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In order to detect each individual target in the
crowded scenes and analyze the crowd moving
trajectories, we propose two methods to detect and
track the individual target in the crowd and classify
the crowd motion trajectories. First, a coarse-to-
fine individual segmentation approach based on the
corner points’ extraction and tracking is proposed.
The dynamic feature points are roughly clustered by
the C-means algorithm and then a spatial-temporal
shortest spanning tree is proposed to segment each
individual target in the moving group and each target
is tracked with the concept of points’ inheritance.
Second, the method of the longest common subsequences
1s applied to automatically evaluate the similarities
among the feature tracks. Then the feature tracks are
classified by the similarity measured on both the
temporal and spatial relationships. The experimental
results show that the accuracy of individual
segmentation in the crowd can be higher than 90% and
the efficiency of our system can approach 10 fps.

corner point, spatial-temporal shortest spanning
tree, individual segmentation, trajectory
classification
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In order to detect each individual target in the crowded scenes and analyze the
crowd moving trajectories, we propose two methods to detect and track the individual
target in the crowd and classify the crowd motion trajectories. First, a coarse-to-fine
individual segmentation approach based on the corner points’extraction and tracking
is proposed. The dynamic feature points are roughly clustered by the C-means
algorithm and then a spatial-temporal shortest spanning tree is proposed to segment
each individual target in the moving group and each target is tracked with the concept
of points’ inheritance. Second, the method of the longest common subsequences is
applied to automatically evaluate the similarities among the feature tracks. Then the
feature tracks are classified by the similarity measured on both the temporal and
spatial relationships. The experimental results show that the accuracy of individual
segmentation in the crowd can be higher than 90% and the efficiency of our system
can approach 10 fps.

Keywords: corner point, spatial-temporal shortest spanning tree, individual
segmentation, trajectory classification.
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Fig. 10 The flowchart of the crowd moving trajectories classification using the LCSS algorithm.
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Fig. 11 Example of matching cost M. (a) Two tracks are compared in term of matching cost. (b) The 2D
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Fig. 12 Classification of the points’trajectories. (a) The case of few people walks separately. (b) Crowds
walk closely. (c), (d) The trajectories of the moving car is detected.
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Table 1 The accuracy analysis for the methods of Brostow & Cipolla, Zhao & Nevatia, and ours.

Brostow & Cipolla | Zhao & Nevatia | Ours
distinct detections 144 8466 1319
correctly detected 136 7881 1254
missed detections 8 585 65
false detections 33 291 56
detection rate 94% 93.09% 95.07%
miss detection rate 22.9% 6.91% 4.92%
false detection rate 5.6% 3.43% 4.25%
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Fig. 14 Classification of the points’ trajectories. (a) The case of few people walks separately. (b)
Crowds walk closely. (c), (d) The trajectories of the moving car is detected.
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Title: Virtual Vision: Computer Vision in Virtual Reality

Abstract:

Realistic virtual worlds can serve as software laboratories within which vision researchers may efficiently
develop and evaluate sophisticated, active machine perception systems. Known as "Virtual Vision", this
unorthodox philosophy posited at the intersection of the fields of computer vision and computer graphics,
enables virtual reality to subserve computer vision research and development. In the context of the virtual
vision paradigm, this talk will focus on the rapid development and evaluation of distributed smart-camera
sensor networks and intelligent surveillance systems that can persistently monitor humans in large-scale urban
environments. The visually realistic virtual environments exploited in this work are populated by autonomous
virtual humans, which are the product of a comprehensive, artificial life approach to multi-human simulation.
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Drowsiness Recognition using the Least Correlated LBPH

Cheng-Chang Lien
Dept. Computer Science & Information Engineering
. Chung Hua University, Taiwan, R.O.C.
E-mail: cclien@@chu.edu. tw

Abstract—In recent years, the drowsiness recognition is widely
applied to the driver alerting or distance learning. The
drowsiness recognition system is constructed on the basis of the
recognition of eye states. The conventional methods for
recognizing the eye states are often influenced by the
illumination variations or hair/glasses occlusion. In this paper,
we propose a new image feature called “least correlated LBP
histogram (LC-LBPH)” to generate a high discriminate image
features for recognizing the eye states robustly. Then, the
method of independent component analysis (1CA) is applied to
derive the low-dimensional and statistical independent feature
vectors. Finally, support vector machines (SVM) are trained to
recognize the eye states. Furthermore, we design four rules to
classify three eye transition patterns which define the normal
(consciousness), drowsiness, and sleeping  situations.
Experimental results show that the eye-state recognition rate is
about 0,08 seconds per frame and the drowsiness recognition
accuracy approaches 98%.

Keywords-drowsiness recognition, eye state, LEPH, ICA,
support vector machine

L. INTRODUCTION

The vision-based drowsiness recognition systems can be
categorized into the feature-based and template-based
methods. In the template-based methods [1, 2|, the eve
templates are constructed to search and identify the eve
states. Then, the correlation and thresholding are often
adopted for recognizing the eve states. However, these
methods can be influenced by the variations of 1llumination
and appearance (hair or glasses).

In the feature-based methods, the Gabor wavelet features
and AdaBoost classifier are used to detect the fatigue [3].
Furthermore, the LBP codes are usually employed to extract
the texture features and combined with AdaBoost or SWM
methods [4, 5] to recognize the drowsiness. In addition to the
gray image analvses, Wu et al. [6] use particle filter to track
the eve positions and apply PCA to extract image features.
Then, thev use logistic regression to estimate the eve
blinking. Hence, how to generate the highly discriminative
image features for recognizing the eve states is crucial for the
drowsiness recognition. Furthermore, the statistical
independent requirements are often demanded for generating
the highly discriminative image features.

To this end, we propose a novel feature-based method to
recognize the drowsiness. First, by studying the methods for
establishing the LBPH image features, we propose a highly
discriminative image features called least correlated LBP
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histogram (LC-LBPH) to recognize the eve states. Then
independent component analvsis (ICA) method is used to
generate the low-dimensional and statistical independent
feature vectors. Finally, Support Vector Machines are trained
to identify the eve states. According to literatures of human
blink [7] and our observations, we define three eve states
transition patterns to describe the normal (consciousness),
drowsiness, and sleeping statues that can be detected with
four proposed rules. Experimental results show that our
system can recognize the drowsiness with accuracy 98%
within 2 seconds. The eye state recognition rate is about 0.08
seconds per frame.

1L

In our eves state recognition svstem, we apply the
Adaboost algorithm in Intel’s open source computer vision
library to detect both of the face and mouth regions such that
the accuracy of eyes locating can be increased. Some results
of face and mouth detections are shown in Fig. 1.

LEAST CORRELATED LBPH FEATURE

(b

(a) The detected face and mouth regions in a video sequence. (b)
Eyes position is located according to the rule in Eq. (1).

Figure 1.

Based on the careful measurements, we found that the
eves will locate in the certain facial region denoted in Fig. 1-
(b} and the eve region can have a fixed geometrical
relationship to the facial width and length. Hence, the eves
location can be located according to the following simple
rules:

1. With the facial region detected, the top-left corner
point (x; v; ), face width wy and face height h; are determined.

2. By using the detected top-left corner point {Xu, V)
on mouth region, the top-left corner point (x. ., v.) of the eye
region can be determined by the following formula:

(X, v.) = (Xp - 0.16 Wg, ve+ 0.16h; +20) (1)
3. The width and height of eye region are determined
asw, = 1.6 = 0.16 = wrand he = 0.16 hyrespectivelv.
To describe the texture distribution over a large region, a
new image feature called LBP histogram (LBPH) [9] is

proposed. There are 39 dimensions in the LBPH feature
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Kodaly Musical Hand Signs Recognition without
Visual Background Modeling

Chun-Yuan Lee

General Education Center
Chung Hua University
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Magge@chu.edutw

Abstract—In this study, we develop a novel vision-based
Kodaly musical hand signs recognition system to recognize the
gestures of the musical notes. Vision-based gesture recognitions
often face the following problems. First, the illumination
change can influence the hand detections. Second, the hand
tracking will become difficult under the complex background.
To overcome the aforementioned problems, we propose several
novel technologies to overcome these problems. The first one is
the block-based foreground detection method in which the
difference between consecutive frames of moving hand can be
identified. The second one is the dual foregrounds fusion
method that can generate the precise hand regions. The third
one is the rexture-based fist tracking method that can locare
the fist position precisely without the influence of illumination
variations. After the fist locating, the skin color detection is
applied to extract the complete hand region and then the
various kind of Kodaly musical hand signs can be recognized
with the moment invariants and support vector machines. The
experimental results show that the hand can be tracked with
the accuracy 95.71% and efficiency 20 fps under the complex
background. The recognition accuracy for the Kodaly musical
gestures is about 97%,

Keyword: Keddly musical hand signs, Dual foregrounds
Jfusion, Moment invariants, Texture-based fist tracking.

I. INTRODUCTION

In Kodaly musical teaching method [1]. musical skills are
introduced according to the capabilities of the child
Children are first introduced to musical concepts through
experiences such as listening, singing, or movement. In this
study, we develop a novel vision-based Kodaly musical
hand signs recognition system to recognize the gesture
movements of the musical notes shown 1n Fig. 1.

- P - Lo
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Fig. 1 Kodély musical hand signs [1].
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In general, the moving hands could be detected by three
kinds of methods: motion-based [2]. background modeling
[3-5], and temporal difference [6] approaches. In the
maotion-based approaches, the optical flow method [2]
utilizes the motion flow segmentation to separate the
background and foreground regions. By applying the optical
flow method [2]. the moving hands can be extracted even in
the presence of camera motion. However. the high
computation complexity makes the real-time
implementation difficult.

In the background modeling methods, the construction
and updating of background models [3-5] often is time-
consuming. For example, i [3.5]. the Gaussian Mixture
Model (GMM) is frequently adopted to model the intensity
varation for each pixel within a tume mterval and then high
computing cost is required to calculate the GMM
parameters. Furthermore, the foreground detection with
background modeling method 15 extremely sensitive to the
rapid illumination variation or the dynamic background
changing. In [4], the Kalman filter 1s used to update the
background model with less computational complexity. But
this method can’t solve the problem of serious scene change
which can make the system unable to update the background
maodel accurately.

The advantage of temporal difference method [6] 1s less
susceptible to the scene change. ie. it has capability to
detect the moving hands in dynamic environments but the
regions of the moving objects can’t be extracted completely
when the objects move slowly. Here, we propose a novel
moving hands detection method without background
modeling to overcome the aforementioned problems and
then develop the hand tracking and Kodaly musical hand
signs recogmitton system. First, a modified block-based
frame differential method 1s established to quackly detect the
moving hands without the mfluences of rapid illumination
changes. Second, the precise hand regions are extracted by
the dual foregrounds fusion method. Third, the texture-
based fist tracking method 1s proposed to track the moving
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(# %) In order to detect each individual target in the crowded scenes and analyze the crowd
moving trajectories, we propose two methods to detect and track the individual target in
the crowd and classify the crowd motion trajectories. First, a coarse-to-fine individual
segmentation approach based on the corner points’extraction and tracking is proposed.
The dynamic feature points are roughly clustered by the C-means algorithm and then a
spatial-temporal shortest spanning tree is proposed to segment each individual target in
the moving group and each target is tracked with the concept of points’ inheritance.
Second, the method of the longest common subsequences is applied to automatically
evaluate the similarities among the feature tracks. The experimental results show that the
accuracy of individual segmentation in the crowd can be higher than 90% and the

efficiency of our system can approach 10 fps.
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