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Abstract

Construction has been conceived as an
experience-based  discipline. Knowledge
learned from previous projects plays
important role in successful performance of
future projects. This has made construction
an ideal industry for knowledge based
economy. However, modern KDD
(knowledge discovery in databases) or DM
(data mining) technologies are not yet widely
exploited and adopted in the field of
construction engineering and management.
This is due to two main causes: (1) the



construction industry is not familiar with
KDD and DM technologies; (2) the available
KDD and DM technologies do not fit the
special characteristics of data in the field of
construction engineering and management.
Should the construction industry be pursuing
knowledge based economy, obstacles caused
by the above two reasons must be removed
and the reusable domain knowledge must be
generated from historical data. For this end,
this research is proposed to tackle problems
encountered in knowledge discovery in real
world construction databases. The focuses
are: (1) development of DM algorithms for
the knowledge discovery of the unique
construction  data  characteristics;  (2)
generation of human  understandable
knowledge, so that domain experts can
visualize and verify it. At first, the existing
KDD and DM methods are reviewed.
Problems faced in applications of KDD and
DM for construction engineering and
management are broadly surveyed to identify
the special characteristics of construction
data, which hinder the implementation of
KDD and DM in construction industry. The
existing soft computing techniques, including
fuzzy sets, artificial neural networks, genetic
algorithms, rough sets, and case-base
reasoning, are thoroughly reviewed to
propose the most appropriate hybridization
for handling unique domain data
characteristics. The data mining algorithms
are developed to discover knowledge from
construction data, which are usually
uncertain, incomplete, partial true, and scarce
in their nature. A Hybrid Soft Computing
System  has  been  developed  for
implementation of data mining and

knowledge discovery in construction industry.

The main work of the first year was on
developing the architecture of a neuro-fuzzy
system with focus on mining incomplete
databases.

Keywor ds: Data mining, knowledge
discovery in databases, soft
computing, neuro-fuzzy systems

The research of this year aimed at
developing a neuro-fuzzy system (NFS),
based on the original Fuzzy Adaptive
Learning Control Network (FALCON)
model proposed by Lin and Lee [2], which is
modified and improved so that it is able to
handle historical data with partial-missing
attribute values. As the proposed method is
based on NFS architecture, it is equipped
with both learning and reasoning capabilities
and is able to mine construction knowledge
from historical data. It also provides
explanation of the reasoning process for
system users to develop improvement
strategies. A variable-attribute NFS network
along with the associated learning algorithms
is developed. The proposed variable-attribute
NFS network is very useful not only for data
mining but also for real-time decision
making when the complete information
cannot be acquired or when it is too
expensive to collect.

Incomplete data are omnipresent in the
traditional construction databases due to the
harsh outdoor environment, the attitudes of
workmen who collect the data, and merging
of different databases. Two categories of
incompleteness are defined as follows: (1)
missing data—incomplete coverage of data
in some intervals of the universe of discourse;
(2) missing values—incomplete information
in some interesting attributes of a dataset.
Following describes the problems of the two
types of data incompleteness.

3.1 Missing data

The first type of data incompleteness
problem is lack of data sets in some intervals
of the universe of discourse for a specific
attribute. This type of data incompleteness
can be further classified into two categories:
(1) interpolation type; (2) extrapolation type.
For the interpolation problems, the datasets
are missing between two clusters of data in
the universe of discourse of an interested
attribute (see Figure 1). Thus, the missing
data are usually recovered by interpolation
schemes.
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Figure 1. Interpolation type of missing data

On the other hand, for the extrapolation
problems, the data sets are missing at
extremes parts of the universe of discourse of
an interested attribute. Thus, extrapolation
schemes are adopted for data recovery.
Figure 2 shows an example of extrapolation
type of missing data.
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Figure 2. Extrapolation type of missing data
3.2 Missing values

In the second type of data incompleteness
problem, some values of interesting attributes
may not be available due to numbers of
reasons: (1) the attributes are not considered
important at time of data entry; (2) the
mistakes made by collector; and (3)
equipment malfunctions. This type of
problem is more severe while merging
databases from different sources. For
example, in Table 1, data sources of firm A,
B, and C provide inconsistent data format.
The resulted database shows a typical
example of missing-value type of data
incompleteness, where the missing attribute
values are depicted with shadowed cells.

Tablel Missing values in heterogeneous

databases
Firm | weath. Temp. | Humid. | item | Prod.
A cloud 18 high
B 23 90% low
C 60% |Form. | Ave.

3.3 Definitions of data incompleteness in this
research

This research tackles problems regarding
to “missing values” rather than “missing
data”. That is, the data incompleteness is
defined as the percentage of unavailable
attribute values. The missing data problem is
not considered in this research. In order to
evaluate the degrees of incompleteness of
missing values, two measures of data
incompleteness are defined: (1) percentage of
incomplete attributes (P/4)—measuring the
ratio of the number of unavailable attributes
(which consist at least one missing value)
over the number of total attributes, e.g., the

PIA of the 3 datasets in Table 1 is 2 _ 1000
4

(2) percentage of incomplete datasets
(PID)—measuring the ratio of the number of
datasets with at least one missing value over
the number of total datasets, e.g., the PID of

the 3 datasets in Table 1 is 3 _j00%; (3)
3

percentage of overall incompleteness
(POl)—measuring the ratio of the total
number of incomplete attributes over the
number of all attribute values of all datasets,
e.g., the POI of the 3 datasets in Table 1 is

—50%. The PIA is measured because that

3x4

in the traditional data cleaning method (will
be discussed in the next section) the tuples
with incomplete attribute information will be
discarded or processed manually. Therefore,
all of the four tuples may be discarded by
data cleaning. Similarly, the PID measures
how many datasets will be discarded or
processed in traditional data cleaning process.
The POI is an overall assessment of data
incompleteness Note that, in calculation of
the above three measures of data
incompleteness, only the precondition
attributes characterizing a data set are
considered, the consequence part of a data set,



such as the last column (productivity) in
Table 1, is not included.

This research proposes a modified
FALCON, namely Variable-Attribute Fuzzy
Adaptive Logic Control Network
(VaFALCON), for mining of incomplete
construction data. The data incompleteness is
defined previously as PI4 (percentage of
incomplete attributes), PID (percentage of
incomplete datasets), and POI (percentage of
overall incompleteness). In order to improve
the drawbacks of traditional data cleaning
methods, the proposed VaFALCON aims at
handling incomplete construction data
without restrictions on PIA, PID, or POI.
That is, it is expected to handle the data
incompleteness at any degrees of severity.
Moreover, the proposed VaFALCON is
designed to take incomplete construction
data directly without data cleaning. It does
not mean that the data cleaning process is not
recommended before DM, proper and correct
pre-processing of dirty data will always help
the performance of data mining. However for
VaFALCON, any pretreatment on filling up
of missing data or aggregating of data is not
required.  Such  relaxation of data
pre-processing requirement provides a
chance to preserve the originality of the raw
data as much as possible. Sometimes data
cleaning may cause loss of original
information of data as discussed previously
in Section 4.

Following describes the details of the
proposed VaFALCON.

4.1 Variable-attribute network structure
(VANS)

Most of the current data mining
techniques, including traditional FALCON
and artificial neural networks, take only
complete data without missing values as their
inputs. If the input data are incomplete, data
cleaning is performed to fill out the missing
values so that the algorithms of DM
techniques can work. The core idea of

VaFALCON is based on such concept. So,
the first step for developing VaFALCON is
to establish a mechanism for processing
variable numbers of attributes. Such
mechanism is called “variable-attribute
network structure (VANS)”.

Using the example FALCON model
shown in Figure 5 as a basis for discussion,
there are three input attributes (X, X,, and X3)
and one single output (Y). Each of the three
input attributes is fuzzified into two fuzzy
linguistic terms. The output is fuzzified into
four fuzzy linguistic terms. Referring to
Table 2, data set 4 is a complete data that
consist of input and output pairs as ([a,b,c],
D), where [a,b,c] is the vector of inputs and
D is the wvalue of output. The other
incomplete data set 4 contains a missing
attribute X; whose value is unknown and
denoted as “nan” meaning “not a number”.

Figure 5. Example FALCON model

Table 2 Complete vs. incomplete data set

Attribute X 1 X2 X3 Y
Data set 4 a b c D
Data set A nan’ b c D

"Not a number (empty)

The propagation of a complete data set in
FALCON is shown in Figure 6, where the
interconnections between the first two nodes
in Layer 2 (pre-condition fuzzy linguistic
terms) and Layer 3 (rule nodes) are shown as
solid links, which means physical
connections.



Figure 6. Connections of FALCON for
complete data

As the first input (X;) is missing, the
resulted FALCON is shown in Figure 7. I
Figure 7, the fuzzy linguistic term nodes o?
the first input (X;) are disconnected (shown
as dashed line) with the rule nodes in the
following layer. The signals are not
propagated via dashed-line links. In the
traditional FALCON, the network of Figure
7 is not trainable due to the undetermined
links between Layer 3 and Layer 4, so that
the signals cannot be propagated.

Figure 7. Connections of FALCON for
incomplete data

Using the first principle of data cleaning
described in Section 4, the first tuple (X;) can
be ignored while the information of the other

two tuples (X> and X;) are conserved. To
make the best use of the data information, the
FALCON is degraded to the one shown in
Figure 8, where the first input is omitted.
With the two residual tuples, the FALCON
of Figure 8 1is trainable as the signal
propagation path is determined.
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Figure 8. Degraded FALCON for incomplete
data
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By the process of network degradation
with missing attribute of VANS, the structure
of FALCON is variable according to the
training data. The VANS enables FALCON
to handle datasets with any degree of data
incompleteness.

4.2 Modified learning algorithms

In order to implement the VANS of
VaFALCON described previously, the
learning algorithms of original FALCON are
modified as following:

(1) Modification of Kohonen learning rule
[11]
In order to take incomplete input data,
Kohonen learning rule is modified as
shown in equation (7) for learning the
means of membership functions.

If x+#nan
1:1\}1.1{+] :wlk+77k(x_1:‘\}1k)
wh=wh forj=1,2,...,n j#i
(7)
end

(2) Modification of first-nearest-neighbor
heuristic
In order to determine the primitive
spreads of membership functions, the
first-nearest-neighbor heuristic is
modified as shown in equation (8).



(8)
end
In both equation (1) and (2), “nan” (not a

number) means missing of attribute value.

The logic judgment in the first line of
equation (1) and (2) represents that the
modification is performed only when the
attribute is not empty.
(3) Modification of fuzzy AND inference

The fuzzy AND inference of rule nodes in
the third layer of FALCON performs
t-norm computation, i.e., minimization or
intersection. In VaFALCON, it should be
avoided to take the memberships of
missing attributes as the outputs (i.e.,
minima) of fuzzy AND operations. To
achieve this goal, the memberships of
missing attributes are replaced with a
constant greater than 1.0 (the maximum
value of membership function), so that it
won’t become the minimum of any fuzzy
AND operation. Here “1.1” is adopted as
shown in Table 3 and Table 4. After the
modifications described above, it is
guaranteed that no missing attribute will
become the output of fuzzy AND
operations.

Table 3 Original outputs of Layer 2 in

VaFALCON
Node 1 2 3 4 5 6
Output nan nan 0.825 | 0.236 | 0.148 | 0.567

Table 4 Modified input of Layer 3 in

VaFALCON
Node 1 2 3 4 5 6
Output | 1.1 | 1.1 | 0.825 | 0.236 | 0.148 | 0.567

4.3 Learning process of VaFALCON

The learning process of VaFALCON is
similar to the original FALCON except that
detailed computations are recoded to
implement the above mentioned
modifications. The learning process consists

of two phases: (1) Self-organizing
phase—including modified Kohonen
learning and reinforcement competitive

learning to construct the primitive FALCON

structure; (2) Back-propagation
phase—applying back-propagation learning
rule to fine-tune the network. The learning
process ends when the expected error rate is
achieved or the maximum number of
learning cycles is reached.

A VaFALCON neuro fuzzy system is
programmed with Matlab™ v6.3 to perform
functions proposed in the previous section.
The developed VaFALCON is then tested on
a PC platform with Pentium IV 1.5G CPU,
1.0 GB SRAM, and Windows 2000°
operating system. Following describes the
details of the testing experiments.

5.1 Description of testing experiments

In order to wverify the proposed
VaFALCON, three example construction
databases collected from published literature
are selected for system testing of the

proposed VaFALCON including: (1)
building  construction cost estimation
selected from [12]; (2) structural cost
estimation selected from [13]; and (3)

estimation of the curtain wall construction
duration selected from [[2] ]. All of the three
examples are scarce (limited in numbers of
data), it is therefore not affordable to discard
any incomplete dataset. The best policy is to
make the best use of the available incomplete
data.

Three scenarios of experiments are
tested with VaFALCON for the above three
examples: (1) learning of complete data set;
(2) learning of incomplete data discarding the
data sets with missing values by traditional
data cleaning method; (3) learning of data
sets with various degrees of data
incompleteness in terms of PIA, PID, and
POI. The result of the first scenario is used as
basis for comparison.

The extreme conditions are simulated for
data incompleteness by setting the PI4A and
PID close to 100%. That is, at least one
missing value is found in almost every
dataset and every tuple. Such extreme
conditions are very difficult to process with



the traditional data cleaning methods
described in Section 4. The POI is varied
from 5% to 25% (or higher), resulted
arbitrarily by the random selection process.
The incomplete datasets are generated by a
random selection process that picks the
locations of missing attributes randomly. At
first, the attribute locations are numbered
sequentially on the table of the data. Then, a
random number is generated and timed by
the total number of data attributes. This
process is repeated until target number of
missing attribute values is reached. The
testing accuracy is defined by the following
equation:

Ace(%) = {1 - Abs(l - E‘”’"“’ed)} «100%(9)

ctual

where Estimated is the output generated
by the system, Actual is the actual result
observed from real world, and Acc. is the
percentage accuracy of the estimation.
The absolute value is taken within the
parenthesis to avoid minus values.

5.2 Example I—building construction cost
database

(1) Data preparation

The first example is selected from a real
world construction database published in Yu
[12]. Building construction cost estimation is
a difficult task during the early stage of a
construction project as most design
information is not available at that stage.
Traditional approaches rely on domain
experts (experienced cost estimators) in
performing the conceptual cost estimation.
However, the domain experts are difficult to
find, expensive to educate, and likely to
leave. Recently, the Al approaches have been
widely applied in building construction cost
estimations. The Al techniques are usually
combined with parametric  estimation
methods to establish the relationships
between the parametric attributes and the
estimation results. The estimation quality of
such methods depends heavily on the quality
of the historical data. Unfortunately, the
missing of attribute values is commonly
found in historical cost databases due to
reasons described in Section 3.

In the selected example, 4 attributes were
identified as attributes among the nearly 30
parameters originally collected, including (1)
earth retaining method; (2) No. of floors
above ground; (3) No. of floors under ground;
(4) total floor area. One single output,
construction cost estimation, is recorded in
the database. Totally 25 data are collected
from historical building construction project
by surveying the final project reports
provided by public owners. 22 data sets are
used for learning and the rest 3 data are used
for testing. The data are shown in Table A.1.
Notice that the values of the first attribute
(earth  retaining method) have been
transformed from symbolic data into numeric
data by: lmeans steel rail pile, 2 means
replace aggregate method, and 3 means
curtain wall method. Since the order of data
in Table A.1 has been randomized from their
original sequence, the last 3 (shaded) datasets
of the 25 data in Table A.l are selected as
testing sets. The rest are used for system
training. The data incompleteness is
simulated by random selections process as
described previously. For the first example,
five various degrees of data incompleteness
are simulated as shown in Table 5.

Table 5. Data incompleteness cases of Ex. I

Measur Case
es UEEYERORRORNS)
i% 75 | 75 | 100 | 100 | 100
?Z; 18 | 32 | 50 | 50 | 100
ﬁ,/?)l s | o | 14| 18| 25

It 1s observed from Table 5 that the data
incompleteness measures are increasing as
the case numbering increases. That is Case (1)
is the slightest among the five cases in data
incompleteness, while Case (5) is the
severest. In Case (5), both PI4A and PID are
100%. It means that every tuple and dataset
consists at least one missing attribute value,
i.e., all dataset are dirty. The POI of 25% in
Case (5) means that one quarter of the total
attribute values in the database are missing.
It can be considered as very



severe data incompleteness case.

(2) Testing results

There are three scenarios to be performed
for Example 1. The first scenario is
performed with the complete 22 datasets.
The testing sets are kept complete for all
scenarios to control the influential factors.
The results of the three testing data are
shown in Table 6. It is found that the average
system accuracy is 94.66% for training sets
and 92.63% for the three testing sets.

System accuracy (%
Table 6. Testing result of complete data—Ex. Case (1) (2) 3) @ | ©®
I (1) 92.7 92.7 92.7 92.7 | 92.7
Data Accuracy Sccn (2) 75.7 62.2 59.0 38.5

Training sets 94.66% a-mo (3) | 907 | 896 | 865 | 834 | 747
Dataset A 88.37% Difference

Testing Dataset B 91.99% * Sl S e
sets Dataset C 97.53% Recovery*

Average 92.63% * 98% | 97% | 93% | 90% | 81%

Scenario (2) and (3) are shown in Table 8.

It is found from Table 8 that the proposed
VaFALCON, Scenario (3), improves the
system accuracy significantly by learning the
incomplete data directly compared with
discarding the incompleteness data in
Scenario  (2). While comparing with
complete data, the proposed VaFALCON can
recover the system accuracy from 81%, for
Case (5), up to 98%, for Case (1).

Table 8. Testing results of Ex. I

In Scenario (2), the incomplete data are
tested with FALCON by discarding the
datasets with missing attribute values. The
numbers of data in training and testing sets
for each case are shown in Table 7. The
number of available training sets is relevant
to PID. It is noticed in Table 7 that the
training set of Case (5) is empty since all
data are dirty and discarded after cleaning.
Thus, the testing of Case (5) is omitted.

Table 7. No. of training sets for the cases of
Ex. I

Case
OENEOREORRCONNES)
PID
%) 18 32 50 50 100
No. of

training | 18 15 11 11 0
sets
No. of
testing 3 3 3 3 -

sets

On the other hand, Scenario (3) is tested
with different degrees of incompleteness as
shown in Table 5 by direct learning on
incomplete data. The average accuracy of the
three testing sets for the fives cases in

*The difference of accuracy (%) between Scenario (2) and (3)
**Recovery of accuracy: Acc. of Scenario (2)/Acc. of Scenario (3)

5.3 Example IlI—structural cost estimation
database

(1) Data preparation

The second example is tested with a
structural cost estimation database similar to
the first example, however selected from a
different published literature by Hsieh [13].
Totally 22 examples are collected. Among
which, 20 datasets are randomly selected for
training and the rest 2 datasets are used for
testing. Similar to the first example, four
input attributes are identified: (1) total floor
area; (2) area of exterior wall; (3) No. of
floors above ground; (4) No. of floors under
ground. The single output is the unit cost of
structural construction.

The data are shown in Table A.2. Since all
attribute  values are  numeric, no
transformation is required. Similar to
Example I, the order of data in Table A.2 has
been randomized from their original
sequence. The last 2 (shaded) datasets of the
22 data in Table A.2 are selected as testing
sets. The rest 20 datasets are used for system
training. The data incompleteness 1is
simulated by random selections as described
in Example I. There are five cases with



various degrees of data incompleteness
simulated as shown in Table 9.

Table 9. Data incompleteness cases of Ex. 11

No. of
training | 17 14 10 8 0
sets

No. of

Measur Case testing 2 2 2 2 -

es OEEYEEOREORE®) sets

PI4

(%) 73 75 | 1007100 1100 On the other hand, Scenario (3) is tested
PID with different degrees of incompleteness as
(%) 15 30 >0 60 1 100 shown in Table 9 by direct learning on
POI 5 10 15 20 73 incomplete data. The average accuracy of the
(%) three testing sets for the fives cases in

Similar to Example I, the data
incompleteness measures are increasing as
the case numbering increases. The POI of
Case (5) is 28%, while it is only 5% in Case
(10). Both PIA and PID are 100% for Case
(5), therefore no data is left after data
cleaning of this case.

(2) Testing results

For the first scenario, the DM is
performed on 20 complete datasets. The
testing results of the two testing data are
shown in Table 10. It is found that the
average system accuracy is 89.31% for
training sets, while it’s unusually much
higher (96.79%) for the two testing sets.

Table 10. Testing result of complete
data—Ex. II
Data Accuracy
Training sets 89.31%
Testing Dataset A 96.30%
sets Dataset B 97.28%
Average 96.79%

Similar to Example I, the incomplete data
are tested with FALCON by discarding the
datasets with missing attribute values for
Scenario (2). The numbers of data in training
and testing sets for each case are shown in
Table 11.

Table 11. No. of training sets for the cases of
Ex. II

Case
OEREGERCORNCORNES)
PID
(%) 18 32 50 50 100

Scenario (2) and (3) are shown in Table 12.

It is found from Table 12 that the
proposed  VaFALCON, Scenario (3),
improves the system accuracy significantly
by learning the incomplete data directly
compared with Scenario (2). While
comparing with complete data, the proposed
VaFALCON can recover the system
accuracy from 87%, for Case (5), up to 99%,
for Case (1).

Table 12. Testing results of Ex. II

System accuracy (%
Case 1) (2) (3) “) (5)
(1) 96.8 96.8 96.8 96.8 | 96.8
Scen
; (2) | 845 81.3 74.0 72.9
a-r1o
(3) 95.4 91.8 90.5 89.8 | 84.5
D1ffe:ence 10.9 10.5 16.5 16.9 | 845
%
Reco:ery 99% | 95% 93% | 93% | 87%

*The difference of accuracy (%) between Scenario (2) and (3)
**Recovery of accuracy: Acc. of Scenario (2)/Acc. of Scenario (3)

5.4 Example I[lI—curtain wall construction
duration estimation database

(1) Data preparation

In the third example, data of the
construction duration of under ground curtain
wall are collected from a published literature
by Yang [[2] ]. Since curtain wall method has
been widely adopted in urban construction
projects. Social costs can be very high under
inappropriate management practice.
Therefore, the accurate duration estimation
of such works is important for effective
project planning and management in the
crowed and congested urban construction
sites. Yang [[2] ] developed a CBR system




for duration estimation of curtain wall
construction in his Ph.D. research. Totally 27
historical datasets were collected from major
consultant firms of Taiwan. Among which 24
are used for training and 3 are used for
testing. The input attributes identified by
Yang are: (1) excavation depth; (2) quantity
of walls; (3) construction method; and (4)
soil type.

The data are shown in Table A.3. Two
qualitative attributes are transformed into
numeric values: (1) construction methods—
1 means ML method, 2 represents MHL; (2)
the soil type—Clayey as 1, Sandy-clayey as
2, Sandy as 3, Sandy-gravel as 4, Gravel as 5,
and Clayey-gravel as 6. Similar to Example I,
the order of data in Table A.2 has been
randomized from their original sequence.
The last 3 (shaded) datasets of the 27 data in
Table A.3 are selected as testing sets. The
rest 24 datasets are used for system training.
The data incompleteness is simulated by
random selections as described in Example I.
There are five cases with various degrees of
data incompleteness simulated as shown in
Table 13.

Table 13. Data incompleteness cases of Ex.
111

Measur Case
es ORERYERCORRCONNEC)
PIA
(%) 75 75 100 | 100 | 100
PID
(%) 17 42 50 58 100
POI
(%) 5 10 15 20 25
(2) Testing results
For the first scenario, the DM is

performed on 24 complete datasets. The
testing results of the two testing data are
shown in Table 14. It is found that the
average system accuracy is 94.62% for
training sets, and 95.94% for the three testing
sets.

Table 14. Testing result of complete
data—Ex. I1I
Accuracy
Data (%)

11

Training sets 94.62%
Testing Dataset A 95.11%
Dataset B 94.45%

Dataset C 98.25%

Average 95.94%

Similar to Example I, the incomplete data
are tested with FALCON by discarding the
datasets with missing attribute values for
Scenario (2). The numbers of data in training
and testing sets for each case are shown in
Table 15.

Table 15. No. of training sets for the cases of
Ex. III

Case

DA A H |G
PID
%) 18 32 50 50 | 100
No. of
training | 20 14 12 10 0
sets
No. of
testing 3 3 3 3 -
sets

On the other hand, Scenario (3) is tested
with different degrees of incompleteness as
shown in Table 13 by direct learning on
incomplete data. The average accuracy of the
three testing sets for the fives cases in
Scenario (2) and (3) are shown in Table 16.

It is found from Table 16 that the
proposed VaFALCON, Scenario (3),
improves the system accuracy significantly
compared Scenario (2). While comparing
with  complete data, the proposed
VaFALCON can recover the system
accuracy from 87%, for Case (5), up to 93%,
for Case (1).

Table 16. Testing results of Ex. 11

System accuracy (%
Case 1) (2) 3) 4) (5)
(1) 95.9 95.9 95.9 959 | 959
Scen
. (2) 85.8 76.6 71.7 66.2
a-rio
(3) 89.5 85.1 84.3 82.6 | 83.0
lefe:ence 3.7 8.5 12.6 164 | 83.0




Recovery*

% 93%

89% 88% 86% | 87%

*The difference of accuracy (%) between Scenario (2) and (3)
**Recovery of accuracy: Acc. of Scenario (2)/Acc. of Scenario (3)

7.5 Summary of system testing

The system testing results obtained from
the three testing examples show the excellent
capability of the proposed VaFALCON in
mining incomplete construction databases.
The improvement is outstanding and
consistent in all three examples. Following
analyzes the performance of VaFALCON
from viewpoints of two indexes: (1) accuracy
improvement; and (2) accuracy recovery).
The analysis is performed with respect to two
important incompleteness measures, PID and
POI, defined in Section 3. Another
incompleteness index, PIA, is not discussed
considered here since the PI4’s of all cases
in the three examples are close to 100%
without significant variances.

(1) Accuracy improvement of VaFALCON

The improvement of accuracy by
VaFALCON is defined as the difference of
accuracy between Scenario (2) and Scenario
(3). This index shows the benefit of
information recovery by VaFALCON from
the incomplete data. Figure 9 shows the
accuracy improvement of VaFALCON with
respect to various percentages of PID. While,
Figure 10 shows the accuracy improvement
of VaFALCON with respect to various
percentages of POI. It is found that accuracy
improvement is increasing as PID increases.
The DM performance of Scenario (2),
traditional data cleaning  approaches,
degrades dramatically as POI exceeds 20%
and PID approaches 100%. However, the
proposed VaFALCON performs consistently
well under these conditions.
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Figure 9. Accuracy improvement vs. PID

Figure 10. Accuracy improvement vs. POI

(1) Accuracy recovery of VaFALCON

Another index, accuracy recovery,
indicates the power of VaFALCON to
recover the information of the original
databases. Figure 11 shows the power of
accuracy recovery by VaFALCON vs.
various percentages of PID. Figure 12 shows
the accuracy recovery of VaFALCON vs.
various percentages of POI. In both figures,
it is found that the power of accuracy
recovery by VaFALCON decays as the
increases of PID and POI. This is inevitable
as the information is leaking with the missing
attributes. However, it is noted that, even
under the severe situation of Case (5), the
power of accuracy recovery of VaFALCON
is still greater than 80%. That is, at least 80%
of the information of original data is
recovered by VaFALCON even when all
datasets are incomplete.



Figure 11. Accuracy recovery vs. PID

Figure 12. Accuracy recovery vs. POl

[ 1]From analyses of accuracy improvement
and accuracy recovery for testing results,
it is concluded that the proposed
VaFALCON is verified as capable of
mining incomplete construction
databases. Moreover, the capability of
handling incomplete data provides a very
powerful feature for DM techniques
during usage phase—the application of
mined knowledge with incomplete
information. VaFALCON is able to
provide relatively good solution even
when some attribute information of new
problem is not complete. This is very
common for real time construction
problem solving. It is usually impractical
to wait until all required attribute values
are collected.

This research presents the first-of-a-kind
variable-attribute numerical data mining
technique named VaFALCON. The proposed
VaFALCON adopts the structure of a
neuro-fuzzy system, so it provides not only
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functions of numerical mapping but also the
explanations of reasoning process and
problem trace-back. Moreover, the proposed
VaFALCON accepts incomplete construction
data with any percentages of incompleteness.
It can make best use of the information
contained in the incomplete data. From
testing results, it is found that the proposed
VaFALCON is able to improve the system
accuracy up to 84.5% and recover accuracy
at least 81% even under severe data
incompleteness case, where all datasets of
the database are incomplete.

Another very desirable feature of the
proposed VaFALCON is its capability to
take incomplete information and provide
good solutions even when the attribute values
of problem domain are not completely
collected. Such functions can help decision
makers in real-time problem solving.

The proposed VaFALCON is able to
handle incomplete data with missing attribute
values, however the missing data problem
discussed previously is still unsolved.
Ambitious researchers are encouraged to
pursue in that field.
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