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Construction has been conceived as an experience-based discipline. Knowledge learned from
previous projects plays important role in successful performance of future projects. This has
made construction an ideal industry for the knowledge-based economy. However, modern KDD
(knowledge discovery in databases) or DM (data mining) technologies are not yet widely
exploited and adopted in the field of construction engineering and management. This is due to
two main causes: (1) the construction industry is not familiar with KDD and DM technologies;
(2) the existing KDD and DM technologies do not fit the special characteristics of data in the
field of construction engineering and management. Should the construction industry be pursuing
knowledge-based economy, obstacles caused by the above two reasons must be removed and the
reusable domain knowledge must be generated from historical data. For this end, this research is
proposed to tackle problems encountered in knowledge discovery in real world construction
databases. The focuses are: (1) development of DM algorithms for the knowledge discovery of
the unique construction data characteristics; (2) generation of human understandable knowledge,
so that domain experts can visualize and verify it. At first, the existing KDD and DM methods
are reviewed. Problems faced in applications of KDD and DM for construction engineering and
management are broadly surveyed to identify the special characteristics of construction data,
which hinder the implementation of KDD and DM in construction industry. The existing soft
computing techniques, including fuzzy sets, artificial neural networks, genetic algorithms, rough
sets, and case-base reasoning, are thoroughly reviewed to propose the most appropriate
hybridization for handling unique domain data characteristics. The data mining algorithms are
developed to discover knowledge from construction data, which are usually uncertain,
incomplete, partially true, and scarce in their nature. A Hybrid Soft Computing System will be
developed for implementation of data mining and knowledge discovery in construction industry.
Various real world databases provided by the industrial partners are used for validation and
verification of the proposed system. The anticipated results of the proposed research will
provide not only an effective tool for KDD implementation in construction industry but also an
important reference for future researchers, industrial practitioners, public work officials, and
school educators.

Keywords: Data mining, knowledge discovery in databases, soft computing, neuro-fuzzy systems
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Construction has been conceived as an experience-based discipline (Ardery, 1991); therefore,
knowledge acquired from previous works plays a key role for successful performance of the new
projects. Not only the construction know-how’s of the contractors, but also the design capabilities
of the design firms and the management skills of CM consultants rely heavily on such knowledge.
This has made construction an ideal industry for the knowledge-based economy (Ofori, 2003). In
the past two decades, tremendous efforts have been contributed to the formation and application
of construction knowledge provided by experienced engineers and managers to the new
construction projects. However, modern KDD (knowledge discovery in databases) or DM (data
mining) technologies were not yet widely exploited and adopted in the field of construction
engineering and management to acquire valuable knowledge from historic databases, which
results in leaking of knowledge from construction firms. This was due to two main causes: (1) the
construction industry is not familiar with KDD and DM technologies (Yu and Yang, 2002; Yu and
Skibniewski, 1999); (2) the existing KDD and DM technologies do not fit the special
characteristics of data in the field of construction engineering and management (Yu and Yang,
2002).

2. M Beh

As a result, this research is intended for two objectives: (1) development of DM algorithms
for the knowledge discovery of the unique construction data characteristics; (2) generation of
human understandable knowledge, so that domain experts can visualize and verify it. To achieve
these goals, the existing KDD (Han and Kamber, 2000) and DM (Fayyad and Uthurusamy, 1996;
Mitra et al., 2002) techniques are reviewed. Problems faced in applications of KDD and DM for
construction engineering and management are analyzed to identify the special characteristics of
construction data, which hinder the implementation of KDD and DM in construction industry.
The existing soft computing techniques, including fuzzy sets (Zadeh, 1965), artificial neural
networks (Tickle et al., 1998), genetic algorithms (Flockhart and Radcliffe, 1996), and case-based
reasoning (Yang and Yau, 2000), are reviewed to propose the most appropriate hybridization for
handling unique domain data characteristics. The data mining algorithms are developed to
discover knowledge from construction data, which are usually uncertain, incomplete, and scarce
in their nature. A Hybrid Soft Computing System (HSCS) is developed for implementation of
data mining and knowledge discovery in construction. Case-studies applying the proposed HSCS
for KDD from construction databases are selected to verify the proposed method with problems
of data incompleteness, uncertainty, and scarcity.

3. % jriEst
KDD Process
KDD was defined by Fayyad and Uthurusamy (1996) as the process to identify valid, novel,
potentially useful, and ultimately understandable patterns in data. The general concept of KDD is
to transfer raw data (usually of no direct use) into useful and valuable knowledge, which makes
patterns understandable to humans. A general process of KDD consists of the following steps
(Han and Kamber, 2000; Cabena et al., 1998):

(1) Understanding the domain problem—such as the relevant prior knowledge and goals of

the application;



(2) Extracting the target data set—e.g., selecting a data set or focusing on a subset of
variables;

(3) Data cleaning and pre-processing—e.g., noise removal and handling of missing data.
Data from real-world sources are often erroneous, incomplete, and inconsistent, perhaps
due to operation error or system implementation flaws. Such low quality data needs to
be cleaned before data mining;

(4) Data integration—e.qg., integrating multiple, heterogeneous data sources;

(5) Data reduction and projection—tasks such as finding useful features to represent the
data (depending on the goal of the task) and using dimensionality reduction or
transformation methods;

(6) Choosing the function of data mining—deciding the purpose of the model derived by
the data-mining algorithm (e.g., summarization, classification, regression, clustering,
web mining, image retrieval, discovering association rules and functional dependencies,
rule extraction, or a combination of these);

(7) Choosing the data mining algorithm(s)—selecting method(s) to be used for searching
patterns in data, such as deciding on which model and parameters may be appropriate;

(8) Data mining—searching for patterns or rules of interest in a particular representational
form or a set of such representations;

(9) Interpretation—interpreting the discovered patterns, as well as the possible visualization
of the extracted patterns. One can analyze the patterns automatically or
semi-automatically to identify the truly interesting/useful patterns for the user;

(10) Using discovered knowledge—incorporating the discovered knowledge into the
performance system, taking actions based on knowledge.

Data Mining (DM)

DM is the most critical step in the KDD process. KDD refers to the overall process of turning raw
data into value-added knowledge, and DM is the core mechanism that extracts useful knowledge
from databases. Fayyad et al. (1996) considered DM as an interdisciplinary field with a general
goal of predicting outcomes and uncovering relationships in data. Mitra et al. (2002) defined DM
as a process using automated tools, that employs sophisticated algorithms, to discover hidden
patterns, associations, anomalies and/or structure from large amounts of data stored in data
warehouses or other information repositories. Furnkranz et al. (1997) addressed that DM tasks
can be descriptive (i.e., discovering interesting patterns describing the data) and predictive (i.e.,
predicting the behavior of the model based on available data). DM involves fitting models to or
determining patterns from observed data. The fitted models play the role of inferred knowledge.
Mitra et al. (2002) concludeds that, a typical DM algorithm constitutes some combination of the
following components: (1) model—the function of the model (e.g., prediction, association) and
its form (e.g., linear discriminates, ANN). A model contains parameters that are to be determined
from the data; (2) preference criterion—a basis for judgment of better model, depending on the
given data; (3) search algorithm—that is a specific algorithm for finding particular models and
parameters, which significantly influences the mining results.

Characteristics of Construction Databases

Construction industry differentiates itself from other industries in the way of production, the
environment of workspace, the format of products, and the constitution of organization. Such
characteristics have contributed to the special problems confronting KDD in construction
databases. The following point out three types of problems existing in construction databases.

Data Scarcity

Yu and Liu (2005) defined two types of data scarcity are found in construction databases: (1)
scarcity in data volume—as the construction projects are unique in their nature and huge in their
scales, it is very difficult to accumulate sufficient data required by available DM techniques; (2)
sparsity in data coverage—the data are insufficiently and unevenly distributed in the range of



interested domain, i.e., the uneven distribution is due to the lack of certain types of projects that
the firm has never performed before, so the associated information of that project type is missing.
While encountering data scarcity problems, many DM techniques (such as ANN-related methods)
may fail due to the under-determination of model variables. The sparsity in data may cause severe
problems in generalization of predicative model and result in misleading inferences.

Data Incompleteness

Data incompleteness is common in traditional construction databases due to the harsh outdoor
environment, the attitudes of workmen who collect the data, and merging of different databases.
Two type of incompleteness were defined by Yu and Lin (2005) as follows: (1) missing
data—incomplete coverage of data in some intervals of the universe of discourse; (2) missing
values—incomplete information in some interesting attributes of a dataset. Han and Kamber
(2000) describes six traditional approaches for processing incomplete data include: (1) ignoring
the tuple; (2) filling in the missing value manually; (3) using a global constant to fill in the
missing value; (4) using the attribute mean to fill in the missing value; (5) using attribute mean
for all samples belonging to the same class as the given tuple; and (6) using the most probable
value to fill in the missing value. Traditional approaches for processing incomplete data may be
misleading or biased. It’s better to perform DM directly on the raw data to retain the essential
property of data.

Data Uncertainty

Major uncertainties in construction data may be due to the weather effects on outdoor
construction operations. Moreover, the project-based delivery system of construction industry
induces uncertainties from the various team members that are organized tentatively for a specific
project. As the uncertainty is inevitable, DM algorithms should be able to tackle the uncertainty
of data in construction.

Soft Computing Techniques

In traditional hard computing, achieving precision, certainty, and rigor in calculation are the
primary goals. On the contrast, soft computing paradigm perceives that precision and certainty
are costly so that computational schemes should exploit (wherever possible) the tolerance for
imprecision, uncertainty, and approximate reasoning for obtaining low-cost solutions (Mitra and
Hayashi, 2000). The above perspective is especially true for construction industry, where
historical data are usually uncertain, incomplete, and scarce in their nature. Therefore, the flexible
information processing capability of soft computing provides promising solution for DM and
KDD in construction industry. That is, devise the DM algorithms that lead to an acceptable
solution at low cost by seeking for an “approximate”, instead of “accurate” or “exact”, solution to
an unstructured or ill-defined problem (Zadeh, 1965).

Due to its unique characteristics, the model and the associated search algorithms adopted for
DM of construction databases should be specialized to tackle the abovementioned problems.
Among the many existing data mining algorithms, soft computing techniques (involving fuzzy
sets, neural networks, genetic algorithms, and rough sets) are most widely applied for a KDD
process (Mitra et al., 2002). The fuzzy sets (FSs) provide a natural framework for the process in
dealing with uncertainty (Pedrycz, 1998). Artificial Neural networks (ANNS) (Tickle et al., 1998)
and rough sets (RSs) (Hirano, et al., 2002) are adopted for classification and rule generation.
Genetic algorithms (GAs) are involved in various optimization and search processes, like query
optimization and template selection. Other approaches like case-based reasoning (CBR) (Yang
and Yau, 2000) and decision trees (Furnkranz et al., 1997) are also widely employed to solve data
mining problems.

A
PROPOSED HYBRID SOFT COMPUTING SYSTEM (HSCS)

Framework
Basic Network



In this section, the knowledge representation model and the computational algorithms of the
proposed hybrid soft computing system (HSCS) are proposed. In order to extract the readable
knowledge, the linguistic Fuzzy IF-THEN rules are adopted for knowledge representation of the
proposed system. For this end, a fuzzy inference system (FIS) is developed for HSCS to perform
human-like reasoning process of the discovered knowledge. Previous researchers have shown that
the self-organizing capabilities of ANNs can be adopted for automatically construction of the FIS
(Lin and Lee, 1991; Jang, 1993; Wang and Mendel, 1992). Therefore the neuro-fuzzy system
(NFS) became a appropriate choice for the proposed HSCS. Among the many existing NFSs, the
FALCON model (Lin and Lee, 1991) adopts Mamdani general fuzzy decision rules and is
selected for the proposed system. Figure 1 shows the structure of FALCON model.

A standard FALCON comprises five layers. Each layer consists of nodes with proper numbers
of fan-in and fan-out connections represented by weights assigned to the nodes. The fan-in
connections connect the nodes of the previous layer with the nodes of the current layer. The
fan-out connections connect nodes of the current layer with nodes of the subsequent layer. In
Layer 1, the values of input attributes are transmitted directly into FALCON. In Layer 2, the
fuzzification on input attribute values from Layer 1 is performed, so that the input data are
converted into fuzzy sets (or linguistic terms). The nodes at Layer 3 represent fuzzy rules. The
connections between the second and the third layers represent the pre-conditions of fuzzy
IF-THEN rules. Through these links, all pre-conditions of a fuzzy rule are linked to the associated
rule node. Therefore, the operation performed at rule nodes is fuzzy AND. Usually, intersection is
adopted for neuro-fuzzy decision systems. That is, the minimum of memberships from all
pre-conditions is selected as the fired strength of this rule. The links between Layer 3 and Layer 4
represent the consequences of fuzzy rules. There should be no more than one consequence for
each fuzzy rule node in a single output network. Thus, only one link connects one rule node at
Layer 3 with one term node at Layer 4. The nodes and links of Layer 5 act as the defuzzifier.
After defuzzification, the conclusion or decision is derived. The above structure is identical to an
FIS. Not only the knowledge is represented in the format of human readable IF-TEHN rules in
FALCON, but also the data processing flow in FALCON is also similar to human reasoning
process. The FALCON model is tentatively considered as the basic structure of FIS for the
proposed system.

Variable-Attribute Network Structure (VANS)

Similar to other neuro fuzzy systems, the traditional FALCON accepts only data with complete
attribute values. Any missing attribute value will cause difficulty in performing Fuzzy AND
operation in Layer 3 of FALCON. Further propagations can not proceed consequently, and thus
the system output can not be derived from the network at Layer 5.

In order to improve this problem, a Variable Attribute Network Structure (VANS) was
proposed by Yu and Lin (2005). The VANS adopts a flexible network structure that can adjust to
the available attribute values in processing every single input dataset. Considered the FALCON in
Figure 2, where input attribute a is missing. The rule nodes connecting to fuzzy terms of attribute
a are prohibited from further propagation. The idea of VANS is to ignore the attributes with
missing values. Thus the network of Figure 2 degrades to the one with only input attribute b and c,
where the attribute a (with missing attribute value) and its associated fuzzy term nodes are
deleted from the network. The signal propagation process of the degraded network follows the
rules of original FALCON. The modified network is named Variable-attribute Fuzzy Adaptive
Control Network (VaFALCON) (Yu and Lin, 2005). The HSCS based on VaFALCON is able to
process the incomplete data with any combination of missing attributes.

Algorithms

The computational algorithms of the proposed HSCS consist of three categories: (1)
Self-organization; (2) Supervised learning; (3) Global search. Following sub-sections describe
these steps.

Self-organization

The first step for constructing a HSCS is to determine the primitive fuzzy partitions, the
membership functions of the input and output fuzzy terms, and the primary structure of the rule
base. The self-organized learning process is employed for this purpose. There are two learning
stages in the self-organized learning process: (1) determining the centers and spreads of the



membership functions associated with the input and output nodes by Kohonen learning rule
(Kohonen, 1988); (2) determining fuzzy logic rules by reinforcement competitive learning (Yu
and Skibniewski, 1999).

The Kohonen learning rule consists of two stages:

| (1)

In this stage, the most similar cluster for input data x is found to be the ith cluster by

minimizing the difference between x and the center of the cluster (W), where superscript k

represents the kth iteration and W means a normalized value of the cluster center (w).

Updating stage: Wt =W+ nk(x - wik),
Wi =wi, forj=1,2,..,n j=i. (2)

In equation (2), #*is a proper learning coefficient at the kth iteration. In the updating stage, the

center of the ith cluster, the winner cluster, at the kth iteration (W*) is adjusted toward the

incoming training data, x. The rest of the clusters are kept the same. Since only the winner

cluster is adjusted, the rule is also called the winner-takes-all learning rule.

The reinforcement competitive learning rule consists of three stages:
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Similarity matching stage: ‘x - wf\: Min{

1<j<n

X — Wi

Winner competition stage: ,ujk =e ouk = Max uk (3)
1<j<m
Reinforcement learning stage: ~ w, ™" =w, + & pf, fori=1,2,.m;1=12,..L. (4)
Rule selection stage: wii =1 if wy= |1V|aX(Wn ),
wi;j=0 ifj=i, for1=12,..,L. (5)

In the winner competition stage, the most strongly responding node of the output term layer is
found. In the reinforcement learning stage, the connection between the fired rule nodes and the
most strongly responding term nodes is reinforced by increasing the connection weight. The
learning process can be performed for only one cycle (i.e., all training examples are fed into the
network for only once) or many cycles to differentiate the correlative and non-correlative nodes
between Layer 3 and Layer 4. Finally, the strongest connection between a rule node and one of
the term nodes is set to be equal to one and the rest of the connections are disconnected.
Supervised learning
In the supervised learning, parameters of the membership functions for input and output linguistic
terms are fine-tuned by back-propagation algorithms. The supervised parameter learning process
consists of three basic steps: (1) forward data propagation; (2) backward error propagation; (3)
parameter adjustments.

In the forward data propagation, the input data are first fuzzified in Layer 2 by input linguistic
term nodes. Then, through pre-condition connections, the firing strength of each rule node is
calculated based on fuzzy AND operation. The firing strengths are then propagated via the
consequence links to the output linguistic term nodes and aggregated based on fuzzy OR operation.
Finally, the crisp output is generated by defuzzification of output linguistic terms.

The backward error propagation begins with calculation of the difference between the actual
output of the forward pass and the desired output provided by the training example. The error
function E and error signal & at Layer 5 are defined as follows:

1
E= E(d(t) - o(t)?, (6)

& = calculated output - desired output = d(t) - o(t), (7)
where t indicates the time sequence of the learning iteration. Since only a single output is
considered in the proposed methodology, there is no summation in Equation (6). In each layer,
the error signal is calculated and used for back propagation. That is, the error signal of Layer 4
(6% is a function of &°, and so forth. The parameter adjustment principle is based on the
steepest gradient descent method, which can be described as follows:

Aw:n%, w(t +1) = w(t) + Aw, (8)



where w can be any parameter to be adapted, 7 is a proper constant.

Global search

Previous research has found that traditional FACLON encountered severe local minimum
problems while dealing with complex construction data (Yu and Skibniewski, 1999). In this paper,
the messy genetic algorithm (mGA) is adopted to variably construct the fuzzy rule base in the
NFS in light of global search. The traditional simple genetic algorithm (sGA) is a
non-deterministic search algorithm based on the ideas of genetics. While applying to NFSs, the
problem arises with the encoding of the NFS parameters. In an sGA, a coded chromosome is in
fixed length that highly fit allele combinations are formed to obtain a convergence towards global
optima. Unfortunately the required linkage format (or the structure of the NFS to be coded) is not
exactly known and the chance of obtaining such a linkage in a random generation of coded string
is poor. Although inversion and reordering methods can be used to adaptively search tight gene
ordering, these are too slow to be considered useful. Some researchers had turned to mGAs for
constructing NFSs (Chowdhury and Li, 1997). The primary difference between an mGA and a
regular sGA is that the mGA uses varying string lengths; the coding scheme considers both the
allele positions and values; the crossover operator is replaced by two new operators called cut and
splice; and it works in two phases—primordial phase and juxtapositional phase. The selection
mechanism is as in regular GA but is executed in primordial and juxtapositional phases. During
the primordial phase, the population is first initialized to contain all possible building blocks of a
particular length; thereafter only the selection operator is applied. This results in enriched
population of building blocks whose combination will create optimal or near optimal strings. Also,
during this phase, the population size is reduced by halving the number of individuals at specified
intervals. The juxtapositional phase follows the primordial phase, and here the GA invokes the
cut, splice and the other GA operators. With the flexible structure-learning scheme of mGA, the
optimal NFS rule base can be searched globally.

Application of mGA in learning NFS structure is not of no objections. All currently available
algorithms for NFS learning are limited to adapt the rule nodes and membership function types
separately. However, the optimal parameters of membership functions in the NFS are not
guaranteed with these algorithms. While coping with the proposed learning process depicted in
Figure 3, the parameters of membership functions are preliminary determined by Kohonen’s
learning rules, and thus are not optimal. The proposed algorithms adopt the error
back-propagation algorithm to fine-tune the parameters of membership functions after certain
cycles of mGA adaptations. This setup equips the proposed mGA with powerful local search
capability. Therefore the proposed NFS learning algorithms are both globally and locally optimal
in their search process.

Integrated learning process

The integrated learning process of the proposed system is shown in Figure 3, where the learning
process is divided into two phases: (1) Phase I—Preliminary Structuring Phase that constructs the
primitive structure of the neuro-fuzzy knowledge-based system using Kohonen’s learning rule
(Kohonen, 1988) and a reinforcement competitive learning rule proposed by Yu and Skibniewski
(1999); (2) Phase II—Parameters and Structure Optimization Phase that optimizes NFS structure
with a messy GA (mGA) and fine-tunes the membership functions of the NFS with error
back-propagation method.

Integrated Knowledge Discovery Process

The proposed HSCS is not only capable of processing uncertain, incomplete, and scarce data for
construction databases, but also providing human understandable fuzzy IF-THEN rules for
decision makers. This section describes the complete process of knowledge discovery process for
the proposed hybrid soft computing approach.

Data preprocessing

The first step in knowledge discovery process is the pre-treatment of data, since without quality
data there cannot be quality mining results. The data stored in construction databases are usually
dirty, which means incomplete, noisy, and inconsistent. The incomplete data means lacking
attribute values, lacking certain attributes of interest, or containing only aggregate data; the noisy
data contain errors or outliers; the inconsistent data contain discrepancies in codes or names.
Such dirtiness should be cleaned before knowledge discovery can proceed. The task of



pre-treatment is named data preprocessing.

There are several major tasks in data preprocessing including (Han and Kamber, 2000): (1)
Data cleaning—smoothing noisy data, identifying or removing outliers, and resolving
inconsistencies; (2) Data integration—integrating multiple databases, data cubes, or files; (3)
Data transformation—performing normalization and aggregation of data; (4) Data
reduction—obtaining reduced representation in volume but produces the same or similar
analytical results; (5) Data discretization—partitioning data for optimal representation of
qualitative or quantitative data.

Data mining

The next step of knowledge discovery is to perform data mining on the preprocessed data. The
HSCS proposed in this paper provides hybrid soft computing algorithms that integrate FLDS,
ANN, and mGA techniques for constructing VaFALCON. The learning process has been
described in Figure 3 including two phases: preliminary structuring and parameters and structure
optimization. In traditional FALCON, preliminary structuring was achieved by self-organized
Kohonen Future Map (Kohonen, 1988) and competitive learning rule (Yu and Skibniewski, 1999),
and the parameters optimization was performed by back-propagation (Lin and Lee, 1991).
However, the structure optimization function was lacked in original FALCON. In the proposed
HSCS, the structure of the NFS is optimized in Phase Il by global search with mGA algorithm
and convergence with BP, so that the erroneous rule structure organized Phase | can be improved
to find out the optimal rule base for the FLDS.

Knowledge presentation

The proposed system provides desirable fuzzy IF-THEN rules as the result of data mining, so that
human decision makers are able to realize and validate the patterns found. A fuzzy IF-THEN rule
in the proposed FALCON network consists of two parts: (1) preconditions—a set of fuzzy
linguistic variables characterized by a set of fuzzy terms defined by their associated membership
functions; (2) consequence—a single fuzzy linguistic variable characterized by a fuzzy term
defined by its associated membership function. In the preconditions, each fuzzy linguistic
variable is associated with a parameter related to the system input. The consequence is the output
that the decision maker is seeking. After data mining, a set of fuzzy IF-THEN rules are found to
form a knowledge base.

5, %%

System Testing Results

Data Scarcity

The R; for each of the three cases are calculated using Equation (10) and (11). Basically, 80% of
the collected data were used for training, and the other 20% used for testing. The results of testing
were benchmarked with a hybrid soft computing approach, which integrating CBR with other
numeric learning schemes, proposed by Yu and Liu (2005). In order to compare the testing results,
the fuzzy partitions of the three cases were controlled the same as those in literature. The Rs*s for
the three cases are shown in Table 1. The testing results on data scarcity are shown in Table 2. It
is found from Table 2 that the proposed HSCS performs similar to the hybrid CBR approach and
much better than the other three traditional methods (CBR, ANN, and ANFIS). Even though the
hybrid CBR approach slightly outperforms HSCS, it does not provide meaningful fuzzy
IF-THEN rules for explicit knowledge presentation.

Data Incompleteness

The data incompleteness was tested with POI at five different levels: 0%, 5%, 10%, 15%, and
20%. The testing results on incompleteness are shown in Table 3. The information recovery ratio
(IRR) defined by Yu and Lin (2005) is used here to show the capability of knowledge recovery
under data incompleteness. It is found that the IRR is generally higher than the POI. That is, the
available information is fully utilized for KDD.

Uncertainty

The uncertainty of data is modeled by Equation (12), where the original data were disturbed with
random number for various uncertainty ranges, p. In the experiment, the p is controlled at 5%,
10%, 15%, and 20% for training sets. The testing sets were not disturbed. The testing results on
uncertainty are shown in Table 4. The testing results show that the proposed HSCS is more



sensitive to uncertainty than the other two types of problems. However, the capability of
knowledge discovery of HSCS is still robust as long as the disturbance of data is not very severe
(e.g., higher than 15% of the data range).

Knowledge Presentation

The knowledge mined by the proposed HSCS is stored in the fuzzy rule base in form of matrix
indicating the connection of rule nodes and output membership functions. The fuzzy rule base
contains a set of fuzzy IF-THEN rules. Each fuzzy IF-THEN rule consists of a set of fuzzy
linguistic terms for expressing the values of attributes in the precondition part; it also contains a
set of fuzzy linguistic terms for the single output in the consequence part. Each fuzzy linguistic
term is associated with a fuzzy membership function. The fuzzy partitions for the input
parameters are subjectively determined by the decision maker and shown in the third column of

Table 1. As a result, there are totally lntlpri”(x) fuzzy IF-THEN rules for each case; where pri”

is the vector of fuzzy partitions in the input layer as defined in Equation (11). Therefore, there are
[3x2x2x3]=36 rules for Case I, [2x2x2x3]=24 rules for Case Il, and [2x2x2x3]=24 rules for
Case I1I.

The fuzzy membership functions of the linguistic terms for the input/output attributes of the
three cases are shown in Figure 4 to 6, respectively. Each fuzzy decision rule is defined by
multiple preconditions and single consequence. The relationships of adjacent layers indicating
preconditions and consequence are stored in matrices. An example of the fuzzy IF-THEN rules
for Case | is as follow:

“IF type-of-earth-retaining-method is Simple AND No.-of-floors-above-ground is Small

AND No.-of-floors-underground is Small AND total-floor-area is Small,
THEN construction-cost is Medium.”

The fuzzy IF-THEN rules can be visualized and evaluated manually by the domain experts. By
investigating all fuzzy IF-THEN rules, the knowledge acquired from data mining process can be
verified manually.

6. BmBER

This paper proposed a hybrid soft computing approach, namely HSCS, for mining of
construction databases. The proposed HSCS integrates FLDS, ANN, and mGA to form a new
paradigm for knowledge discovery of construction databases. The proposed approach combines
several merits of the soft computing techniques, such as the human understandable fuzzy
IF-THEN rules, the learning ability of ANN, and the global searching of mGA. Such
hybridization offers desirable features for problems confronted in KDD of construction databases.
Three cases of real world construction data repositories were tested with HSCS to verify its
capability in discovering knowledge from scarce, incomplete, and uncertain databases. The
testing results show that the proposed HSCS provides promising solution for KDD in
construction.

The proposed HSCS is also able to mine fuzzy IF-THEN rules that can be visualized and
verified by domain experts; however, the resulted knowledge base is too huge for human expert
to verify manually. Some rule pruning or screening method should be developed to reduce the
rule base mined by HSCS in order to make such system realistic for practical usage.
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T
Table 1 Scarcity ratio of the three cases

Case Input Output No. of No. of NVmodel R
No. of Fuzzy Fuzzy training sets  testing sets
inputs partition partition
I 4 [3x2x2x3] [3] 22 3 62 2.818
I 4 [2x2x2x3] [3] 24 3 48  2.000
i 4 [2x2x2x3] [3] 21 6 48  2.286

Table 2 Testing results on scarcity

Case Accuracy %
CBR ANN (BP) ANFIS Hybrid CBR HSCS

l 85%  86.63% 67% 93.50%  90.97%
Il 826% 81.11% 79.30%  95.37%  94.74%
I 68%  66.70% 66.70% 100% 100%

Table 3 Testing results on incompleteness

Case POI
0% 5% 10% 15% 20%

| AcC.* 926% 90.7% 89.6% 86.5% 83.4%
IRR** 100% 98% 97%  93%  90%

I Acc. 959% 89.5% 85.1% 86.2% 83.0%
IRR 100% 93% 89% 88%  86%

I Acc.  100% 100% 100% 100% 83.3%

IRR 100% 100% 100% 100% 83.3%

*Acc.—Accuracy defined in Equation (9)
** |RR—Information recovery ratio

Table 4 Testing results on uncertainty

Case Uncertainty p
0% 5% 10% 15% 20%

I 96.6% 88.5% 854% 80.8% 73.3%
I 95.9% 90.4% 87.3% 84.6% 80.2%
[ 100% 100% 100% 83.3% 83.3%




lﬂ- m

THEN-part
consequence ’»
links

= A
L ‘w‘g“
B [ > ST

[
p [T QAOOD OV

T

Output
linguistic

nodes -

[ ] [ ] [ ]

Output

term

nodes L

[ ] [ ] [ ] ‘

nodes

[ ] [ ] [ ]
Input
linguistic
% X

nodes T
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