.L., Card, H.C., 1997b. Birdsong recognition
using backpropagation and multivariate statistics. IEEE
Transactions on Signal Processing. 45 (11), 2740-2748.

Minh, V.D., Lee, S.Y., 2004. PCA-based human auditory
filter bank for speech recognition. In: International

Conference on Signal Processing and Communications,
pp. 393-397.

Rabiner, L.R., Sambur, M.R., 1975. An algorithm for
determining the endpoints of isolated utterances. Bell
System Technical Journal. 54 (2), 297-315.

Ricotti, L.P.,, 2005. Multitapering and a wavelet variant of
MFCC in speech recognition. IEE Proceedings - Vision,
Image and Signal Processing. Feb, 29-35.

Selouani, S.A., Kardouchi, M., Hervet, E., Roy, D., 2005.
Automatic  birdsong  recognition  based  on
autoregressive time-delay neural networks. In: ICSC
Congress on Computational Intelligence Methods and
Applications. pp. 1-6.

Skowronski, M.D., Harris, J.G, 2002. Increased MFCC
filter bandwidth for noise-robust phoneme recognition.
In: IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 1. pp. 801-804.

Skowronski, M.D., Harris, J.G., 2003. Improving the filter
bank of a classic speech feature extraction algorithm.
Circuits and Systems. 4, 281-284.

Somervuo, P., H&rmd, A., 2004. Bird song recognition
based on syllable pair histograms. In: IEEE
International Conference on Acoustics, Speech, and
Signal Processing, vol. 5. pp. VV825-V828.

Somervuo, P., Harma, A., Fagerlund, S., 2006. Parametric
Representations of Bird Sounds for Automatic Species
Recognition. IEEE Transactions on Audio, Speech and
Language Processing. 14, 2252-2263.

Takiguchi, T., Ariki, Y., 2006. Robust Feature Extraction
using Kernel PCA. In: IEEE International Conference
on Acoustics, Speech and Signal Processing, Vol. 1, pp.
1509-1512.

Tan, J.H., 2000. On cluster validity for fuzzy clustering.
Master Thesis, Applied Mathematics Department,
Chung Yuan Christian University, Taiwan, R.O.C..

Wu, B.F., Wang, K.C., 2005. Robust Endpoint Detection
Algorithm Based on the Adaptive Band-Partitioning
Spectral Entropy in Adverse Environments. |IEEE
Transactions on Speech and Audio Processing. 13 (5),
762-775.

Zhang, W.J., Xie, J.Y., 2003. Endpoint detection based on
MDL using subband speech satisfied auditory model.
In: IEEE International Conference on Neural Networks

and Signal Processing, vol. 2. pp. 892-895.



Table 2.2 Statistics of RRs using the proposed structure

Training part Testing part Under =075
b]l::::):]; Tesing RR(%) Max Min Avg S
birdsong mean, QI 82.93 | 7951 | 81.99 | 0.92
%\ ] mean, QE 8268 | 7898 | 8159 | 1.08
Syllable syllable mean, O, OE | 84.34 | 81.02 | 83.30 | 0.81
segmentation segmentation
Compute mean, Compute mean,
Table 3.5 Comparison of LDA and PCA in the first stage

QI and QE T Ql and QE

Q‘; QE Q"‘ Qe dimension reduction.
mean mean Threshold of LDA or| RR(%) by RR(%) by
LDA LDA PCA in the first stage using LDA | using PCA
. . 0.95 82.8142 68.1191
l 0.9 83.3573 67.7633
?yllabl]c 0.85 83.5445 68.3376
clustering
LDA 0.8 83.8067 68.3001
l 0.75 83.9878 68.2627
LDA Feature vectors 0.7 84.0252 67.9006
Fe;;il;;:j:::rs Feature vector 0.65 83.7193 68.1129
birdsongs matching
Feature vectors

Figure 1.1 Block diagram of the proposed system

Triangular banc-pass Fiter

Wiieght

a

0 200 400 00 800 1000 1200 1400 1B00 1800 2,000
Frequency (Hz)

Figure 1.2 Applied triangular filters for computing the
MFCCs

Table 2.1 RRs of using the proposed structure under various

values of @
Dim: dimension of feature vectors

eatures | mean, Ql Mean, QE mean, Ql, QE

>‘\ RRs Dim | RRs Dim | RRs Dim
0.95 81.85 | 38 82.18 | 27 82.09 | 66
0.90 82.03 | 32 8241 | 22 827 | 53
0.85 821 | 28 824 | 19 83.04 | 43
0.8 82.07 | 24 82.09 | 17 83.17 | 36
0.75 81.99 | 22 8159 | 16 83.30 | 31
0.7 81.87 | 20 81.11 | 15 83.28 | 27
0.65 81.58 | 18 80.70 | 14 83.13 | 24
0.6 81.22 | 16 80.67 | 14 82.94 | 20
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