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中 文 摘 要 ： 本計畫研究具有 MEMS 共振器的時鐘脈沖產生器，振動式共

振子的結構採單臂懸吊式設計，利用 TSMC 所提供的 CMOS 微

機電製程最上層的金屬當兩電極及共振子，利用乾式蝕刻製

作。其共振頻率與懸臂長度、寬度、及厚度及與電極的間隙

有關，將利用 ANSYS 從事力學模擬，中心頻率先定在最常見

的 10MHz，並由此求出電氣參數，再利用參數萃取法求出等

效電路，作為下階段 IC 設計的參考。MEMS 的等效電路為串

聯 Rm、Lm、Cm 再並聯 Co 電容，反應兩電極的寄生電容。此

共振器先單獨製作測試，俟測試良好之後用 Bond wire 與

CMOS 交叉耦合對主振器連接，做完整振盪器溫度測試，以確

定溫度係數。最後再設計具有溫度補償功能及振動子擺幅控

制的全積體化電路。本計劃 CMOS 振盪器的性能，電流約

20mA，電源電壓為 3.3V，測試載具體積為 5*3.2*0.85mm，中

心頻率為 10MHz，相位雜訊為-70dBc@10KHz，頻率偏差及穩

定度約 100ppm。 

中文關鍵詞： 微機電、振動式共振子、單臂懸吊、交叉耦合對、時鐘脈沖 

英 文 摘 要 ： This project studies the clock oscillator with MEMS 

vibrating resonator. The resonator is built by a 

cantilever structure, which is formed by the top 

metal layer in TSMC CMOS process. Two electrodes and 

the resonator are separated via dry etching proposed 

by CIC. The center frequency of the resonator 

determined by the length, width, and thickness of the 

cantilever is examined by the three-dimensional 

software ANSYS. After that, the electric performance 

is obtained and is translated in an equivalent 

circuit, which is employed in the integrated circuit 

simulations. The temperature coefficient of the 

resonator is studied by oscillator with the resonator 

bonded to the CMOS cross-coupled pair. With this 

information, a total integrated MEMS oscillator is 

developed. The performances are aimed to 20mA current 

consumption, power supply 3.3V,in package size 

5*3.2*0.85mm. The center is designed at 10MHz with 

phase noise at 10KHz offset is -70dBc. The frequency 

stability in within 100ppm. 

英文關鍵詞： MEMS、MicroElectromechanical、 Cantilever、Cross-

Coupled Pair，Clock Oscillator 
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Abstract  —  The cross-coupled pairs in CMOS are employed 
to the voltage controlled oscillator with surface acoustic wave 
(SAW) resonator. The problem of latch, which is not encounted 
in conventional LC oscillator, is essential in our case. With a 
careful design in bias this problem is solved. This oscillator has 
the advantage of inherent opposite polarity appeared on the 
terminals of SAW resonator, which leads to fast growing 
amplitude during transition. As compared to the well known 
Colpitts oscillator, the transition period is significantly shrinked. 
For completeness three kinds of oscillator with single ended, 
balanced Colpitts, and cross coupled one are compared in terms 
of figure of merit (FOM) under the same magnitude across the 
resonator. Also the power consumption and phase noise are 
indicated. 

I. INTRODUCTION 

Clock oscillators utilize the high quality factor piezoelectric 
resonators to obtain the stable frequency. As the author’s 
knowledge, the configuration of the oscillator normally adopt 
the Pierce or Colpitts oscillators with single ended output [1]. 
As the clock frequency is raised The outputs are normally 
converted to a differential pair before connected to next 
stages, such as mixer in receiver and counter or phase 
detector in phase locked loop to take advantages of noise free 
and direct match to the inputs of preceded stages. Although 
the configurations of cross coupled pair are effective in the rf 
oscillators with parallel LC tank [2-6]. They are not yet 
applied to the oscillators with piezoelectric resonator. The 
key factor lies in the property of dc insulation in the 
piezoelectric resonator. In LC resonator, the metal-wounded 
inductor not only provides the ac inductance but also 
provides the dc short circuit between two drains such that the 
latch phenomena often seen in the cross pair is automatically 
suppressed. As applied to the piezoelectric resonator, the pair 
already goes into latch situation as a memory cell in the 
digital circuit. In this study we try to use this compact cross-
coupled pair to construct a voltage controlled oscillator with 
surface acoustic wave resonator (SAW), which is denoted as 
VCSO and intended to use in the clock and data recovery 
(CDR) shown in Fig. 1. A simple method of biasing is 
proposed to overcome the latch problem. The phase noise and 
transition time are especially investigated. Due to the 
manufacture variation and temperature, Tuning capability is 
needed to overcome the frequency precision. Here, two 
switched capacitances are designed to increase the tuning 
range. Low power consumption under TSMC 0.18um CMOS 
process is implemented. In the meantime, a comparison in 
performances with other balanced type of Colpitts is 
presented [7, 8]. 
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Fig. 1 Application of VCSO in giga-bit CDR 

II. OSCILLATOR WITH DIFFERENTIAL OUTPUTS 

SAW resonator exhibits a series LC resonance in parallel 
with a capacitance regarding to motional vibration and 
parasitic of interdigital electrodes, respectively. The 
equivalent circuit parameters of SAW resonator are listed in 
Table I. Co is the parasitic capacitance of interdigital 
transducer. Ls, Cs, and Rs are the series equivalent circuit of 
the piezoelectric motion. As applied to oscillator, two 
operating modes of series and parallel are often employed. 
The former has the resonator acted in series short circuit, 
while the latter acts as parallel open circuit at resonance. Here, 
the latter is utilized. The schematic of VCSO is shown in Fig. 
2a. Two stacks in CMOS process are used for low voltage 
operation. As usual, the cross-coupled nMOS pair provides 
the loop gain and 2π phase to satisfy the so called 
Barkhausen’s condition. The drain voltage from the left 
nMOS M5 is fed to the gate of the right one M6. Then the 
drain voltage of M6 returns to the gate of M5. It is noted that, 
due to the insulated nature of SAW resonator, the cross 
coupled nMOS are actually latched. To avoid latching, two 
small dc blocking capacitors C1 and C2(=0.9pF) are inserted 
into the signal paths to block the latching. In the meantime, 
the gates of the active nMOS’s are connected from two 
duplicated current mirrors, which allow the same dc bias but 
with opposite ac swing. With such an arrangement, the latch 
problem can be easily overcome. 

On the other hand, two pMOS M2 and M3 in the upper 
rack act as active load to obtain high gain. Their gate voltages 
are obtained from same current mirror. Because of wide-band 
nature of the cross coupled pair the desired frequency is 
determined by the parallel tank, which now is originated from 
the SAW resonator operated in the parallel mode with 
motional arm acted as inductor and electrode parasitic as 
capacitance. Of course, the parasitic capacitances from active 
part, varactors, switched capacitors, and package are also 
taken into account. Because the opposite phase between drain 
and gate, the piezoelectric SAW resonator can be easily 
excited.  

This research is funded in part by National Science Council under 
contract no. NSC 99-2221-E-216-018 



To test the occurrence of oscillation, the impedance seen at 
the intersection plane of A_A’ indicated in Fig. 2a is 
examined. During calculation the A-A’ is disconnected 
without disturbing the dc bias. A small ac voltage source is 
inserted and the input impedance is then calculated by 
measuring the current. The oscillation starts as long as the 
real part of impedance is negative and imaginary part crosses 
the zero axis with positive slope. Both conditions are also 
equivalent to the Barkhausen’s conditions. The design factors 
have C1, C2 size, MOS dimension, size of switching 
capacitance, and varactor size. Capacitance C1, C2 are traded 
off in area and negative resistance. MOS dimensions are 
traded off is between phase noise and tuning. Phase noise 
gets better as MOS area is enlarged. However, its parasitic 
degrades the tuning capability. The parameters of transistors 
are extracted from TSMC 0.18um CMOS process. The aspect 
ratio of M2 and M5 are 60/.18 and 30/.18, respectively. The 
current consumption in the core is 2,68mA. The effects of 
bonding wire and pads are also taken into account. The 
results by using microwave software ADS is shown in Fig. 3. 
The starting frequency is determined from the zero crossing 
point of the imaginary part, which is equal to 425.1MHz as 
denoted M8.  

 
Table I Parameters of 425MHz SAW Resonator 

Co Rs Ls Cs 

3.8pF 10.53Ω 46.3uH 3.03fF 

 
For clearance, the capability of the balanced Colpitts 

oscillator as shown in Fig. 2b is also examined. It is basically 
built from two single-ended Colpitts oscillator sharing one 
SAW resonator. M7 and M8 are the main amplifiers and M9 
and M10 are the current sources. For comparison, a single 
ended Colpitts with similar model is firstly constructed. One 
pin of the resonator is connected to ground. With this success, 
the balanced one is easily obtained just by copying the single 

ended one and connecting the resonator to the gates of the 
main amplifiers. The SAW resonator now is re-modeled as 
two series resonators with center point virtually grounded [7, 
8]. The ac swing across the SAW resonator in each oscillator 
is set equal to 100mV by trimming the aspect ratio of the 
transistors. The current consumptions of the core circuit 
without buffer are listed in Table II. Die size and phase noise 
are also indicated. It reveals that output power and turn-on 
transition in cross-coupled oscillator are the best. The turn-on 
transitions in cross-coupled pair and single-ended Colpitts are 
shown in Fig. 4. The former is about 150us in Fig. 4a and the 
latter is about 500us in Fig. 4b. The Balanced Colpitts is the 
worst. Because no strong force exists to identify the polarity, 
the transition period may take a long time. According to our 
observation, it takes about 5ms (not shown here). The cross 
coupled one as expected has the shorted transition time.  

Phase noise is medium. The single-ended one has the best 
about -159.2dBc at 1Mhz offset. It seems to be due to just 
only one active transistor. As for the high power 
consumption in balanced Colpitts is due to the doubling in 
equivalent Co capacitance, which degrades the negative 
resistance. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

To compare the performances, figure of merit is often 
used as  

                                  
   

Fig. 2  (a) Schematic of the balanced oscillator with cross-coupled CMOS pair and (b) Balanced Colpitts oscillator. 
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Fig. 3 The calculated negative resistance and reactance 



 
 
 

Table II Predicted Performances 
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where P is the power consumption of the core circuit, ∆ωis 
the offset angular frequency from the carrier, oω is the center 
frequency, and L(∆ω) is the phase noise. It reveals the cross 
coupled one is better than balanced Colpitts. 
  

 
 
 
 
 
 
 
 
 

 
 
  
 
 
 
 
 
 
 
 

 
 
 

III. PERFORMANCES 

The layout is illustrated in Fig. 5 with die area about 
0.545×0.510mm2. The chip is fabricated by TSMC. The 
measured results are shown in Fig. 6. The differential 
waveform with p-p 250mV is demonstrated in Fig. 6(a). The 
low phase noise with high quality factor SAW resonator is 
demonstrated in Fig. 6(b). The slope near the carrier appears 
1/f3 with noise floor around -160dBc. The continuous tuning  
range as shown in Fig. 6(c) is around 30ppm, depending on 
the size of MOS varactor, which is varied from 1.8pF to 
2.45pF with VT from 0 to 1.8V. Two tuning switches are 
also added to increase the application. Capacitances in VT1 
and VT2 switches are 0.1pF and 0.3pF, respectively.  
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Fig. 5 Layout of the cross coupled SAW oscillator 
 

VI. CONCLUSION 

In this study a balanced VCSO using the compact cross 
coupled configuration is first presented. The latched problem 
is solved by separating carefully the drain and gate voltages. 
The SAW resonator acts as a parallel tank circuit to select the 
desired frequency. The nature of inverse polarity between 
gate and drain drives quickly the oscillator into steady state 
as compared to the balanced Colpitts one. The tuning range 
in this version needs to be improved in the future. Our results 
can be extended to other high frequency and high Q 
resonators such as MEMS and FBAR. 

 

 Cross-couple SE Colpitts Balanced  
Colpitts 

CMOS Process  0.18um 0.18um 0.18um 

Power Supply (V)  1.6  1.6  1.6  

Current (mA) 
(no Buf)  

3.05  1.27  5.22  

Power Dissipation  
(mW) (no Buf) 

4.88  2.032  8.352  

Oscillator Frequency 
(MHz)  

622  622  622  

Phase Noise 
(dBC/Hz@1MHz)  

-156.6  -159.282   -154.309  

Output Power 
 (dBm) 

2.94  -9.725  -9.942  

Transition 
(usec) 

150 500 5000 

FOM  205.6 212 200.9 

 
(a) 

 
(b) 

Fig. 4 Transition period in (a) cross-coupled pair and (b) single 
ended Colpitts oscillators. 

 



ACKNOWLEDGEMENT 

The authors would like to thank National Chip 
Implementation Center and National Science Council, 
Taiwan, R.O.C., for chip implementation and financial 
support. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 

[1] Jon-Hong Lin and Yao-Huang Kao, A Low Phase Noise and Wide 
Tuning Voltage-Controlled SAW Oscillator with Surface Transverse 
Wave Resonator for SONET Applications, IEEE Trans. on MTT vol. 
55, no. 1, pp. 60-65, Jan. 2007. 

 [2]   Ming-Da Tsai, Yi-Hsien Cho, and Huei Wang, “A 5-GHz Low Phase 
Noise Differential Colpitts CMOS VCO” IEEE Microwave and 
Wireless Components Letters, Vol. 15, Issue: 5, pp. 327 – 329, 2005. 

[3] Liang-Hung Lu, Hsieh-Hung Hsieh, Yu-Te Liao, A Wide Tuning-
Range CMOS VCO With a Differential Tunable Active Inductor, IEEE 
Trans. on Microwave Theory and Techniques, vol. 54, Issue: 9, Page(s): 
3462 – 3468, 2006. 

[4]  R. Mukhopadhyay, Yunseo Park, P. Sen, N. Srirattana, Jongsoo Lee, 
Chang-Ho Lee, S. Nuttinck, A. Joseph, J.D. Cressler, J. Laskar, 
Reconfigurable RFICs in Si-based technologies for a compact 
intelligent RF front-end, IEEE Trans. on Microwave Theory and 
Techniques, vol. 53, Issue: 1 pp. 81 – 93, 2005. 

[5]  R Mukhopadhyay,.; Chang-Ho Lee; and J Laskar, A 580-μW 1.8–6 GHz 
Multiband Switched-Resonator SiGe VCO With 0.3-V Supply Voltage, 
IEEE Microwave and Wireless Components Letters, vol. 17, Issue 11, 
pp. 793 – 795, 2007. 

[6]  Hsin-lung Tu, Tsung-Yu Yang, and Hwann-Kaeo Chiou, Low phase 
noise VCO design with symmetrical inductor in CMOS 0.35-μm 
technology, IEEE Asia-Pacific Conference Proceedings 2005, Volume 
2, pp. 4-7. 

[7]  Yao-Huang Kao and Yi-Ran Wang, A Balanced SAW Oscillator for 
Short Range transmitters, 25th Ultrasonic Electronics (USE 2004), pp. 
265-266, Hokkaido, Japan. 

[8]  M. Aissi, E. Tournier, M. A. Dubois, C. Billard, H. Ziad, and R. Plana, A 
5 GHz above-IC FBAR low phase noise balanced oscillator, IEEE 
Radio Frequency Integrated Circuits (RFIC) Symposium, 2006 , 11-13 
June 2006 Page(s):4– 28. 

 
 
 
 
 
 

 

 (a). 
 

 (b) 
 

425MHz量測可調範圍

425.19

425.20

425.20

425.20

425.21

425.21

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 VT

freq

VT1=0 VT2=0

VT1=1 VT2=0

VT1=0 VT2=1

VT1=1 VT2=1

(c) 
Fig. 6 (a) Measured waveform, (b) phase noise of the cross 

coupled SAW oscillator, (c) tuning range.  
 



Balanced SAW Oscillators with Cross-Coupled CMOS Pair 
Yao Huang Kao and I-Jhih Wu 

Department of Communication Engineering, Chung Hua University 

Hsin-chu, Taiwan 30050, Republic of China  
yhkao@chu.edu.tw, d5966456@yahoo.com.tw

Abstract  —  The cross-coupled pairs in CMOS are employed 
to the voltage controlled oscillator with surface acoustic wave 
(SAW) resonator. The problem of latch, which is not encounted 
in conventional LC oscillator, is essential in our case. With a 
careful design in bias this problem is solved. This oscillator has 
the advantage of inherent opposite polarity appeared on the 
terminals of SAW resonator, which leads to fast growing 
amplitude during transition. As compared to the well known 
Colpitts oscillator, the transition period is significantly shrinked. 
For completeness three kinds of oscillator with single ended, 
balanced Colpitts, and cross coupled one are compared in terms 
of figure of merit (FOM) under the same magnitude across the 
resonator. Also the power consumption and phase noise are 
indicated. 

I. INTRODUCTION 

Clock oscillators utilize the high quality factor piezoelectric 
resonators to obtain the stable frequency. As the author’s 
knowledge, the configuration of the oscillator normally adopt 
the Pierce or Colpitts oscillators with single ended output [1]. 
As the clock frequency is raised The outputs are normally 
converted to a differential pair before connected to next 
stages, such as mixer in receiver and counter or phase 
detector in phase locked loop to take advantages of noise free 
and direct match to the inputs of preceded stages. Although 
the configurations of cross coupled pair are effective in the rf 
oscillators with parallel LC tank [2-6]. They are not yet 
applied to the oscillators with piezoelectric resonator. The 
key factor lies in the property of dc insulation in the 
piezoelectric resonator. In LC resonator, the metal-wounded 
inductor not only provides the ac inductance but also 
provides the dc short circuit between two drains such that the 
latch phenomena often seen in the cross pair is automatically 
suppressed. As applied to the piezoelectric resonator, the pair 
already goes into latch situation as a memory cell in the 
digital circuit. In this study we try to use this compact cross-
coupled pair to construct a voltage controlled oscillator with 
surface acoustic wave resonator (SAW), which is denoted as 
VCSO and intended to use in the clock and data recovery 
(CDR) shown in Fig. 1. A simple method of biasing is 
proposed to overcome the latch problem. The phase noise and 
transition time are especially investigated. Due to the 
manufacture variation and temperature, Tuning capability is 
needed to overcome the frequency precision. Here, two 
switched capacitances are designed to increase the tuning 
range. Low power consumption under TSMC 0.18um CMOS 
process is implemented. In the meantime, a comparison in 
performances with other balanced type of Colpitts is 
presented [7, 8]. 
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Fig. 1 Application of VCSO in giga-bit CDR 

II. OSCILLATOR WITH DIFFERENTIAL OUTPUTS 

SAW resonator exhibits a series LC resonance in parallel 
with a capacitance regarding to motional vibration and 
parasitic of interdigital electrodes, respectively. The 
equivalent circuit parameters of SAW resonator are listed in 
Table I. Co is the parasitic capacitance of interdigital 
transducer. Ls, Cs, and Rs are the series equivalent circuit of 
the piezoelectric motion. As applied to oscillator, two 
operating modes of series and parallel are often employed. 
The former has the resonator acted in series short circuit, 
while the latter acts as parallel open circuit at resonance. Here, 
the latter is utilized. The schematic of VCSO is shown in Fig. 
2a. Two stacks in CMOS process are used for low voltage 
operation. As usual, the cross-coupled nMOS pair provides 
the loop gain and 2π phase to satisfy the so called 
Barkhausen’s condition. The drain voltage from the left 
nMOS M5 is fed to the gate of the right one M6. Then the 
drain voltage of M6 returns to the gate of M5. It is noted that, 
due to the insulated nature of SAW resonator, the cross 
coupled nMOS are actually latched. To avoid latching, two 
small dc blocking capacitors C1 and C2(=0.9pF) are inserted 
into the signal paths to block the latching. In the meantime, 
the gates of the active nMOS’s are connected from two 
duplicated current mirrors, which allow the same dc bias but 
with opposite ac swing. With such an arrangement, the latch 
problem can be easily overcome. 

On the other hand, two pMOS M2 and M3 in the upper 
rack act as active load to obtain high gain. Their gate voltages 
are obtained from same current mirror. Because of wide-band 
nature of the cross coupled pair the desired frequency is 
determined by the parallel tank, which now is originated from 
the SAW resonator operated in the parallel mode with 
motional arm acted as inductor and electrode parasitic as 
capacitance. Of course, the parasitic capacitances from active 
part, varactors, switched capacitors, and package are also 
taken into account. Because the opposite phase between drain 
and gate, the piezoelectric SAW resonator can be easily 
excited.  

This research is funded in part by National Science Council under 
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To test the occurrence of oscillation, the impedance seen at 
the intersection plane of A_A’ indicated in Fig. 2a is 
examined. During calculation the A-A’ is disconnected 
without disturbing the dc bias. A small ac voltage source is 
inserted and the input impedance is then calculated by 
measuring the current. The oscillation starts as long as the 
real part of impedance is negative and imaginary part crosses 
the zero axis with positive slope. Both conditions are also 
equivalent to the Barkhausen’s conditions. The design factors 
have C1, C2 size, MOS dimension, size of switching 
capacitance, and varactor size. Capacitance C1, C2 are traded 
off in area and negative resistance. MOS dimensions are 
traded off is between phase noise and tuning. Phase noise 
gets better as MOS area is enlarged. However, its parasitic 
degrades the tuning capability. The parameters of transistors 
are extracted from TSMC 0.18um CMOS process. The aspect 
ratio of M2 and M5 are 60/.18 and 30/.18, respectively. The 
current consumption in the core is 2,68mA. The effects of 
bonding wire and pads are also taken into account. The 
results by using microwave software ADS is shown in Fig. 3. 
The starting frequency is determined from the zero crossing 
point of the imaginary part, which is equal to 425.1MHz as 
denoted M8.  

 
Table I Parameters of 425MHz SAW Resonator 

Co Rs Ls Cs 

3.8pF 10.53Ω 46.3uH 3.03fF 

 
For clearance, the capability of the balanced Colpitts 

oscillator as shown in Fig. 2b is also examined. It is basically 
built from two single-ended Colpitts oscillator sharing one 
SAW resonator. M7 and M8 are the main amplifiers and M9 
and M10 are the current sources. For comparison, a single 
ended Colpitts with similar model is firstly constructed. One 
pin of the resonator is connected to ground. With this success, 
the balanced one is easily obtained just by copying the single 

ended one and connecting the resonator to the gates of the 
main amplifiers. The SAW resonator now is re-modeled as 
two series resonators with center point virtually grounded [7, 
8]. The ac swing across the SAW resonator in each oscillator 
is set equal to 100mV by trimming the aspect ratio of the 
transistors. The current consumptions of the core circuit 
without buffer are listed in Table II. Die size and phase noise 
are also indicated. It reveals that output power and turn-on 
transition in cross-coupled oscillator are the best. The turn-on 
transitions in cross-coupled pair and single-ended Colpitts are 
shown in Fig. 4. The former is about 150us in Fig. 4a and the 
latter is about 500us in Fig. 4b. The Balanced Colpitts is the 
worst. Because no strong force exists to identify the polarity, 
the transition period may take a long time. According to our 
observation, it takes about 5ms (not shown here). The cross 
coupled one as expected has the shorted transition time.  

Phase noise is medium. The single-ended one has the best 
about -159.2dBc at 1Mhz offset. It seems to be due to just 
only one active transistor. As for the high power 
consumption in balanced Colpitts is due to the doubling in 
equivalent Co capacitance, which degrades the negative 
resistance. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

To compare the performances, figure of merit is often 
used as  

                                  
   

Fig. 2  (a) Schematic of the balanced oscillator with cross-coupled CMOS pair and (b) Balanced Colpitts oscillator. 
 

424.9 425.0 425.1 425.2 425.3 425.4424.8 425.5

-400

-200

0

200

400

-600

600

freq, MHz

re
al

(Z
)

im
ag

(Z
) m8

m8
freq=
imag(Z)=0.318

425.1MHz

 
Fig. 3 The calculated negative resistance and reactance 



 
 
 

Table II Predicted Performances 
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where P is the power consumption of the core circuit, ∆ωis 
the offset angular frequency from the carrier, oω is the center 
frequency, and L(∆ω) is the phase noise. It reveals the cross 
coupled one is better than balanced Colpitts. 
  

 
 
 
 
 
 
 
 
 

 
 
  
 
 
 
 
 
 
 
 

 
 
 

III. PERFORMANCES 

The layout is illustrated in Fig. 5 with die area about 
0.545×0.510mm2. The chip is fabricated by TSMC. The 
measured results are shown in Fig. 6. The differential 
waveform with p-p 250mV is demonstrated in Fig. 6(a). The 
low phase noise with high quality factor SAW resonator is 
demonstrated in Fig. 6(b). The slope near the carrier appears 
1/f3 with noise floor around -160dBc. The continuous tuning  
range as shown in Fig. 6(c) is around 30ppm, depending on 
the size of MOS varactor, which is varied from 1.8pF to 
2.45pF with VT from 0 to 1.8V. Two tuning switches are 
also added to increase the application. Capacitances in VT1 
and VT2 switches are 0.1pF and 0.3pF, respectively.  
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Fig. 5 Layout of the cross coupled SAW oscillator 
 

VI. CONCLUSION 

In this study a balanced VCSO using the compact cross 
coupled configuration is first presented. The latched problem 
is solved by separating carefully the drain and gate voltages. 
The SAW resonator acts as a parallel tank circuit to select the 
desired frequency. The nature of inverse polarity between 
gate and drain drives quickly the oscillator into steady state 
as compared to the balanced Colpitts one. The tuning range 
in this version needs to be improved in the future. Our results 
can be extended to other high frequency and high Q 
resonators such as MEMS and FBAR. 

 

 Cross-couple SE Colpitts Balanced  
Colpitts 

CMOS Process  0.18um 0.18um 0.18um 

Power Supply (V)  1.6  1.6  1.6  

Current (mA) 
(no Buf)  

3.05  1.27  5.22  

Power Dissipation  
(mW) (no Buf) 

4.88  2.032  8.352  

Oscillator Frequency 
(MHz)  

622  622  622  

Phase Noise 
(dBC/Hz@1MHz)  

-156.6  -159.282   -154.309  

Output Power 
 (dBm) 

2.94  -9.725  -9.942  

Transition 
(usec) 

150 500 5000 

FOM  205.6 212 200.9 

 
(a) 

 
(b) 

Fig. 4 Transition period in (a) cross-coupled pair and (b) single 
ended Colpitts oscillators. 
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