FHRERATPEELRE CLET TS 2R

P HBENN S P EREREL R (F3E)
SRR (RER)

S N R

% % % ¢ NSC 96-2221-E-216-052-MY3
HofF B R :98# 087 01 p99E 07 3P
HopF o EAF1IEERE

—;J.% a$F AL A

PEEE AR BAregd LEmm R e 2

FoA R NARFERFLCHEELEF A

PooE R K 99#09% 24p

FRREATEL R N EET 3 552

il =2 W SLR ORI R A LR R

FTHEY B uAE Dgggyg_l.%
4 %% NSC 96—2221—E—216—052—MY3

HiEFHF: 96# 8% 1p 3 9#& 7% 31p

THAFAR AR

W
-
=
e

-
e
it
e

-

T ¥R

B

F B i LA 3

R EL R § &4

AR TS

PiERiRR 42 B ?

A Particle Swarm Optimization for Multi-Objective

Scheduling Problems

3+ F % %1 NSC 96-2221-E-216-052MY3
o7 # L:96#£8% 1p399&7 1 31lp
i A lyARE P EAFIEI RIS L
. scheduling problem) # 3 % % - Az = fai
AAmPAREFEY > AP E%F“
o 3 # B @& 1 (Particle Swarm (makespan) i&,;x 47 pF [(total flow time)~ 4%

Optimization, PSOY_- f& M #Mi0F 5 A&
2N IR R SERE S E I Ry Xy
St o PSO AT VY a3 88 » 113
Z# 7 B (search space) i 1 P iEenfi ft & 3
¥ (solution space) = BHHF 7 ¢ iz i
(positiont B 3| - B 3Ef2 4 & B¢ p
fRed FHENEE IR (RREEZRY)E T
FEF B E Y (B %f3) PSO &4 ¥ >t R
fRB B R RRE AR A AT R AR
Ffre & B R AE o

PR PN ALY MR AR R e
PR - PREEENL > do B2 1 pFRF ~ Bt
BA RSB FHE o ARG EIRT 0
a\ﬁ & 2T A Gy gy Rip i PR A i et
W APR B fRap i PR B3 AR ERR DR AT o
FrEFE - PR GO REOPEERT
- PRI A o AFT Y A R P DB R
Rfz i op A2 PSO %TM —L%fi'ﬁ A
o ¥t AF e AR B RE PR AL 49 T #*

ik ©
AEF U ERERF AR GEToR - BN

L=
1 At

|r/._l

2t & P ¥ (total tardiness)r % P Sl o A2
1 AT A en PSO> e AR R éﬁ&“%{*’ﬁ
4w e AR Ead RS BT

[RERCTEA

M4t RS EEEC R EREF2
AR AN RS\ Ry AR I L 2

Abstract

Particle Swarm Optimization (PSO) is a
population-based optimization algorithm. Each
particle is an individual and the swarm is
composed of particles. PSO mimics the particle
movement in a space. In PSO, the problem
solution space is formulated as a search space.

Each position in the search space is a
correlated solution of the problem. Particles
cooperate to find out the best position (best
solution) in the search space (solution space).
The original intention of PSO is to solve
continuous optimization problems. However, it

b impl ted t I
A R AR R %\(ﬂow shop scheduling problemshrjl eenh implemente 0 sove mary
combinatorial optimization problems in recent
.?F‘iﬁ‘%l I E LRGP
years.
(job shop scheduling problem)= i % % ; In most previous research about scheduling,
% = & B A # 42 B 42 (open shop

there are only one objective function. FoOR_fZ»x s e if ch— FEETH 3V 272 o g it 3
example, total complete time, total tardiness; & ¢ ~ 1 &+ ¥ & it it (Particle Swarm
and maximum makespan. In fact, the decisi@ptimization, PSO} & #7 -~ * ZiT 3 & k&
makers have to simultaneously optimize thegeR Zi7 3 2 A aduF L2 ¥ 30 - 4 H p &
objectives, but there are conflicts between thesef: 42 42 ¢ > 24 i ¢ #-PSO & * *+ JobShop
objectives. If we only optimize one of thesé Open ShopR® 48t - #= 3 # I * PSO &
objectives, we will loose another objective. If## ¢ 7 3]+- # v = ;2 { 47 0% % (Sha & Hsu,
this research, we will construct a PSO to sol&906a, 2006b) F]}* » 27 3 thi & f enp %
multi-objective scheduling problems. That caff 1 it &% % p R£ 42 412 PSO» &4 4
help decision makers to make a strategy 0] fo ¥ AF fe P AT B AZPF 0 53 R &

handle such complex scheduling problems.

We will execute this research in three years.
In the first year, we focus on the flow sho;?;

scheduling problem. In the second vyear,

WSO m A&

ik

F]Ld\,gﬂwhqlggmaﬁp* ib‘}‘
5P &P AR 3 PSO- Kllf PRI R
T‘EL’* kj\ﬁg@&?'ﬁ'_ﬁ,\[i]L. F‘: 5{

focus on the job shop scheduling problem. In tf@@ontinues optimization problems)é_ w L g ik

third year, we focus on the open shop scheduling- 5 1 # & % & 3 B

Iﬂi

problem. In these three scheduling problems, thex 72 g oyt se peigg. 8w 2 ﬁx 1L R AT 2

objective functions are maximum completion , 5 KFE G R 2
time, total weighted completion time, and tot%ﬁ? w8 Btk
weighted tardiness. Moreover, we will add somg KRG LR B AT AR B 2

2. PSO #-% # % PSO

E L Fva,g\,gzrv“ 7 &@o EAN LIS

constraints into the scheduling problems, sugh. _‘1\};’*7 PICR - TR L g
as limited intermediate storage and dependent

setup time.

Keywords. Particle swarm optimization,
Multi-objective scheduling problem

“FE P

PERBPRNALG MR g R R e
PR E - PR EF o dol 21 PR Bt
B A ~E BT Rl FE o ARG HIRT 0 -
a\ﬁxé AR € R e ol N N I L s PE S
W APR B fRap i PR 2 B3 AP ERR DR AE o
FRERE- piReand Gt 2 R g ¥
- PRI A o

< S EcEARRAEY 5 NP R 3E 0 4 i};—;{

Hoo MR REE G ALt B RN R AR
fao Bl FE MR r»z‘e?'i'l}é«:’;‘ Eal ERER=S
Bl iTddfg o @ g ;83 5 (Evolution
Computation] £_i1 -+ & icﬁwﬁt)% 2T o

PSO &
ZoRIEFEEAM)f’c
. F # & @& i+ (Particle Swarm

Optimization, PSO)d Kennedy = Eberhart
31995 EH Ao v Hd PRI T Y E
frvmf’r?. s om B R m&xixb”;z°PSOfr
2 %1% & ;2 (Genetic Algorithm,GA}p FF > AL
1Ay L A A sn(population-based). £ i x5
& PSO ¢ >3 %8 (swarm)i_d =+ (particle)
A7k 2 o F Y (swarmjfed+ (particle) g % o
fv &= GA ¢ = g (population) - % ¢ %%
(chromosomeyid % 4p 12 o

PSO 3% 7 B (search space):E 1) F*
e enfz & & 7 FF(solution space) # B ixF 3
P eniz ¥ (position & 3] - B 2% I 38z &
SV o I HNHFLE (28 L
FREP)E T F KGR (B EfR)on P
PFERALEXI BRI EREE OFKH

% e

(inertia) ~ 48 & i = % (pbest position} # 4
i 1= % (gbest positiony 1# 1 (inertia)s 4+
b - P 7k (iteration) #r R F T Ok hiE &
(veIOC|ty) v e $9 4 If 1248 £ (inertia weight)
JJ’”’ﬁl o 2 M (inertiQ) ¥ & At AT B

ER I gsvﬂflp\ @ o B3 8 B iE % (local
optima)- i %8 & & = ¥ (pbest solution} }+
AL TP A G T E Nk i B (N A
j) FlptE RS G v op PR
(pbest position) # %4 5. i i ¥ (gbest position)
PIE_T) P & 5 2 ER (swarmy 4o 1) ek i
B (B EfR) a FRFEM(swarm)y ¢ 5 - B
A & i % (gbest position)

. PSO ¢ s} + & & (velocity)d — = &
o @ iRk (iteration)? g+ 1345 v er#?a
7o RA U D g o A& B 7 R (iteration)
Ao k3§ F B S E % (pbest position)
% K8 E £ = % (gbest position} & » @ H g
Bs R43% BB 4 = % (pbest position) #
95 & = % (gbest positiorfE # {7 o
T~y E
I = R N R (kR A

(Flow-shop Scheduling Problem)PSO> 3 7
HW #r B 1 PSO mi’}f EA]‘\g W?}’T;ﬁv;;
o Ao o A 7 9 PSO &
TSP-GA(Ponnambalam, 2004)%p|:& 21 &
RAE v e PR F 2 B AN 2] R

1 B (Makespan) T 20 2 & ¥ (Mean Flow
Tlme) ¥ R ¥ pF R (Machine Idle Time)y &

ik Bpor o T IR EEAL S T 0 A A

PRI ERF > PSO 5 17 B R AR A R
TSP-GA; L iaiifepeflf » PSO 7 18 3 ' 4%
B %> TSP-GA; 8 EF & pFRFF > PSO 7
19 B R 22 & B> TSP-GA- =& & 7 - PSO

B2l BRI B FREEINZBRE
¥ i TSP-GA o gt &% ¢ % 4> The 3¢

¥ - 25 > PSSO & @ suafng N
52 CDS ¥ NEH 27 d o PR B | R
1 pF R (Makespan) < =i 2 pF fF (Mean Flow
Tlme) ¥ EF & pF R (Machine Idle Tlme)F
BN e Pt H PR 161 BHEF R RE
7z RecOl & Rec4l Tai2x5 I Tai500<20 -
Fprenit % ko PSO & @ Suerfa g Vg R 2
CDS & NEH £ & P B enifpdr o B %8 &%
The 9th Asia Pacific Industrial Engineering &
Management Systems Conference (2008).
PSO i * > 4f2 5 p A2 3| AR 52
% ¢ 4 £ 3% |International Journal of
Advanced Manufacturing Technology Vol. 45,
No. 7, pp. 749-762. Vol. 37, No. 2, pp.
1065-1070, 2009 (SCB*rH45—).
oo RfEE 3V ER A
(Job-shop Scheduling Problem) PSO> F
o APERE - BPES R RIERF
(Makespan) &zt J& pF /F (Total Tardinessy #
7 ¥ pF R (Machine Idle Time) * #i s %t %
7 ¥_MOGA (Ponnambalam, 2001)% 23 &
HFRPEEY > PSO b | =1 pFRF & ek
PERF > = pAEL MOGA ; T {8 EF Y pr iy
322 BRAER EgL 4 o

PSO & * »* £f% % p &7 1 A2 420 4L
% % Expert Systems with
Applications, Vol. 37, No. 2, pp. 1065-1070,
2010 (SCI) f*isr=).

AT E AN AR 4 A7 7 7 = = PSO
%3 AP k] = 1 pF R (Makespan) A5
iz pF B (Total Flow Time)r # B @ % pr
(Machine Idle Time) i€ % B #5355 o d 3t @ 2z 30
AR W JI?%#B R LR e R I S
B A FlE 2 ' 5 v o 702 Guéret and Prins
(LOOME 5 R RE:E (T RI3E » RIFS R M1 * %
fi.%;f& N PSOE# 2x+ 3t GAe B 5% @ 3%
#& ** Journal of Industrial and Management

4 4k
£ %

ﬂ\/FHQ’i:Q

h % e

International Conference on Computers arﬁ%timization

Industrial Engineering (2008).

P ${ 5)}% Zwarm optimization Tor job.shop.J scheduling problem,
omputers & Industrial Engineering, Vol. 51, No.ph.
Coello, C.A., & Lechuga, M.S. (2002). “MOPSO: ar91-808.
proposal for multiple objective particle swarnSha D.Y., & Hsu, C-Y. (2006b). “A modified
optimization,” Proceedings of the 2002 Congress grarameterized active schedule generation algorithm
Evolutionary Computation, Vol. 2, 1051-1056. the job shop scheduling problem,” Proceedings ef36th
Giffler J & Thompson G..L. (1960). “Algorithms for International Conference on Computers and Industria
solving production scheduling problems,”Operation&ngineering (ICCIE 2006) (pp. 702-12).
Research ,Vol. 8, 487-503. Shi, Y., & Eberhart, R.C. (1998a). “Parameter d#@cin
Goldberg D.E. (1989). Genetic algorithms in searcparticle swarm optimization,” In V.W. Porto, N.
optimization and machine learning. Reading, MASaravanan, D. Waagen, & A.E. Eiben (eds),
Addison-Wesley. Proceedings of the 7th International Conference on
Gongalves J.F., Mendes .J.J de M., & Resende M.GEolutionary Programming (pp. 591-600). New York:
(2005). “A hybrid genetic algorithm for the job gho Springer-Verlag.
scheduling problem,” European Journal of Operationghi, Y., & Eberhart, R.C. (1998b). “A modified paté
Research, Vol. 167, No. 1, 77-95. swarm optimizer,” In: D. Fogel, Proceedings of ##98
Hu, X., & Eberhart, R.C. (2002). “Multiobjective [IEEE International Conference on Evolutionary
optimization using dynamic neighborhood particleasw Computation (pp. 69-73). Piscataway, NJ: IEEE Press
optimization,” Proceedings of the 2002 Congress @&un, D., Batta, R., & Lin, L. (1995). Effective jaihop
Evolutionary Computation, Vol. 2,1677-1681. scheduling through active chain manipulation. Cotepsu
Kennedy, J., & Eberhart, R.C. (1995). “Particle swa & Operations Research, 22(2), 159-172.
optimization,” In: Proceedings of the 1995 IEEBNang, L., & Zheng, D. (2001). An effective hybrid
International Conference on Neural Networks, 4 (ppptimization strategy for job-shop scheduling pevbs.
1942-1948). Piscataway, NJ: IEEE Press. Computers & Operations Research, 28, 585-596.
Liaw, C-F. (2000). “A hybrid genetic algorithm fahe Zhang, H., Li, X., Li, H., & Huang, F. (2005). “Ree
open shop scheduling problem,” European Journal sfarm optimization-based schemes for
Operational Research; Vol. 124, 28-42. resource-constrained project scheduling,” Autonmatio
Lourenco, H.R. (1995). “Local optimization and the&onstruction, 14, 393-404.
job-shop scheduling problem,” European Journal d@hang, L.B., Zhou, C.G., Liu, X.H., Ma, Z.Q., Ma, M
Operational Research, 83, 347-364. Liang, Y.C. (2003). “Solving multi objective optization
Ponnambalam S. G., V. Ramkumar and N. Jawahar,, 20pdoblems using particle swarm optimization,” Pratiags
"A multiobjective genetic algorithm for job shopof the 2003 Congress on Evolutionary Computatiool. V
scheduling”. Production Planning and Control, 12(84, 2400 — 2405.
764-774 . e ay
Ponnambalam, S. G., H. Jagannathan, et al. (2084), o ‘F]‘@B?
TSP-GA multi-objective algorithm for flow-shopl. A particle swarm optimization for
scheduling”, International Journal of Advancednulti-objective flow-shop scheduling
Manufacturing Technology 23(11), 909-915. 2. A multi-objective PSO for job-shop
Sha, D.Y., & Hsu, C.-Y. (2006a). “A Hybrid particlescheduling problems

Int J] Adv Manuf Technol
DOI 10.1007/s00170-009-1970-6

ORIGINAL ARTICLE

A particle swarm optimization for multi-objective

flowshop scheduling

D. Y. Sha - Hsing-Hung Lin

Received: 5 September 2008 / Accepted: 6 February 2009
© Springer-Verlag London Limited 2009

Abstract The academic approach of single-objective flow-
shop scheduling has been extended to multiple objectives to
meet the requirements of realistic manufacturing systems.
Many algorithms have been developed to search for optimal
or near-optimal solutions due to the computational cost of
determining exact solutions. This paper provides a particle
swarm optimization-based multi-objective algorithm for
flowshop scheduling. The proposed evolutionary algorithm
searches the Pareto optimal solution for objectives by
considering the makespan, mean flow time, and machine
idle time. The algorithm was tested on benchmark problems
to evaluate its performance. The results show that the
modified particle swarm optimization algorithm performed
better in terms of searching quality and efficiency than
other traditional heuristics.

Keywords PSO - Multi-objective - Flowshop scheduling -
Pareto optimal

1 Introduction

Production scheduling in real environments has become a

significant challenge in enterprises maintaining their com-
petitive positions in rapidly changing markets. Flowshop

The English in this document has been checked by at least two
professional editors, both native speakers of English. For a certificate,
see: http://www.textcheck.com/cgi-bin/certificate.cgi?id=emRe2r

D. Y. Sha

Department of Industrial Engineering and System Management,
Chung Hua University,

Hsinchu, Taiwan, Republic of China

H.-H. Lin (<)

Department of Industrial Engineering and Management,
National Chiao Tung University,

Hsinchu, Taiwan, Republic of China

e-mail: hsinhung@gmail.com

Published online: 24 February 2009

scheduling problems have attracted much attention in
academic circles in the last five decades since Johnson’s
initial research. Most of these studies have focused on
finding the exact optimal solution. A brief overview of the
evolution of flowshop scheduling problems and possible
approaches to their solution over the last 50 years has been
provided by Gupta and Stafford [5]. That survey indicated
that most research on flowshop scheduling has focused on
single-objective problems, such as minimizing completion
time, total flow time, or total tardiness. Numerous heuristic
techniques have been developed for obtaining the approx-
imate optimal solution to NP-hard scheduling problems. A
complete survey of flowshop scheduling problems with
makespan criterion and contributions, including exact
methods, constructive heuristics, improved heuristics, and
evolutionary approaches from 1954 to 2004, was offered by
Hejazi et al. [7]. Ruiz et al. [24] also presented a review and
comparative evaluation of heuristics and meta-heuristics for
permutation flowshop problems with the makespan criteri-
on. The NEH algorithm [17] has been shown to be the best
constructive heuristic for Taillard’s benchmarks [28] while
the iterated local search [27] method and the genetic
algorithm (GA) [23] are better than other meta-heuristic
algorithms.

Most studies of flowshop scheduling have focused on a
single objective that could be optimized independently.
However, empirical scheduling decisions might not only
involve the consideration of more than one objective, but
also require minimizing the conflict between two or more
objectives. In addition, finding the exact solution to
scheduling problems is computationally expensive because
such problems are NP-hard. Solving a scheduling problem
with multiple objectives is even more complicated than
solving a single-objective problem. Approaches including
meta-heuristics and memetics have been developed to
reduce the complexity and improve the efficiency of
solutions.

@ Springer

http://www.textcheck.com/cgi-bin/certificate.cgi?id=emRe2r

Int J Adv Manuf Technol

Hybrid heuristics combining the features of different
methods in a complementary fashion have been a hot issue
in the fields of computer science and operational research
[15]. Ponnambalam et al. [19] considered a weighted sum
of multiple objectives, including minimizing the makespan,
mean flow time, and machine idle time as a performance
measurement, and proposed a multi-objective algorithm
using a traveling salesman algorithm and the GA for the
flowshop scheduling problem. Rajendran et al. [21]
approached the problem of scheduling in permutation
flowshop using two ant colony optimization (ACO)
approaches, first to minimize the makespan, and then to
minimize the sum of the total flow time. Yagmahan [30]
was the first to apply ACO meta-heuristics to flowshop
scheduling with the multiple objectives of makespan, total
flow time, and total machine idle time.

The literature on multi-objective flowshop scheduling
problems can divided into two groups: a priori approaches
with assigned weights of each objective, and a posteriori
approaches involving a set of non-dominated solutions
[18]. There is also a multi-objective GA (MOGA) called
PGA-ALS, designed to search non-dominated sequences
with the objectives of minimizing makespan and total flow
time. The multi-objective solutions are called non-
dominated solutions (or Pareto optimal solutions in the
case of Pareto optimality). Eren et al. [4] tackled a multi-
criteria two-machine flowshop scheduling problem with
minimization of the weighted sum of total completion time,
total tardiness, and makespan.

Particle swarm optimization (PSO) is an evolutionary
technique for unconstrained continuous optimization prob-
lems proposed by Kennedy et al. [10] The PSO concept is
based on observations of the social behavior of animals
such as birds in flocks, fish in schools, and swarm theory.
To minimize the objective of maximum completion time (i.
e., the makespan), Liu et al. [15] invented an effective PSO-
based memetic algorithm for the permutation flowshop
scheduling problem. Jarboui et al. [9] developed a PSO
algorithm for solving the permutation flowshop scheduling
problem; this was an improved procedure based on
simulated annealing. PSO was recommended by Tasgetiren
et al. [29] to solve the permutation flowshop scheduling
problem with the objectives of minimizing makespan and
the total flow time of jobs. Rahimi-Vahed et al. [22] tackled
a bi-criteria permutation flowshop scheduling problem
where the weighted mean completion time and the
weighted mean tardiness were minimized simultaneously.
They exploited a new concept called the ideal point and a
new approach to specifying the superior particle’s position
vector in the swarm that is designed and used for finding
the locally Pareto optimal frontier of the problem. Due to
the discrete nature of the flowshop scheduling problem,
Lian et al. [14] addressed permutation flowshop scheduling

@ Springer

with a minimized makespan using a novel PSO. All these
approaches have demonstrated the advantages of the PSO
method: simple structure, immediate applicability to prac-
tical problems, ease of implementation, quick solution, and
robustness.

The aim of this paper is to explore the development of
PSO for elaborate multi-objective flowshop scheduling
problems. The original PSO was used to solve continuous
optimization problems. Due to the discrete solution spaces
of scheduling optimization problems, we modified the
particle position representation, particle movement, and
particle velocity in this study.

The remainder of this paper is organized as follows.
Section 2 contains a formulation of the flowshop schedul-
ing problem with two objectives. Section 3 describes the
algorithm of the proposed PSO approach. Section 4 con-
tains the simulated results of benchmark problems. Sec-
tion 5 provides some conclusions and future directions.

2 Problem formulation

The problem of scheduling in flowshops has been the
subject of much investigation. The primary elements of
flowshop scheduling include a set of m machines and a
collection of 7 jobs to be scheduled on the set of machines.
Each job follows the same process of machines and passes
through each machine only once. Each job can be
processed on one and only one machine at a time, whereas
each machine can process only one job at a time. The
processing time of each job on each machine is fixed and
known in advance. We formulate the multi-objective flow-
shop scheduling problem using the following notation:

* n is the total number of jobs to be scheduled,

* m is the total number of machines in the process,

* (i, J) is the processing time for job i on machine j (i=1,
2,...n) and (j=1,2,...m), and

e {m, m, ..., m,} is the permutation of jobs.

The objectives considered in this paper can be calculated
as follows:

« Completion time (makespan) C(r,/):

C(my, 1) =t(my, 1)

C(riy 1) = C(mioy, 1) + t(7,1)i = 2,...,n

Clm,j)=C(m,j—1)+trj)j=2,...,m

C(n,j) = max{C(7;-1,j), C(mi,j — 1)} + 1(7:,))
i=2,....,mj=2,....m

« Makespan, fcmx = C(x,, m),

n
e Mean flow time, fyrr = [Z C(ni,m)] /n,
i=1

Int J Adv Manuf Technol

* Machine idle time, and |,
* Surr = {C(my,j = 1) + 3 {max{C(m;,j — 1) = C(m;—1,
7), 03} =2..m} =

3 Basic PSO concept

PSO is an evolutionary technique (Kennedy et al. [10]) for
solving unconstrained continuous optimization problems.
The PSO concept is based on observations of the social
behavior of animals. The population consisting of individ-
uals (particles) is assigned a randomized initial velocity
according each individual’s own movement experience and
that of the rest of the population. The relationship between
the swarm and the particles in PSO is similar to the
relationship between the population and the chromosomes
in the GA.

The PSO problem solution space is formulated as a
search space. Each position of the particles in the search
space is a correlated solution of the problem. Particles
cooperate to determine the best position (solution) in the
search space (solution space).

Suppose that the search space is D-dimensional and there
are m particles in the swarm. Each particle is located at
position X;={x;;, X3, ..., x;p} With velocity Vi={v;;, vi», ...,
vip}, where i=1, 2, ..., m. In the PSO algorithm, each particle
moves toward its own best position (pbest) denoted as
Pbest={pbest;;, pbest,,,..., pbest;,}. The best position of the
whole swarm (gbest) denoted as Gbest={gbest;, gbest,, ...,
gbest,} with each iteration. Each particle changes its position
according to its velocity, which is randomly generated toward
the pbest and gbest positions. For each particle » and
dimension s, the new velocity v, and position x,, of particles
can be calculated by the following equations:

¢ —1 t—1 t—1
Vie =W XV +cy X rand; X (pbeslm — X,) +c
X rand, X (gbestéil —xf.;l) (1)
pr——— + N (2)
rs rs rs

where ¢ is the iteration number. The inertial weight w is
used to control exploration and exploitation. A large value
of w keeps particles at high velocity and prevents them
from becoming trapped in local optima. A small value of
w maintains particles at low velocity and encourages them
to exploit the same search area. The constants ¢, and ¢, are
acceleration coefficients that determine whether particles
prefer to move closer to the pbest or gbest positions. The
rand; and rand, are independent random numbers uni-
formly distributed between 0 and 1. The termination

criterion of the PSO algorithm includes the maximum
number of generations, the designated value of pbest, and
no further improvement in pbest. The standard PSO process
outline is as follows.

Step 1: initialize a population of particles with random
positions and velocities on D dimensions in the
search space.

Step 2: update the velocity of each particle according to
Eq. (1).

Step 3: update the position of each particle according to
Eq. (2).

Step 4: map the position of each particle into the solution

space and evaluate its fitness value according to
the desired optimization fitness function. Simulta-
neously update the pbest and gbest positions if
necessary.

loop to Step 2 until an exit criterion is met, usually
a sufficient goodness of fitness or a maximum
number of iterations.

Step 5:

The original PSO was designed for a continuous solution
space. We modified the PSO position representation,
particle velocity, and particle movement as described in
the next section to make PSO suitable for combinational
optimization problems.

4 Formation of the proposed PSO

There are two different representations of particle position
associated with a schedule. Zhang [31] demonstrated that
permutation-based position representation outperforms
priority-based representation. While we have chosen to
implement permutation-based position representation, we
must also adjust the particle velocity and particle movement
as described in Sections 4.2 and 4.3. We have also included
the maintenance of Pareto optima and local search
procedures to achieve better performance.

4.1 Position representation

In this study, we randomly generated a group of particles
(solutions) represented by a permutation sequence that is an
ordered list of operations. The following example is a
permutation sequence for a six-job permutation flowshop
scheduling problem, where j, is the operation of job .

Index : 1 2 3 4 5 6
Permutation: jy j3 1 Jjo Jj2 Js

An operation earlier in the list has a higher priority of
being placed into the schedule. We used a list with a length

@ Springer

Int J Adv Manuf Technol

of n for an n-job problem in our algorithm to represent the
position of particle £, i.e.,

Xt = [xll‘x’;xﬂ,

xf is the priority of j; in particle k.

Then, we convert the permutation list to a priority list.
Thex%is a value randomly initialized to some value between
(»-0.5) and (p + 0.5). This means x « p +rand — 0.5,
where p is the location (index) of j; in the permutation list,
and rand is a random number between 0 and 1. Conse-
quently, the operation with smaller x*has a higher priority
for scheduling. The permutation list mentioned above can
be converted to

X*=12.7 52 1.8 0.6 6.3 3.9

4.2 Particle velocity

The original PSO velocity concept is that each particle
moves according to the velocity determined by the distance
between the previous position of the particle and the gbest
(pbest) solution. The two major purposes of the particle
velocity are to move the particle toward the gbest and pbest
solutions, and to maintain the inertia to prevent particles
from becoming trapped in local optima.

In the proposed PSO, we concentrated on preventing
particles from becoming trapped in local optima rather than
moving them toward the gbest (pbest) solution. If the
priority value increases or decreases with the present
velocity in this iteration, we maintain the priority value
increasing or decreasing at the beginning of the next
iteration with probability w, which is the PSO inertial
weight. The larger the value of w is, the greater the number
of iterations over which the priority value keeps increasing
or decreasing, and the greater the difficulty the particle has
returning to the current position. For an n-job problem, the
velocity of particle £ can be represented as

k= A E Ve {—1,0,1}
where vf‘ is the velocity of j; of particle k.

The initial particle velocities are generated randomly.
Instead of considering the distance from x* to pbestf.‘(gbestl-),
our PSO considers whether the value of x¥ is larger or
smaller than pbestf(gbest;) If x¥ has decreased in the present
iteration, this means that pbestf.C (gbest;) is smaller than x¥,
and x¥ is set moving toward pbestf(gbestl-) by letting
vk« —1. Therefore, in the next iteration, x* is kept
decreasing by one (i.e., xf + x¥ — 1) with probability w.
Conversely, if x* has increased in this iteration, this means
that pbest' (gbest;) is larger than x¥, and x is set moving

toward pbest' (gbest;) by letting v < 1. Therefore, in the

@ Springer

next iteration, x* is kept increasing by one (i.e. x¥ « x + 1)
with probability w.

The inertial weight w influences the velocity of particles
in PSO. We randomly update velocities at the beginning of
each iteration. For each particle k and operation j;, if V¥ is
not equal to 0, vf is set to 0 with probability (1—w). This
ensures that xf‘ stops increasing or decreasing continuously
in this iteration with probability (1-w).

4.3 Particle movement

The particle movement is based on the insertion operator
proposed by Sha et al. [25, 26]. The insertion operator is
introduced to the priority list to reduce computational
complexity. We illustrate the effect of the insertion operator
using the permutation list example described above. If we
wish to insert j, into the third location of the permutation
list, we must move jg to the sixth location, move j; to the
fifth location, move j, to the fourth location, and then insert
J4 in the third location. The insertion operation comprising
these actions costs O(n/2) on average. However, the
insertion operator used in this study need only set xf
3 +rand — 0.5 when we want to insert js in the third
location of the permutation. This requires only one step for
each insertion. If the random number rand equals 0.1, for
example, after j, is inserted into the third location, then
X*becomes X* =[2.75.21.80.62.63.9)].

If we wish to insert j; into the pth location in the
permutation list, we could set x! < p +rand — 0.5. The
location of operation j; in the permutation sequence of the
kth pbest and gbest solutions are pbesti.C and gbest,,
respectively. As particle k£ moves, if vf‘ equals 0 for all j;,
then xf‘ is set to pbestf.c + rand — 0.5 with probability ¢; and
set to gbest; + rand — 0.5 with probability ¢,, where rand is
a random number between 0 and 1, ¢; and ¢, are constants
between 0 and 1, and ¢; 4+ ¢; < 1. We explain this concept
by assuming specific values for V¥, X* pbest’, gbest, ¢,
and c,.

VE=[-100100],
XF=127521.80.66.33.9],

pbest" = [51463 2],

gbest =[634512],¢c, =0.8,¢c, =0.1.

— For jj, since ¥ # 0 and xt — x + %, then 2 = 1.7.

— For j, since V4 =0, the generated random number
rand; =0.6. Since rand; < ¢, then the generated ran-
dom number rand,=0.3. Since pbests < x4, set V4 «
—1 and x « pbest} 4 rand; — 0.5, i.e., x5 = 0.8.

— For j;, since v’3‘ =0, the generated random number
rand;=0.93. Since rand; > ¢ + ¢, x’§ and 1/3‘ do not
need to be changed.

Int J Adv Manuf Technol

— For jy, since Vi = 1, then x% — xk +£, ie, Xk = 1.6.
— For js, since v’§ =0, the generated random number
rand;=0.85. Since ¢; < rand; < ¢ + ¢, the generat-
ed random number rand,=0.7. Since gbests §x’§,

set Vi« —1. Then x% < gbest; +rand, — 0.5, i.e.,
k=12
k=12

— For jg, since v’g =0, the generated random number
rand;=0.95. Since rand; > ¢; + ¢, £ and V£ do not
need to be changed.

Therefore, after particle £ moves, the V¥ and X* are

Vk=[-1 -1 0 1 -1 0
Xt=[1.6 08 1.8 1.7 12 3.9

In addition, we use a mutation operator in our PSO
algorithm. After moving a particle to a new position, we
randomly choose an operation and then mutate its priority
value x! in accordance with v¥. If x¥ < (n/2), we randomly
set x* to a value between (1/2) and n, and set V¥ «— 1. If
x¥ > (n/2), we randomly set x* to a value between 0 and
(n/2), and set vf‘ — —1.

4.4 Pareto optimal set maintenance

Real empirical scheduling decisions often involve not only
the consideration of more than one objective at a time, but
also must prevent the conflict of two or more objectives.
The solution set of the multi-objective optimization
problem with conflicting objective functions consistent
with the solutions so that no other solution is better than
all other objective functions is called Pareto optimal. A
multi-objective minimization problem with m decision
variables and n objectives is given below to describe the
concept of Pareto optimality.

Minimize F(x) = (fi(x),/£(x),...
where,x € R", F(x) € ®"

Jn(x))

A solution p is said to dominate solution ¢ if and only if

fi(p) < filq)
Sfi(p) < filg)

Non-dominated solutions are defined as solutions that
dominate the others but do not dominate themselves.
Solution p is said to be a Pareto optimal solution if there
exists no other solution ¢ in the feasible space that could
dominate p. The set including all Pareto optimal solutions is
referred to as the Pareto optimal or Pareto optimalPareto
optimal set. A graph plotted using collected Pareto optimal
solutions in feasible space is referred to as the Pareto front.

The external Pareto optimal set is used to produce a
limited size of non-dominated solutions (Knowles et al.,
[11]; Zitzler et al. [32]). The maximum size of the archive

Vk e {1,2,...,n}
e {1,2,....n)

set is specified in advance. This method is used to avoid
missing fragments of the non-dominated front during the
search process. The Pareto optimal front is formed as the
archive is updated iteratively. When the archive set is
sufficiently empty and a new non-dominated solution is
detected, the new solution enters the archive set. As the
new solution enters the archive set, any solution already
there that is dominated by this solution will be removed.
When the maximum archive size reaches its preset value,
the archive set must decide which solution should be
replaced. In this study, we propose a novel Pareto archive
set update process to preclude losing non-dominated
solutions when the Pareto archive set is full. When a new
non-dominated solution is discovered, the archive set is
updated when one of the following situations occurs: either
the number of solutions in the archive set is less than the
maximum value, or if the number of solutions in the
archive set is equal to or greater than the maximum value,
then the one solution in the archive set that is most
dissimilar to the new solution is replaced by the new
solution. We measure the dissimilarity by the Euclidean
distance. A longer distance implies a higher dissimilarity.
The non-dominated solution in the Pareto archive set with
the longest distance to the newly found solution is replaced.
For example, the distance (d;) between X' and X* is
calculated as

X'=1[27521.80.66.33.9]
X?=[1.60.81.81.71.23.9]

dy = \/(2.7 —1.6)°+(5.2 — 0.8)*4+(0.6 — 1.7)*+(6.3 — 1.2)°
=6.91

The Pareto archive set is updated at the end of each
iteration in the proposed PSO.

4.5 Diversification strategy

If all the particles have the same non-dominated solutions,
they will be trapped in the local optimal. To prevent this, a
diversification strategy is proposed to keep the non-
dominated solutions different. Once any new solution is
generated by the particles, the non-dominated solution set is
updated according to one of three situations.

1. If the solution of the particle is dominated by the gbest
solution, assign the particle solution to gbest.

2. If the solution of the particle equals any solution in the
non-dominated solution set, replace the non-dominated
solution with the particle solution.

3. If the solution of the particle is dominated by the worst
non-dominated solution and not equal to any non-
dominated solution, set the worst non-dominated
solution equal to the particle solution.

@ Springer

Int J Adv Manuf Technol

5 Computational results

The proposed PSO algorithm was verified by benchmark
problems obtained from the OR-Library that were contrib-
uted by Carlier [2], Heller [8], and Reeves [23]. The test
program was coded in Visual C++ and run 20 times on each
problem using an Intel Pentium 4 3.0-GHz processor with
1 GB of RAM running Windows XP. We used four swarm
sizes N (10, 20, 60, and 80) to test the algorithm during a
pilot experiment. A value of N=80 was best, so it was used
in all subsequent tests. The algorithm parameters were set
as follows: ¢; and ¢, were tested over the range 0.1-0.7 in
increments of 0.2, and the inertial weight w was reduced
from Wy to Wpin during the iterations. Parameter wy,,
was set to 0.5, 0.7, and 0.9 corresponding to wyy,;, values of
0.1, 0.3, and 0.5. Settings of ¢;=0.7, c,=0.1, Wy.=0.7,
and wp,;,=0.3 worked best.

The proposed PSO algorithm was compared with five
heuristic algorithms: CDS[1], NEH[17], RAJ[20], GAN-
RAJ[6] and Laha[13]. We also coded these methods in
Visual C++. The CDS heuristic [1] takes its name from its
three authors and is a heuristic generalization of Johnson’s
algorithm. The process generates a set of m—1 artificial
two-machine problems, each of which is then solved by
Johnson’s rule. In this study, we modified the original CDS
and compared the makespan, mean flow time, and machine
idle time of all m—1 generated problems. The non-
dominated solution was selected to compare with the
solutions obtained from our PSO algorithm. The other
comparison was based on solutions determined by the NEH
algorithm introduced by Nawaz et al. [17]. The NEH
investigates n(n+1)/2 permutations to find near-optimal
solutions. As we did for CDS, we modified the original
NEH and compared the three objectives of all n(n+1)/2

Table 1 Comparison of makespan(MS) for different heuristics

sequences. We compared the non-dominated solution from
these sequences with the solutions from our PSO.

The following two performance measures are used in
this study: average-relative percentage deviation (ARPD)
and maximum percentage deviation (MPD) where MS
stands for makespan, TFT represents total flow time, MIT
stands for machine idle time, H is the heuristic.

ARPDy5 = % [1_01 (MSHI’;E;tf/Ie;fMSi> (3)
MPDys = MAX,_;_10 (—MS nge_stfxless:MSi> x 100 (4)
e =g > (Tm) @
MPDrrr = MAXi—1..10 (TFTIgeS_tf;;tTFTi> x 100 (6)
e =0 S (R 0)
MPDwyir = MAX—; .10 (MITlgie;th]?[IG;tMIT[) x 100 (8)

We tested our PSO on nine different problem sizes (n=
20, 50, 100 and m=5, 10, 20) from Taillard’s [28]
benchmarks. Table 1 compares the six methods using the

Problem size NEH [17] CDS [1] RAJ [20] GAN-RAIJ [6] Laha [13] PSO
n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD
20 5 1.84 0.25 0.76 0.15 0.44 0.12 0.63 0.14 1.55 0.2 0.00 0.00
10 1.78 0.23 0.71 0.12 0.85 0.17 0.83 0.14 1.50 0.20 0.00 0.00
20 1.27 0.17 0.4 0.06 0.88 0.14 0.82 0.12 1.06 0.15 0.00 0.00
50 5 1.24 0.17 0.83 0.14 0.26 0.05 0.37 0.08 1.29 0.22 0.02 0.02
10 1.28 0.19 0.59 0.08 0.48 0.09 0.53 0.10 1.29 0.18 0.01 0.01
20 1.08 0.17 0.07 0.02 0.35 0.07 0.39 0.07 1.02 0.16 0.06 0.03
100 5 1.04 0.19 0.46 0.12 0.36 0.07 0.23 0.07 1.05 0.16 0.07 0.07
10 0.28 0.06 0.47 0.07 0.29 0.06 0.24 0.04 0.89 0.13 0.01 0.01
20 0.65 0.11 0.16 0.04 0.21 0.05 0.18 0.04 0.72 0.10 0.01 0.01

NEH Nawaz et al. [17], CDS Campbell et al. [1], R4J Rajendran C [20], GAN-RAJ Gangadharan and Rajendran [6], Laha Laha and Chakraborty

[12, 13], PSO proposed PSO)

@ Springer

Int J Adv Manuf Technol

Table 2 Comparison of total flow time (TFT) for different heuristics

Problem size NEH [17] CDS [1] RAJ [20] GAN-RAIJ [6] Laha [13] PSO

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD

20 5 0.65 0.17 1.71 0.27 170 031 188 0.34 443 0.61 128 020
10 0.70 0.10 143 0.8 129 019 147 023 343 0.51 095 0.2
20 0.59 0.14 123 018 127 021 1.31 0.24 2.29 0.30 082 0.12

50 5 0.11 0.07 248 056 256 051 258 053 5.86 0.94 248 044
10 7.87 7.53 1133 9.62 10.91 9.24 1127 9.50 1449 1087 1078 9.19
20 0.39 0.09 155 020 158 0.20 1.60 0.19 3.18 0.40 144 017

100 5 0.27 0.27 224 224 359 359 3.00 3.0 5.56 5.56 260 2.60
10 0.87 0.87 1.86 1.86 1.91 1.91 1.80 1.80 4.02 4.02 1.93 1.93
20 1.39 1.39 1.65 1.65 1.73 1.73 1.65 1.65 2.83 2.83 1.59 1.59

(NEH Nawaz et al. [17], CDS Campbell et al. [1], RAJ Rajendran C [20], GAN-RAJ Gangadharan and Rajendran [6], Laha Laha and Chakraborty

[12, 13], PSO proposed PSO)

Table 3 Comparison of machine idle time (MIT) for different heuristics

Problem size ~ NEH [17] CDS [1] RAJ [20] GAN-RAIJ [6] Laha [13] PSO

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD

20 5 4.54 294 4356 2033 3.20 1.03 5.04 138 10.79 470 150 0.43
10 3.87 0.83 15.03 1.94 8.07 1.48 7.93 1.42 9.92 1.76 0.0 0.00
20 1137 1.55 19.19 240 14.88 201 1446 185 1529 210 0.00 0.00

50 5 6777 2695 208.65 10895 17.11 1176 17.08 1176 5270 2348 2095 2.82
10 1.92 0.56 10.59 1.74 474 0.68 491 0.70 6.92 124 026 0.18
20 2.26 0.36 8.02 0.97 575 0.83 5.80 0.87 7.47 096 0.00 0.00

100 5 18.18 494 4024 7.65 4.41 1.40 2.00 076 1547 334 351 1.69
10 1.96 0.43 9.54 1.38 1.92 0.38 1.65 0.41 5.47 098 0.5 0.09
20 1.03 0.26 4.26 0.52 2.79 0.40 2.64 0.35 3.77 045 0.00 0.00

(NEH Nawaz et al. [17], CDS Campbell et al. [1], RAJ Rajendran C [20], GAN-RAJ Gangadharan and Rajendran [6], Laha Laha and Chakraborty

[12, 13], PSO proposed PSO)

Table 4 Summation of MS, TFT and MIT for different heuristics

Problem size ~ NEH [17] CDS [1] RAJ [20] GAN-RAIJ [6] Laha [13] PSO

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD

20 5 7.04 335 4603 2075 5.34 1.46 7.56 186 1677 5.52 278 0.63
10 6.36 1.16 17.18 225 1021 1.83 1023 1.79 1485 2.46 095 0.2
20 13.23 1.86 2086 264 17.03 236 16.60 222 18.63 2.54 082 0.12

50 5 69.12 27.19 21196 109.65 1993 1233 2003 1237 59.84 24.64 545 328
10 11.08 828 2251 1144 1613 1000 1671 1030 2270 1229 11.04 9.38
20 372 0.62 9.64 1.19 7.68 1.10 7.79 113 11.68 1.52 150 020

100 5 19.49 5.41 42.93 10.01 8.37 5.06 5.23 382 22.08 9.06 6.18 435
10 3.11 1.36 11.87 3.32 4.12 2.35 3.69 225 1038 5.13 208 2.02
20 3.08 1.77 6.07 221 4.73 2.19 447 2.04 7.33 3.38 1.60 1.60

(NEH Nawaz et al. [17], CDS Campbell et al. [1], RAJ Rajendran C [20], GAN-RAJ Gangadharan and Rajendran [6], Laha Laha and Chakraborty

[12, 13], PSO proposed PSO)

@ Springer

Int J Adv Manuf Technol

Table 5 Average CPU time (in seconds)

n m NEH CDS RAJ GANRAJ Laha [12] PSO

20 5 0.0016 0.0031 0.0047 0.0014 0.0012 1.6641
10 0.0015 0.0093 0.0094 0.0015 0.0015 2.0547
20 0.0047 0.0109 0.0094 0.0031 0.0047 2.8078

50 5 0.0140 0.0016 0.0156 0.0047 0.0047 4.4906
10 0.0234 0.0032 0.0297 0.0047 0.0063 5.3047
20 0.0500 0.0078 0.0539 0.0078 0.0062 7.1593

100 5 0.0860 0.0016 0.0844 0.0047 0.0047 11.9094
10 0.1750 0.0046 0.1750 0.0047 0.0078 13.4906
20 0.3750 0.0078 0.3656 0.0079 0.0141 17.0079

(NEH Nawaz et al. [17], CDS Campbell et al. [1], RAJ Rajendran C [20], GAN-RAJ Gangadharan and Rajendran [6], Laha Laha and Chakraborty
[12, 13], PSO proposed PSO)

Table 6 Comparison of total flow time (TFT) for different heuristics in ARPD

n m NEH CDS RAJ GANRAJ Laha LR SA H-1 H-2 PSO
20 5 0.65 1.71 1.70 1.88 443 0.24 1.17 0.16 0.20 1.28
10 0.70 1.43 1.29 1.47 3.43 0.09 0.72 0.01 0.01 0.95
20 0.59 1.23 1.27 1.31 2.29 0.15 0.66 0.12 0.07 0.82
50 5 0.11 2.48 2.56 2.58 5.86 0.56 1.78 0.55 0.54 2.48
10 7.87 11.33 10.91 11.27 14.49 8.06 1.24 7.97 7.89 10.78
20 0.39 1.55 1.58 1.60 3.18 0.15 1.10 0.08 0.09 1.44
100 5 0.27 2.24 3.59 3.00 5.56 0.43 1.59 0.43 0.43 2.60
10 0.87 1.86 1.91 1.80 4.02 0.04 1.24 0.03 0.03 1.93
20 1.39 1.65 1.73 1.65 2.83 0.08 1.13 0.01 0.02 1.59

NEH Nawaz et al. [17], CDS Campbell et al [1], RAJ Rajendran C [20], GAN-RAJ Gangadharan R, Rajendran C [6], Laha Laha and Chakraborty
[12, 13], LR Liu J, Reeves CR [16], SA Chakravarthy K, Rajendran C [3], H-1 and H-2 Laha D, Chakraborty UK [12, 13], PSO proposed PSO)

Table 7 Comparison of total flow time (TFT) for different heuristics in MPD

n m NEH CDS RAJ GANRAJ Laha LR SA H-1 H-2 PSO
20 5 0.17 0.27 0.31 0.34 0.61 0.12 0.21 0.11 0.12 0.20
10 0.10 0.18 0.19 0.23 0.51 0.01 0.12 0.00 0.01 0.12
20 0.14 0.18 0.21 0.24 0.30 0.05 0.12 0.05 0.05 0.12
50 5 0.07 0.56 0.51 0.53 0.94 0.25 0.38 0.25 0.25 0.44
10 7.53 9.62 9.24 9.50 10.87 7.92 0.19 7.87 7.82 9.19
20 0.09 0.20 0.20 0.19 0.40 0.04 0.16 0.04 0.04 0.17
100 5 0.27 2.24 3.59 3.00 5.56 0.43 1.59 0.43 0.43 2.60
10 0.87 1.86 1.91 1.80 4.02 0.04 1.24 0.03 0.03 1.93
20 1.39 1.65 1.73 1.65 2.83 0.08 1.13 0.01 0.02 1.59

NEH Nawaz et al. [17], CDS Campbell et al [1], RAJ Rajendran C [20], GAN-RAJ Gangadharan R, Rajendran C [6], Laha Laha and Chakraborty
[12, 13], LR Liu J, Reeves CR [16], SA Chakravarthy K, Rajendran C [3], H-1 and H-2 Laha D, Chakraborty UK [12, 13], PSO proposed PSO)

@ Springer

Int J Adv Manuf Technol

ARPD and MPD. Table 1 show that the proposed PSO
outperforms for almost all problem instances in the make-
span object. The comparison of TFT object is revealed in
Table 2. It shows the ARPD and MPD of six heuristics and
the Laha’s algorithm performs better. We have given the
comparison of MIT in Table 3 that indicates the proposed
PSO can get better solution. At last, we aggregate the
results of three objects in order to show the performance of
the proposed PSO to solve the multi-objectives problems.
We observed that the PSO performed better than other five
heuristics. Table 4 shows the superior performance of the
proposed PSO in terms of the three simultaneous objec-
tives. The computation cost is demonstrated on Table 5.
The proposed PSO spends more CPU time than other
construct heuristic because of the proposed PSO is an
evolutionary algorithm.

In addition, we compare TFT of benchmarks by more
algorithms—Liu and Reeves[16] (LR), Chakravarthy-
Rajendran [3], simulated annealing-bases approach (SA)
and Laha and Chakraborty [12] (H-1 and H-2). The results
are shown in Table 6 for ARPD and Table 7 for MPD. We
can observe that the H-1 and H-2 perform better than other
algorithms while only one object TFT is considered.

6 Conclusion

Many flowshop scheduling problem studies have been
conducted in the past. However, the objective of most of
these has been the minimization of the maximum comple-
tion time (i.e., the makespan). In the real world, there exist
other objectives, such as minimization of machine idle time
that might help improve efficiency and reduce production
costs. PSO, which was inspired by the behavior of birds
and fish, has certain advantages, including simple structure,
easy implementation, immediate accessibility, short search
time, and robustness. However, there has been limited study
of PSO to address the multiple objectives found in the
flowshop scheduling problem. We have therefore presented
a PSO method for solving a flowshop scheduling problem
with multiple objectives, including minimization of make-
span, mean flow time, and machine idle time.

PSO was originally proposed for continuous optimiza-
tion problems. We modified the representation of particle
position, particle movement, and particle velocity to make
PSO suitable for flowshop scheduling, which is a combi-
national problem. In addition, we used a mutation operator
in our PSO algorithm. We also incorporated the concept of
Pareto optimality to measure the performance of multiple
objectives rather than using a weighted fitness function.
Another necessary adjustment to the original PSO, required
to maintain the Pareto optimal solution, was the external
Pareto optimal set used to produce a limited size of non-

dominated solutions. We also used a diversification strategy
in our PSO algorithm. The results demonstrated that the
proposed PSO could produce more optimal solutions than
other heuristics (CDS, NEH, RAJ, GAN-RAJ, and Laha).
The ARPD and MPD of each problem scenario in our PSO
algorithm were less than those methods. The results of our
performance measurement also revealed that the proposed
PSO algorithm outperformed the heuristics in minimizing
the makespan, mean flow time, and total machine idle time.

In future research, we will attempt to apply our PSO to
other shop scheduling problems with multiple objectives.
Possible topics for further study include modification of the
particle position representation, particle movement, and
particle velocity. Issues related to Pareto optimality, such as
a solution maintenance strategy and performance measure-
ment, are also topics worthy of future study.

References

1. Campbell HG, Dudek RA, Smith ML (1970) A heuristic
algorithm for the n-job m-machine sequencing problem. Manage
Sci 16:B630-B637. doi:10.1287/mnsc.16.10.B630

2. Carlier J (1978) Ordonnancements a contraintes disjonctives.
RAIRO Rech Oper. Oper Res 12:333-351

3. Chakravarthy K, Rajendran C (1999) A heuristic for scheduling in
a flowshop with the bicriteria of makespan and maximum
tardiness minimization. Prod Plann Contr 10:707-714. doi:
10.1080/095372899232777

4. Eren T, Giiner E (2007) The tricriteria flowshop scheduling
problem. Int J Adv Manuf Technol 36:1210-1220. doi:10.1007/
s00170-007-0931-1

5. Gupta JND, Stafford JEF (2006) Flowshop scheduling research
after five decades. Eur J Oper Res 169:699-711. doi:10.1016/j.
€jor.2005.02.001

6. Gangadharan R, Rajendran C (1993) Heuristic algorithms for
scheduling in no-wait flow shop. Int J Prod Econ 32:285-290.
doi:10.1016/0925-5273(93) 90042-J

7. Hejazi SR, Saghafian S (2005) Flowshop- scheduling problems
with makespan criterion: a review. Int J Prod Res 43:2895-2929.
doi:10.1080/0020754050056417

8. Heller J (1960) Some numerical experiments for an MxJ flow
shop and its decision- theoretical aspects. Oper Res 8:178-184.
doi:10.1287/opre.8.2.178

9. Jarboui B, Ibrahim S, Siarry P, Rebai A (2008) A combinational
particle swarm optimisation for solving permutation flowshop prob-
lems. Comput Ind Eng 54:526-538. doi:10.1016/.cie.2007.09.006

10. Kennedy J, Eberhart R (1995) Particle swarm optimization. Proc
IEEE Int Conf Neural Netw 1995:1942-1948. doi:10.1109/
ICNN.1995.488968

11. Knowles JD, Corne DW (1999) The Pareto archived evolution
strategy: a new baseline algorithm for multi-objective optimiza-
tion. In: Congress on Evolutionary Computation, Washington,
DC, IEEE Service Center, 98—-105

12. Laha D, Chakraborty UK (2008) An efficient heuristic approach
to total flowtime minimization in permutation flowshop schedul-
ing. Int J Adv Manuf Technol 38:1018-1025. doi:10.1007/
s00170-007-1156-z

13. Laha D, Chakraborty UK (2009) A constructive heuristic for
minimizing makespan in no-wait flow shop scheduling. Int J Adv
Manuf Technol 41:97-109. doi:10.1007/s00170-008-1545-0

@ Springer

http://dx.doi.org/10.1287/mnsc.16.10.B630
http://dx.doi.org/10.1080/095372899232777
http://dx.doi.org/10.1007/s00170-007-0931-1
http://dx.doi.org/10.1007/s00170-007-0931-1
http://dx.doi.org/10.1016/j.ejor.2005.02.001
http://dx.doi.org/10.1016/j.ejor.2005.02.001
http://dx.doi.org/10.1016/0925-5273(93) 90042-J
http://dx.doi.org/10.1080/0020754050056417
http://dx.doi.org/10.1287/opre.8.2.178
http://dx.doi.org/10.1016/j.cie.2007.09.006
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1007/s00170-007-1156-z
http://dx.doi.org/10.1007/s00170-007-1156-z
http://dx.doi.org/10.1007/s00170-008-1545-0

Int J Adv Manuf Technol

14.

15.

16.

17.

18.

20.

21.

22.

Lian Z, Gu X, Jiao B (2008) A novel particle swarm optimization
algorithm for permutation flow-shop scheduling to minimize
makespan. Chaos Solitons Fractals 35:851-861. doi:10.1016/j.
chaos.2006.05.082

Liu B, Wang L, Jin YH (2007) An effective PSO-based memetic
algorithm for flow shop scheduling. IEEE Trans Syst Man Cybern
C 37:18-27. doi:10.1109/TSMCB.2006.883272

Liu J, Reeves CR (2001) Constructive and composite heuristic
solutions to the P//3Ci scheduling problem. Eur J Oper Res
132:439-452. doi:10.1016/S0377-2217(00) 00137-5

Nawaz M, Enscore JR, Ham I (1983) A heuristic algorithm for the
m-machine, n-job flow-shop sequencing problem. Omega 11:91—
95. doi:10.1016/0305-0483(83) 90088-9

Pasupathy T, Rajendran C, Suresh RK (2006) A multi-objective
genetic algorithm for scheduling in flow shops to minimize the
makespan and total flow time of jobs. Int J] Adv Manuf Technol
27:804-815. doi:10.1007/s00170-004-2249-6

. Ponnambalam SG, Jagannathan H, Kataria M (2004) A TSP-GA

multi-objective algorithm for flow-shop scheduling. Int J Adv
Manuf Technol 23:909-915. doi:10.1007/s00170-003-1731-x
Rajendran C (1994) A no-wait flow shop scheduling heuristic to
minimize makespan. J Oper Res Soc 45:472-478

Rajendran C, Ziegler H (2004) Ant-colony algorithms for
permutation flowshop scheduling to minimize makespan/total
flowtime of jobs. Eur J Oper Res 155:426-438. doi:10.1016/
S0377-2217(02) 00908-6

Rahimi-Vahed A, Mirghorbani S (2007) A multi-objective particle
swarm for a flow shop scheduling problem. J] Comb Optim 13:79—
102. doi:10.1007/s10878-006-9015-7

@ Springer

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Reeves CR (1995) A genetic algorithm for flowshop sequencing.
Comput Oper Res 22:5-13. doi:10.1016/0305-0548(93) E0014-K
Ruiz R, Maroto C (2004) A comprehensive review and evaluation
of permutation flowshop heuristics. Eur J Oper Res 165:479-494.
doi:10.1016/j.ejor.2004.04.017

Sha DY, Hsu CY (2006) A hybrid particle swarm optimization for
job shop scheduling problem. Comput Ind Eng 51:791-808.
doi:10.1016/j.¢ie.2006.09.002

Sha DY, Hsu CY (2008) A new particle swarm optimization for
the open shop scheduling problem. Comput Oper Res 35:3243—
3261. doi:10.1016/j.co0r.2007.02.019

Stiitzle T (1998) Applying iterated local search to the permutation
flow shop problem. Tech Rep, AIDA-98-04, FG Intellektik, TU
Darmstadt.

Taillard E (1993) Benchmarks for basic scheduling problems. Eur
I Oper Res 64:278-285. doi:10.1016/0377-2217(93) 90182-M
Tasgetiren MF, Liang YC, Sevkli M, Gencyilmaz G (2007) A particle
swarm optimization algorithm for makespan and total flowtime
minimization in the permutation flowshop sequencing problem. Eur J
Oper Res 177:1930-1947. doi:10.1016/j.¢jor.2005.12.024
Yagmahan B, Yenisey MM (2008) Ant colony optimization for
multi-objective flow shop scheduling problem. Comput Ind Eng
54:411-420. doi:10.1016/j.cie.2007.08.003

Zhang H, Li X, Li H, Huang F (2005) Particle swarm optimization-
based schemes for resource-constrained project scheduling. Auto
Const 14:393-404. doi:10.1016/j.autcon.2004.08.006

Zizter E, Laumanns M, Thiele L (2001) SPEA2: Improving the
strength Pareto evolutionary algorithm. Computer Engineering
and Networks Laboratory (TIK) — Report 103 Sept 2001.

http://dx.doi.org/10.1016/j.chaos.2006.05.082
http://dx.doi.org/10.1016/j.chaos.2006.05.082
http://dx.doi.org/10.1109/TSMCB.2006.883272
http://dx.doi.org/10.1016/S0377-2217(00) <?thyc=10?>00137-5<?thyc=5?>
http://dx.doi.org/10.1016/0305-0483(83) <?thyc=10?>90088-9<?thyc=5?>
http://dx.doi.org/10.1007/s00170-004-2249-6
http://dx.doi.org/10.1007/s00170-003-1731-x
http://dx.doi.org/10.1016/S0377-2217(02) <?thyc=10?>00908-6<?thyc=5?>
http://dx.doi.org/10.1016/S0377-2217(02) <?thyc=10?>00908-6<?thyc=5?>
http://dx.doi.org/10.1007/s10878-006-9015-7
http://dx.doi.org/10.1016/0305-0548(93) <?thyc=10?>E0014-K<?thyc=5?>
http://dx.doi.org/10.1016/j.ejor.2004.04.017
http://dx.doi.org/10.1016/j.cie.2006.09.002
http://dx.doi.org/10.1016/j.cor.2007.02.019
http://dx.doi.org/10.1016/0377-2217(93) <?thyc=10?>90182-M<?thyc=5?>
http://dx.doi.org/10.1016/j.ejor.2005.12.024
http://dx.doi.org/10.1016/j.cie.2007.08.003
http://dx.doi.org/10.1016/j.autcon.2004.08.006

A multi-objective PSO for job-shop scheduling problems

D.Y. Sh&andHsing-Hung Lift"

®Departmenbf Industrial Engineering and System Managementyr@tHua University,, Hsin Chu, Taiwan R.O.C.;
®Department of Industrial Engineering and Managemalational Chiao Tung University, Hsin Chu, TaiwRrO.C.

Abstract

Most previous research into the job-shop schedyirudplem has concentrated on finding a single ogdtim
solution (e.g., makespan), even though the actaguirement of most production systems requires
multi-objective optimization. The aim of this papeto construct a particle swarm optimization (B$8 an
elaborate multi-objective job-shop scheduling peoil The original PSO was used to solve continuous
optimization problems. Due to the discrete solupaces of scheduling optimization problems, thtbas
modified the particle position representation, iglgt movement, and particle velocity in this studye
modified PSO was used to solve various benchmand@ms. Test results demonstrated that the mod#&0

performed better in search quality and efficiert@rt traditional evolutionary heuristics.

Keywords: job-shop scheduling; particle swarm optimizationjltiple objectives

*Corresponding author. Email: hsinhung@gmail.com

I ntroduction

The job-shop scheduling problem (JSP) has beerresitim more than 50 years in both academic anasimil
environments. Jain et al. provided a concise oeenof JSPs over the last few decades and hightigthte
main techniques [10]. The JSP is the most difficclihss of combinational optimization. Garey et
al. demonstrated that JSPs are non-determinisiyopamial-time hard (NP-hard) [7]; hence we canniotl fan
exact solution in a reasonable computation time. Sihgle-objective JSP has attracted wide resestehtion.
Most studies of single-objective JSPs result ioheedule to minimize the time required to compldtphs, i.e.,

to minimize the makespag{a.y. Many approximate methods have been developedaxcome the limitations
of exact enumeration techniques. These approxiagteoaches include simulated annealing (SA) [BHut
search [18][19][24] and genetic algorithms (GA)[#1]12][27]. However, real-world production systems
require simultaneous achievement of multiple olbjectrequirements. This means that the academic
concentration of objectives in the JSP must beéenebed from single to multiple. Recent related d&earch
with multiple objectives is summarized as below.

Ponnambalam has offered a multi-objective GA taveenptimal machine-wise priority dispatching rules
for resolving job-shop problems with objective ftions that consider minimization of makespan, total
tardiness, and total machine idle time[20]. Ponraar’s multi-objective genetic algorithm (MOGA) has
been tested with various published benchmarksjsacapable of providing optimal or near-optimalumns.

A Pareto front provides a set of best solutionddtermine the tradeoffs between the various ohjaats good
parameter settings and appropriate representatansenhance the behavior of an evolution algorithm.
Esquivel et al. studied the influence of distinetrgmeter combinations as well as different chrommeso
representations [5]. Initial results showed that:

(i) larger numbers of generations favor the building Bfareto front because the search process does not

stagnate, even though it may be rather slow,

(i) multi-recombination helps to speed the search arfthd a larger set size when seeking the Pareto

optimal set, and

(i) operation-based representation is better thanifyrist and job-based representation selected for

contrast under recombination methods.

The Pareto archived simulated annealing (PASA) atkth meta-heuristic procedure based on the SA
algorithm, was developed by Suresh to find non-cated solution sets for the JSP with the objectofes
minimizing the makespan and the mean flow timeob&[25]. The superior performance of the PASA can b
attributed to the mechanism it uses to acceptdhdidate solution. Candido et al. addressed JSRswwmbers
of more realistic constraints, such as jobs witress subassembly levels, alternative processiagsalor parts
and alternative resources of operations, and tpgnement for multiple resources to process anaijar [3].
The robust procedure worked well in all problentanses and proved to be a promising tool for sglvirore
realistic JSPs. Lei first designed a crowding-measased multi-objective evolutionary algorithm (OEA)
that makes use of the crowding measure to adjesesternal population and assign different fitness
individuals [14]. Compared to the strength Paretadionary algorithm, CMOEA performs well in jolirap
scheduling with two objectives including minimizatiof makespan and total tardiness.

One of the latest evolutionary techniques for ust@mned continuous optimization is particle swarm
optimization (PSO) proposed by Kennedy et al. [PBO has been successfully used in different filosto
its ease of implementation and computational efficy. Even so, application of PSO to the combinatio
optimization problem is rare. Coello et al. prodd approach in which Pareto dominance is incatpdrinto
PSO to allow the heuristic to handle problems wéteral object functions [4]. The algorithm usegeondary
repository of particles to guide particle flighthdt approach was validated using several test iturectand
metrics drawn from the standard literature on evahary multi-objective optimization. The resultsosv that

the approach is highly competitive. Liang et akented a novel PSO-based algorithm for JSPs[164t Th

algorithm effectively exploits the capability ofstlibuted and parallel computing systems, with $atnon
results showing the possibility of high-quality siabns for typical benchmark problems. Lei presérad?SO
for the multi-objective JSP to minimize makespanl &otal job tardiness simultaneously [15]. Job-shop
scheduling can be converted into a continuous opdition problem by constructing the corresponding
relationship between a real vector and a chromosolt@ned using the priority rule-based representat
method. The global best position selection is comthiwith crowding-measure-based archive maintenemce
design a Pareto archive PSO. That algorithm isldepaf producing a number of high-quality Paretdiropl
scheduling plans.

Hybrid algorithms that combine different approacteeuild on their strengths have led to anothanbh
of research. Wang et al. combined GA with SA inyarid framework, in which the GA was introduced to
present a parallel search architecture, and SAused to increase the probability of escape froralloptima at
high temperatures [27]. Computer simulation ressitswed that the hybrid strategy was very effectind
robust, and could find optima for almost all benehkninstances. Xia et al. developed an easily impleed
approach for the multi-objective flexible JSP basedhe combination of PSO and SA [28]. They dertratex
that their proposed algorithm was a viable andcéiffe approach to the multi-objective flexible J8Bpecially
for large-scale problems. Ripon extended the ideghe jumping genes genetic algorithm, a hybridreggh
capable of searching for near-optimal and non-datesh solutions with better convergence by simutiasky
optimizing criteria [21].

Previous literature indicates that there has big&mdtudy of the JSP with multiple objectivesthis study,

we use a new evolutionary PSO technique to sold8P with multiple objectives.

Job-shop scheduling problem

A typical JSP can be formulated as follows. Theengobs to be processed througimachines. Each job must
pass through each machine once and only once. jghckhould be processed through the machines in a
particular order, and there are no precedence reamist among the different job operations. Eachimmaccan
perform only one job at a time, and it cannot heriipted. In addition, the operation time is fixaed known in
advance. The objective of the JSP is to find adelego minimize the time required to completgaliks, that is,
to minimize the makespa@max In this study, we attempt to attain the threeeotiyes (i.e., minimizing
makespan, machine idle time, and total tardinesg)l&aneously. We formulate the multi-objective J&hg
the following notation:

n is the total number of jobs to be scheduled

m s the total number of machines in the process

t(i, j) is the processing time for jolon maching (i=1,2,..n), (=1,2,..m)

L; is the lateness of jab

{m1, 7o, ..., Wn} is the permutation of jobs
The objectives considered in this paper are fortadlas follows:

Completion time (makespai@(7, j)

C(r.0) =t(75 1) (1)

C(7) =C(m_1) +t(75) i=2...,n (2)
C(m,j)=C(m,j - +t(,j) j=2,...m 3)

C(7, 1) = max{C(75 -1, }),C(rm, j 1)} +t(7g,j) i =2...,n; j=2,...m 4)
Makespan,f.,... = C(z,,m) (5)

n
Total tardiness fiota)tardiness= > mMax[o, L] (6)

. . . n . - .
Total idle time, fyoaiigietime ={C(7m, j 1) + 2{max{C(75, -1 -C(7—1,])0}} |] =2..m} (7)

i=2

PSO background

PSO is based on observations of the social behakanimals, such as birds in flocks or fish in@als, as well
as on swarm theory. The population consisting dividuals or particles is initialized randomly. Eggarticle
is assigned with a randomized velocity accordingg@wn movement experience and that of the reite
population. The relationship between the swarmparticles in PSO is similar to the relationshipvesn the
population and chromosomes in a GA.

In PSO, the problem solution space is formulated asarch space. Each particle position in theclsear
space is a correlated solution to the problemidbastcooperate to determine the best positionu{®al) in the
search space (solution space).

Suppose that the search spade-gimensional and there gvgarticles in the swarm. Partidlés located
at positionX'={x', %', ..., %'} and has velocit\//'={vy', \, ..., ¥}, wherei=1, 2, ...p. Based on the PSO
algorithm, each particle move towards its own hsition pbes}, denoted a®best={pbest', pbest,...,
pbest’}, and the best position of the whole swaghés} is denoted aEbest{gbest, gbes}, ..., gbes} with
each iteration. Each particle changes its posamrording to its velocity, which is randomly genedatoward
the pbestand gbestpositions. For each particleand dimensiors, the new velocitys and positionxs of

particles can be calculated by the following ecprai
VL (1) = wx Vg (7 1) + ¢; xrand; X[pbest (7 —1) - x{ (7 -1)] + ¢, xrand, x[gbesk (r -1) - x5 (7 -1)] (8)

xs (1) = x5 (1 -1) +vs (7 =) 9)

In Egs. (8) and (9) is the iteration number. The inertial weighis used to control exploration and exploitation.
A largew value keeps the particles moving at high veloaitg prevents them from becoming trapped in local
optima. A smallv value ensures a low particle velocity and encoesgmrticles to exploit the same search area.
The constants; andc, are acceleration coefficients to determine wheplagticles prefer to move closer to the
pbestor gbestpositions. Therand, andrand, are two independent random numbers uniformly itsted
between 0 and 1. The termination criterion of tB®Ralgorithm includes a maximum number of genenatia
designated value gdbest and lack of further improvement pbest The standard PSO process is outlined as

follows:

Step 1: Initialize a population of particles windom positions and velocities iDadimensional search space.

Step 2: Update the velocity of each particle ugig(8).

Step 3: Update the position of each particle ugiqg(9).

Step 4: Map the position of each particle intogbkition space and evaluate its fithess value daugto the
desired optimization fitness function. Simultandpugpdate thgpbestandgbestpositions if necessary.

Step 5: Loop to Step 2 until the termination crdeiis met, usually after a sufficient good fithess maximum

number of iterations.

The original PSO was designed for a continuoustisoluspace. We must modify the PSO position
representation, particle velocity, and particle sroent so they work better with combinational optiion

problems. These changes are described in nexbsecti

Proposed method

There are four types of feasible schedules in J8Blsiding inadmissible, semi-active, active, amh+uelay.
The optimal schedule is guaranteed to be an astihedule. We can decode a particle position intacane
schedule employing Giffler and Thompson’s [8] hstici There are two different representations ofigla
position associated with a schedule. The resul#@haing [29] demonstrated that permutation-basedipos
representation outperforms priority-based represgiemt. While choosing to implement permutation-loase
position presentation, we must also adjust theighartelocity and particle movement. In additiore aiso

propose the maintenance of Pareto optima and astfication procedure to achieve better performance

Position representation

In this study, we randomly generated a group diglas (solutions) represented by a permutationisece that
is an ordered list of operations. Forrajob m-machine problem, the position of partiklean be represented by

anmxn matrix, i.e.,

Kk k
X1 X2 - X
k| XK XK K
X% =| 72l 72z T2n - wherex; denotes the priority of operatiag) , which means the operation of jpb
Kk k
Xm Xm2 - Xmn

that must be processed on machine

The Giffler and Thompson (G&T) algorithm is briefigscribed below.

Notation:

(i,)) is the operation of jopthat must be processed on machine

Sis the partial schedule that contains scheduledadions

Q is the set of operations that can be scheduled

i IS the earliest time at which operati@g belonging ta2 can be started.
PG, is the processing time of operati@).

fq; Is the earliest time at which operati@f) belonging ta can be finishedy = i) + P -
G&T algorithm:

Step 1: InitializeS=¢; Q to contain all operations without predecessors.
Step 2: Determing * = ming jyne { g j)} and the machine on whichf can be realized.
Step 3:
(1) Identify the operation s&t’, j')0Q such that(i’, j') requires machine, and S, i) < £

(2) Choosei(j) from the operation set identified in Step 3(1)hthe largest priority.
(3)Add (, j)toS
(4) Assigns;j) as the starting time of, {).
Step 4: If a complete schedule has been genewsttgal, Otherwise, deletg {) from Q, include its immediate

successor if, and then go to Step 2.

Table 1 shows the mechanism of the G&T algorithrmgisa 2x2 example. The position of partidte

w21
is XX = :
12

Initialization
Step 1:S=¢; Q={(1, 1), (2, 2)}.
Iteration 1
Step 2:51.170, S2.270, 175, f274; f =min{fr 1)f2 2)=4, m =2.
Step 3: Identify the operation set {(2, 2)}; choageeration (2, 2) that has the largest priorityd add it
into schedule&.
Step 4: Updat®={(1,1), (1,2)}; go to Step 2.
Iteration 2
Step 2:51.170, Su.274, fu.175, fa2=7; =min{f1 1)f1 2}=5, m =1.
Step 3: Identify the operation set {(1, 1), (1,;2hoose operation (1, 2) that has the largestifyi@and
add it into schedul&
Step 4: Updat€@={(1, 1)}; go to Step 2.
Iteration 3
Step 2:51.177, fu1712;f =min{f 1}=12, m =1.
Step 3: Identify the operation set {(1, 1)}; choageeration (1, 1) that has the largest priorityd add it
into schedule&.
Step 4: Updat@={(2, 1)}; go to Step 2.
Iteration 4
Step 2:52.1712,f2.1716; f =min{f1}=16, m =2.
Step 3: Identify the operation set {(2, 1)}; choageeration (2, 1) that has the largest priorityd add it
into schedule&.

Step 4: A complete schedule has been generatathgohe process.

The proposed PSO differs from the original PSQeihformation stored in thebestandgbestsolutions.
While the original PSO keeps the best positionsidoso far, the proposed PSO maintains the beststzhe

generated by the G&T algorithm. In the previousnepi, the schedul® rather than the positiok<is retained

. . 121 . . e .
in thepbestandgbestsolutions, wher&' is L J . The movement of particles is modified in accomawith

the representation of particle position based eririkertion operator.

Particle velocity

The original PSO velocity concept assumes that parditle moves according to the velocity determdibg the
distance between the previous position of the @daréind thegbest(pbesj solution. The two major purposes of
the particle velocity are to keep the particle mgvioward thgbestandpbestsolutions, and to maintain inertia
to prevent particles from becoming trapped in lagima.

In the proposed PSO, we concentrate on prevendérigies from becoming trapped in local optima eath
than moving them toward tlgbest(pbesj solution. If the priority value is increased @cdeased by the present
velocity in the current iteration, we keep the ptiovalue increasing or decreasing at the begimoiithe next
iteration with probabilityw, which is the inertial weight in PSO. The lardes value ofv, the more the iteration
priority value keeps increasing or decreasing, dx@dmore the difficult it is for the particle totuen to its

current position. For anrjob problem, the velocity of particlecan be represented as

VK =[vivE Ve, v O{-101}, wherev® is thevelocityof j, of particlek.
The initial velocity of particles is generated randy. Instead of considering the distance fraiFnto
k

pbesf(gbes;), our PSO considers whether the valuexi'ﬁ)ﬁs larger or smaller thapbesf(gbesg). If x;

decreases in the present iteration, this mearptimf(gbes;) is smaller thar»qk and xik is set moving toward

pbesf (gbest) by letting v€ « —1. Therefore, in the next iteration® is kept decreasing by one (i.e.,
xK < xX —1) with probabilityw. Conversely, ifx¢ increases in this iteration, thesbest (gbest) is larger than
x<, and x¥ is set moving towargpbesf (gbest) by settingvX « 1. Therefore, in the next iteratior® is kept
increasing by one (i.exk « xX + 1) with probabilityw.

The inertial weightv influences the velocity of the particles in thed?$Ve randomly update velocities at
the beginning of the iteration. For each particknd operatioy , if v¢ does not equal to @ikwill be setto 0

with probability (1w). This forces><ik to stop increasing or decreasing continuouslyhis tteration with

probability (1-w) while >qk keeps increasing or decreasing.

Particle movement

The particle movement is based on the swap opepadposed by Sha et al. [22][23].

Notation:

xX is the schedule list at machinef particlek.

pbesf is the schedule list at machinef thekth pbestsolution.
gbest is the schedule list at machinef thegbestsolution.

¢: andc; are constants between 0 and 1 suchdpat, <1.

The swap procedure occurs as shown below.

Step 1: Randomly choose a positipitom xX .

Step 2: Mark the job on positi@grof x¢ by A;.

Step 3: If the random numbiemd < c; then seek the position 8 in pbesf; otherwise, seek the position
of A1 in gbest. Denote the position that has been foungiresf or gbest by &7, and the job in
position” of xX by Ax.

Step 4: IfA, has been denoteoli'g1 =0, and vi'jz =0, then swap\;andAzin xX, vi'jl - 1.

Step 5: If all the positions ofik have been considered, then stop. If not, and<fn, then{ — {+1;

otherwise{ — 1. Go to Step 2.

For example, consider the 6-job problem whefe[4 2 1 3 6 5], pbesf=[1 5 4 2 6 3],gbest=[3 2 6 4 5 1],
vK=[0 01 0 0 0]¢,=0.6, anct,=0.2.
Step 1: The position ofX is randomly choser=3.
Step 2: The job in the 3rd position rq‘f isjob 1,i.e.A1=1.
Step 3: Arandom numbeand is generated; assumend=0.7. Sinceand > ¢;, we compare each position
of gbest with A;and the matched positiaf=6. The job in the 6th position oqk is job 5, i.e.,
A2=5.
Step 4: Since/y =0 andvk =0, swap jobs 1 and 5 iR¢ sox¥=[4 2 5 3 6 1]. Then letX — 1 and
vk=[001100].

Step 5: Let’ — 4 and go to Step 2. Repeat the process until altipos of xik have been considered.

Diversification strategy

If all the particles have the same non-dominatégtiems, they will be trapped in local optima. Tiepent this
from happening, a diversification strategy is pregubto keep the non-dominated solutions diffe@nte any
new solution is generated by particles, the nonidatimg solution set will be updated in these thsiteations:
(i) If the solution of the particle dominates tjigestsolution, assign the particle solution to gieest
(i) If the solution of the particle equals to any santin the non-dominated solution set, replace the
non-dominated solution with the particle solution.
(iif) If the solution of the particle is dominated by therst non-dominated solution and not equal to any

non-dominated solution, set the worst non-dominatddtion equal to the particle solution.

Computational results

The proposed multi-objective PSO (MOPSO) algorithas tested on benchmark problems obtained from
the OR-Library [2][26]. The program was coded irsd¥l C++ and run 40 times on each problem on alrent
4 3.0-GHz computer with 1 GB of RAM running Window®. During the pilot experiment, we used four
swarm sized (10, 30, 60, and 80) to test the algorithm. Thie@me ofN=80 was best, so that value was used
in all further tests. Parametarsandc, were tested at various values in the range 0.lirOricrements of 0.2.
The inertial weightv was reduced fromvyaxto Wmin during iterations, wherenaxwas set to 0.5, 0.7, and 0.9,
andwnn was set to 0.1, 0.3, and 0.5. The combinatiogye8.7,¢,=0.1,Wma=0.7 andwmi=0.3 gave the best
results. The maximum iteration limit was set toa@ the maximum archive size was set to 80.

The MOGA proposed by Ponnambalam et al. [19] waseh as a baseline against which to compare the
performance of our PSO algorithm. The objectivessatered in the MOGA algorithm are minimization of

makespan, minimization of total tardiness, and mization of machine idle time. The MOGA methodolagy

based on the machine-wise priority dispatching (o) and the G&T procedure [8]. The each geneasgnts
a pdr code. The G&T procedure was used to genanadetive feasible schedule. The MOGA fitness fionds
the weighted sum of makespan, total tardinessi@adtlidle time of machines with random weights.

The computation results showed that the relativereof the solution forCn.x and total idle time
determined by the proposed MOPSO was better in23®023 problems than the MOGA. In 22 of the 23
problems, the proposed PSO performed better fosdhaion considering total tardiness. Overall, pheposed

MOPSO was superior to the MOGA in solving the J3tR multiple objectives.

Conclusion

While there has been a large amount of researolthiet JSP, most of this has focused on minimizneg t
maximum completion time (i.e., makespan). Theresterther objectives in the real world, such as the
minimization of machine idle time that might helpprove efficiency and reduce production costs. PSO,
inspired by the behavior of birds in flocks anchfis schools, has the advantages of simple streiceasy
implementation, immediate accessibility, short skedime, and robustness. However, few applicataidSO
to multi-objective JSPs can be found in the litgrat Therefore, we presented a MOPSO method feingplhe
JSP with multiple objectives, including minimizatiof makespan, total tardiness, and total macluileetime.

The original PSO was proposed for continuous opttion problems. To make it suitable for job-shop
scheduling (i.e., a combinational problem), we rfiedi the representation of particle position, pdeti
movement, and particle velocity. We also introduaathutation operator and used a diversificatioatsgy.
The results demonstrated that the proposed MOP8Id obtain more optimal solutions than the MOGAeTh

relative error ratios of each problem scenario un MIOPSO algorithm were less than in the MOGA. The

performance measure results also revealed thapribgosed MOPSO algorithm outperformed MOGA in
simultaneously minimizing makespan, total tardinessl total machine idle time.

We will attempt to apply MOPSO to other shop sclieduproblems with multiple objectives in future
research. Other possible topics for further studjuide the modification of the particle positiopresentation,
particle movement, and particle velocity. In aduhtiissues related to Pareto optimization, suckoagion

maintenance strategy and performance measurement fature investigation.

Acknowledgments

This study was supported by a grant from the NationScience Council of Taiwan

(NSC-96-2221-E-216-052MY 3).
Appendices

Pseudo-code of the PSO for the multi-objective i3S follows.

Initialize a population of particles with randomsgmns.
for each particlé do
EvaluateX® (the position of particle k)
Save thepbesf to optimal solution se$
end for
Setgbestsolution equal to the begbest
repeat
Updates particles velocities

for each particlé do

Move particlek
Evaluatex*
Updategbest pbest andS
end for

until maximum iteration limit is reached

References

[1]Bean, J., 1994. “Genetic algorithms and randayskfor sequencing and optimizatio@perations Research Society of America

(ORSA) Journal on Computin, 154—160.

[2]Beasley J.E., 1990. "OR-Library: distributingt@roblems by electronic mail", Journal of the pienal Research Society 41(11)

pp1069-1072.

[3]Candido, M. A. B., Khator, S.K. & Barcia, R.M1998. “A genetic algorithm based procedure for maalistic job shop

scheduling problems/Jhternational Journal of Production Resear@6(12), 3437-3457.

[4]Coello, C.A., Plido, G.T. & Lechga, M.S., 200ZHandling multiple objectives with particle swarnptonization,” IEEE

Transactions on Evolutionary Computatj@&{3), 256-278.

[5]Esquivel, S.C., Ferrero, S.W. & Gallard, R.HO02. “Parameter settings and representations iet¢*aased optimization for job

shop scheduling,Cybernetics and Systems: An international Jour8al559-578.
[6]Fisher, H. & Thompson, G. L., 196Mdustrial SchedulingeEnglewood Cliffs, NJ: Prentice-Hall.

[7]1Garey, M. R., Johnson, D. S. & Sethi, R., 197te complexity of flowshop and jobshop schedulingathematics of Operations

Researchl, 117-129.
[8]Giffler, J. & Thompson, G. L., 1960. “Algorithnfsr solving production scheduling problem®perations ResearcB, 487-503.

[9]Gongalves, J. F., Mendes, J. J. M. & ResendeGMC., 2005. “A hybrid genetic algorithm for thebjshop scheduling problem,”

European Journal of Operational Resear&f7(1), 77-95.

[10]Jain, A.S. & Meeran, S., 1999. “Deterministidishop scheduling: Past, present and futiarbpean Journal of Operational

Research113, 390-434.

[11]Kennedy, J. and R. Eberhart (1995), Particlarswoptimization. Proceedings of IEEE InternatioBainference on Neural

Networks 1995, 1942-1948.

[12]Kobayashi, S., Ono, I. & Yamamura, M., 1995.n‘&fficient genetic algorithm for job shop schedgliproblems,” In L. J.
Eshelman (Ed.)Proceedings of the Sixth International ConfereneeGenetic Algorithmgpp. 506-511). San Francisco, CA:

Morgan Kaufman Publishers.

[13]Lawrence, S., 1984. “Resource constrained ptogcheduling: An experimental investigation of t&ic scheduling

techniques,” Graduate School of Industrial Admiison (GSIA), Carnegie Mellon University, Pittsighr PA.

[15]Lei, D. & Wu, Z., 2006. “Crowding-measure-baseaulti-objective evolutionary algorithm for job gmoscheduling,”

International Journal of Advanced Manufacturing fierology 30, 112-117.

[14]Lei, D., 2008. “A Pareto archive particle swaoptimization for multi-objective job shop schddgl” Computers & Industrial

Engineering54(4), 960-971.

[16]Liang Y.C., Ge, H.W., Zho, Y. & Guo, X.C., 200%A particle swarm optimization-based algorithnr fob-shop scheduling

problems,”International Journal of Computational Metho@§3), 419-430.

[17]Lourenco, H. R., 1995. “Local optimization atie job-shop scheduling problenEuropean Journal of Operational Research

83, 347-364.

[18]Nowicki, E. & Smutnicki, C., 1996. “A fast tabosearch algorithm for the job shop probleml&nagement Sciencd2(6),

797-813.

[19]Pezzella, F. & Merelli, E., 2000. “A tabu selanmethod guided by shifting bottleneck for the gimp scheduling problem,”

European Journal of Operational Resear&B0(2), 297-310.

[20]Ponnambalam S. G., Ramkumar, V. & Jawahar,28Q1. “A multi-objective genetic algorithm for jokhop scheduling.”

Production Planning and Contrpl2(8), 764—774.

[21]Ripon, K. S. N., 2007. “Hybrid evolutionary ajmach for multi-objective job-shop scheduling peahl” Malaysian Journal of

Computer Scienc0(2), 183-198.

[22]Sha, D.Y. & Hsu, C.-Y., 2006, “A hybrid partekwarm optimization for job shop scheduling probleComputers & Industrial

Engineering51(4), 791-808.

[23]Sha, D.Y. & Hsu, C.-Y., 2008. “A new particlevarm optimization for the open shop scheduling o’ Computers &

Operations ResearcBb, 3243—-3261.

[24]Sun, D., Batta, R. & Lin, L., 1995. “Effectiyjeb shop scheduling through active chain manipoilgtiComputers & Operations

Research22(2), 159-172.

[25]Suresh R.K. & Mohanasndaram, K.M. 2006., “Paratchived simulated annealing for job shop schedulith multiple

objectives,”International Journal of Advanced Manufacturing firology 29, 184—-196.
[26]Taillard, E.D., 1993. “Benchmarks for basic edhling problems,European Journal of Operational Resear6h, 278—285.

[27]Wang, L. & Zheng, D.-Z., 2001. “An effective biyd optimization strategy for job-shop schedulprgblems,”Computers &

Operations Researcgh8, 585-596.

[28]Xia, W. & Wu, Z., 2005. “An effective hybrid dimization approach for multi-objective flexibleljeshop scheduling problems,”

Computers & Industrial Engineering8, 409-425.

[29]zhang, H., Li, X., Li H., Hang F. 2005. “Pattc swarm optimization-based schemes for resourostcained project

scheduling,”Automation in Constructiofb4(3), 393—404.

Table 1 2x2 example

Jobs Machine sequence Processing times
1 1,2 P,275; P14
2 2,1 Pe.274; P23

Table 2 Comparison of MOGA and MOPSO with threesotiyes.

Machine Machine Total Total

Benchmark N m Makespan Makespan % idle time idle time % tardiness tardiness %
(MOGA) (MOPSO) Deviation (MOGA) (MOPSO) Deviation (MOGA) (MOPSO)DeV'atlon
abz5 10 10 1587 1338 0 8097 3978 0 1948 611
abz6 10 10 1369 1046 0 7744 2937 0 1882 339
ft06 6 6 76 56 0 259 100 0 31 3
ft10 10 10 1496 1045 0 9851 1999 0 3459 1534
orb01 10 10 1704 1181 0 11631 3909 0 3052 191
orb02 10 10 1284 1029 0 7585 3539 0 1565 137
orb03 10 10 1643 1114 0 11138 3788 0 4140 247
orb04 10 10 1543 1122 0 9802 3921 0 4951 221
orb05 10 10 1323 1013 0 8322 3727 0 2195 30
orb06 10 10 1645 1144 0 10836 3478 0 2601 0
orb07 10 10 583 302 0 3423 1381 0 699 0
orb08 10 10 1340 1000 0 8840 3542 0 3498 253
orb09 10 10 1462 1044 0 9439 4224 0 2029 0
orb10 10 10 1382 1077 0 8271 4177 0 1806 0
la01 10 5 1256 709 0 3431 571 0 3324 721
la02 10 5 1066 713 0 2687 573 0 2081 425
la03 10 5 821 671 0 1722 633 0 1926 373
la04 10 5 861 631 0 1798 557 0 3194 673

la05 10 5 893 593 0 2182 473 0 1716 736

lal6 10 10 1452 1040 0 9169 2718 0 1127 1417 0.25732

lal7 10 10 1172 889 0 7044 3365 0 1779 53 0
lal9 10 10 1251 938 0 7164 2796 0 1581 733 0
la20 10 10 1419 985 0 8745 2883 0 1451 407 0

The English in this document has been checked laaat two professional editors, both native spesaEEnglish. For a
certificate, see:

http://www.textcheck.com/cgi-bin/certificate.cgi2icbNsng

R ¢ ERATH AT AARNEE NGRS FERL

PiBETT 15 P

3 e NSC96 —2221 —E—216—052—MY3
TR LA (R EEREO S P ERRNEZ R
HE AR : PRA S 1 ,

SN A Pk P4 ¥ CEEE
iy ks sy | ErgAEImmfes
98#T"» 6P 2= 0o
€ AR 98 & 7 1 SBﬂL ¢®¥H % | Z R Troyes

(¢ %)% 39 By H 1 £ 1 mR%m ¢
§k
' th International Conference on Computers & Industrial Engineering (CI
(% <)39 1 Conf C & Ind 1E (CIE39)
waage | (0 TR UBENTSS DRI h g
e (¥ =) A Multi-objective PSO for Job-shop Scheduling Problems

2 S¥ oz s
-~ S gRE

FEZAAEFEBEI LI RREA G LR D REH AR Fa e
University of Technology of Troyes (UTT)# #% - Troyes %2 B3 ¥ % - A W4 2305 F
e 150 0T kG 162 k> PBAR Lo E? BESZ 4 B E P81 1 RA%F
e IL o HEREEPAR O EMRFE L 3L PR sy 2N 2 AR IR L v e 2

(ErBAEFIR LB EARER AT 5 p P AT H 54 CIE3) =31 ¢ -
AP engE 4 Eﬁ?iép?:% Operational Research / meta-heuristic #session, A% = = T = 16:10 B 42

2> RAF break 2.8 - > B qd N ER - B L E R AR o Flt A P AL T o 7

I

40!

FEIABEZBFREFFRAN ORNIPFEARTFFAL G LA - LR LTS LB session
dihe B o fREERY BARGE R S AR R RARS R A Pl A R F A E AL K08
TolgF R i o S8 AR FHORLREFHRIE T UL T BERAPDELRFY DT

BEBE 2 ¥ 3 d4 030 APt ok G FE 2 AR IETORPEIRET

= @ o

AEFEWEIEIRAEER LML FTEREWNEAER ST LEFE > ¢ 70 ph
3 - Applied Operations Research ~ Probabilistic and Statistical Models ~ Communications & Networking
Data Mining, Knowledge Discovery and Computational Intelligence ~ Multi-Criteria Decision Making and
Decision Analysis~ System Simulation and Forecasting ~ Information Technology ~ Supply Chain Management
& Logistics ~ Web-based Applications, E-Business and E-Commerce ~ Quality Management/Engineering,
Reliability and Maintenance - Facilities Layout Design, Warehousing, Materia Handling -~
Production/Manufacturing Systems and Processes; Agile Manufacturing; ERP/APS -~ Design for
Manufacturing, Robust Design, Reverse Engineering ~ Group Technology & Cellular Manufacturing ~
Environmentally Conscious Manufacturing ~ Human Factors, Industrial Ergonomics and Safety ~ Project
Development & Management ~ Global Economy Engineering & 1E ~ Manufacturing~ Technologies~ Artificial
Intelligence & Expert Systems ~ Industrial Engineering Education and E-learning - Systematic Innovation -
Ethicsin IE Education Research & Practice~ j€_F i eni 489 7 33 I > 1 £ 1 2 AR ¥ B ek
be B pBIIP A RARFEPREADAL L1 PRS-

R R LA N NE R S - ke S U i SN I TG e RS N
A R U8 £ U TR R - R 7T§” PlAc P RGP IITI & L LR R
Fprgil g L1 o BB g RNTE ?EE\“A”K S i gkt %ﬁr} BREH RS
B0 P LRBEA R £ R R R B £ RSN S e 7 L 2 E R

g fE -

o1 s oo
A A
IRy IRy IRy
R
N . «-
g
o
=
|
}_

R ¢ BRI IR TIARNEEINFEROTFHRS

P98 #1277 250

Tk

NSC96 —2221 —E—216—052—MY3

R

doF F R L

5P AR

gz

Ry o TEreTY o
o O SRS S b o
. 98 & 12" 14p 3 e . |
€ R 98 & 12 * 16 p € k¥ B poaa4

(P2)F LB 1 ¥ Enin

ES
T

(E"?) The10"Asia Pacific Industrial Engineering & Management Systems Conference

(¢ %)= 483 5 PR F 1 AR Fh G

AW

AP

(j‘f’\’) A Novel Particle Swarm Optimization for Multi-objective Job-shop Scheduling

_— ~N

2}4‘1 g vi: Gk

Ef+1$1medm s amitg
?(Wa%daUnlversty)% 327 APTENS 1 & # 1 1 fe8r § 1 4 sF
1RSI REEB KGR c hEY EAYLE
Qﬁﬁﬁ%ﬂﬁ’*%ﬁéﬁ%WSHwﬂﬁ,%ﬁ

B ro 4 L LT gz
WA jLp & 54 APIENS #34 ¢ -

AR Fd WEHI 1
1HE
TEI AP AREEH AL
SREHA 4 T AP RE A 47 T p

PRSI 2 (TR ISR e FART R 127 13 P #

#u i ensg £ §Fag 5 Swarm Intelligience and Neural Network £ session, LAy -2 T =X
16:30 B g2 > AP andfp 2 £ session % - f o E ST A4 218G HEFFRE /D
PETAREFFRRE G AR AR ETFL LB session ¥ T B o FREAERY R HTEZ A

i’é‘mﬁ:‘&{’ qr]

T AT fREAP OGN F Y TR

IE S RERE RTINS

R Bgenip 28 RAGHG ST &
ZJE ¥ - 3 R4

7 [IIENNAER Y/ = ch WE L S NPE

BRI ORP R Y e o
= E’g».i'

EL*1¥1 48830 i mid g A Fges kg e g ERamy e g B ¢ 5 p
ERE Gl iApphed Statistics & Data Mining, CAD/CAM, Computational Intelligence in IE, Decision Making Models,
Decision Support Systems, Enterprise Information Systems/ERP, Facilities Design and Location, Green
Design/Green Manufacturing, Healthcare Management, Human Factors/Industrial Ergonomics, Human Resource
Management, Industrial Engineering Education, Inventory Systems and Management, Lean Manufacturing/Logistics,
Manufacturing/Industrial Automation, Operations Research/Optimization, Product Design/Development, Production
Systems Design, Planning and Control, Productivity and Business Strategies, Project Management, Quality
Engineering, Research Methods in IE, Safety Management, Service Systems and Management, Soft
Computing/Meta-Heuristics, Supply Chain and Logistics, Systems Engineering and Management, Systems
Simulation, Technology Management, Total Quality Management ° “,% T FEIARDIR W e R R
PRAE S B IR s R At B IR s PLE R IR R AR o

B S8 gk MO e B A AT 7 W BRI W R F A
T o g ﬁéﬁ“-%i’ﬁ]”?}—‘kﬁ“ﬁﬂfév v e BFS L RA R B ianE B § R
PR AR SNREIEFVELY TETRET RS £l NN AR SR &t N
?W"*%‘f‘ﬁm?ﬁ”f B0 P L LB fEAKRT RO R g Y R kY o

\\\?{r

SR A S
L Ep - A

Eho R B A
%

FZ,BQ k- %

A-

or s e o=
A=

R R EGFLFHAT ARG R THRL

P99 E3 T 26 ¢

E . | NSC96—2221 —E—216—052—MY3

FELHE O RFEERG S P EREFEL R

R PRARHS 4
vy A o PEAFIFIfERE Y
i ok o i
9937 1771 ‘
ERME 9930 195 L R
(# <) 2010 IAENG International Conference on Industrial Engineering
§ R LA

(32010 & 1 %1 42 F% ¢ %

(¢ %)= 6% 5 P ARB A AR RS Hh R

AW

AP

(E- <) A Modified Particle Swarm Optimization for Multi-objective Open Shop Schedul ing

SRR TF -+ E

2010 &= TAENG = # 1 2 W% € 3% > 1 & £.d [AENG (Interantional Association of Engineers)
$ PR e 4 BB AT MBI ARG B LR 3B R AT 0 AT - 2000 # <0
géi«“)ﬁ'iuﬁjcﬂ I+ BERE 1000 ?éﬁjﬁ% FEE A H LY 12 p B o AT HREER

HEG W I EN S D PRI BRI N2 Lo PR AR E S R R AL o

NP dF LR LS - AT 2 1545 BhedRd > R A e break 2 #h% - o 2 Hd v -
RidRE F AR o Flt AP endR L R o FE LT A 2 EEEFRN R DN F YA
FPOFRIGAE - ARAFL e session ¥ B R o AR FENHEE o RS R
BT P R A A S Bl RA ARt o B A e B R E ¥ k2B
IW T AL EAPELRNEY BVEAB L 2 V= moe 0fRR] 0 AP AT R ahk it

FEE O AREIFTORPEILIRFET G B o

—‘l—}ig -5F'

AERRELIEIMRER AL EFTE R EEZER L EF R > ¢ 7 i $h Engineering

Physiology, Biomedical Instrumentation, Engineering Statistics, Quality Management Systems, Maintenance

Engineering, Reliability and Quality Control, Engineering Experimental Design, Integrated Product Engineering,
Engineering Risk and Decision Analysis, Computer Supported Collaborative Engineering, Human Factors and
Ergonomics, Computer-Aided Design, Computer Aided Manufacturing, Computer Simulation MethodsFacilities
Design and Logistics, Manufacturing Processes and Methods, Information Systems for the Manufacturing, Quality
and Productivity Management, Optimization Methods, Intelligent Engineering Systems, Engineering Management
and Leadership % o d ** €32 4d J 473 e » 8 eni 389 288 R > 1 ¥ 1 488 f T AL
ez the B AR R PP AR p I R LB N a1 b o

P g R o EHE BUE m A A BT G Ay AT v BB 2 WA SR
fAR R R FFRE e o Y e R RTET &0 FREL LR EIFEL OF &
EREH TR S LY REVISE 2 § LIEE X

= \;}%ﬁb?\,i@ﬁ_& p\;
gi{u_j\

Eh R L - A
Eih kg ¥

A=

M-

=¥
o
|
!

MY e
pe

WEREHFTTHEFT A EFREL

g3

DN

3 S 0 96-2221-E-216-052-MY3

PE LA R T EEEN S PR R

N

T Pl B b
&% 7 PR LS s | BERE | g |7 PR TR
B (s (27 % gt | A % oM 2
pegg) | 2 o & ¥ ...
F)
B 0 0 100%
e PiEBREL |0 0 100% a
¥~ T
ik 0 0 100%
P 0 0 100%
o ; ﬁ%f iy 0 0 100% .
S P 0 0 100%
P i g 0 0 100% “
B
#1 4 0 0 100% + =
4 0 0 100%
gprih A4 s 0 0 100% o
=X
(2R BLuersE |0 0 100%
biEpm 0 0 100%
B)2 9 2 100%
o e PALARRBATED |0 0 100% j
¥m ¥ T
it g 5 3 100%
L1 0 0 100% Y
4 @giﬂﬁﬁ: 0 0 100% .
S 9B 0 0 100%
BN (,l\
" i 0 0 100% “
HoAS
#1 4 0 0 100% e
A 0 0 100%
gorg a4 (gaa 0 0 100%
A =
(hEE) [BLeETE |0 0 100% '
L iEmm 0 0 100%

H A%
(miz gz
5 hoyE B s d S
HREE S ERREE
V=g g NP LB T
SR R D B
Vicne S TSN | 2
EE G F A

}ljo)

g

’i X538 P

frebs

—

#R%EL S(7 FRredn)

/e

Re|grga epe A1 8

21

Fi

B ye s IR

T e

3
1
4e
g |FiHE/ iy
i
p

PEASHAEZ 2 (BR) Ak

OO O OO O o (o

R g AR 34 3 R 474 324

A S RN Py R

%ﬁpzmzﬁﬁféw%ﬁﬁ\ééﬁ
; Hhig- HFB2Z T) LI
Hi g %

p
i & /Jtﬂ“‘%\'%b#zkix&a S E s B

—_

B (
Eagrdp g LAY FE A EFRA %o 1T LR o

1. "F TN FERFFNSER ~FSFFH P FEFIRIT- FEFD
W=
[(xiE = p % (GGsip 2 100 F 5 *2)

(9 5 4 pc

BEES-F AN

(& & & %]

s

2. F Ak a g g A A Y BB
wme W FEA x8gd2% ERY a
240 &® O 7 He
i D H i Dzmu’ __F
Hu (2100 % 52)

&g&?wﬁﬁxﬁﬁﬂ%\ﬁgzg‘ﬁ) AT
E (HRAAESEFTARLA2ZLHK T :

500 F 5 *2)

AT 2R KRS PR B B R ok E AR R FE o BT

ERR R is P N R "'?‘T‘Jﬁ:ﬁ—#fii RN BT T Al s L N AR e

% 0 ¥ - 3w RIEY KR Pareto set 9 A A P ARE GRS AT F A uERE R

R HRELFEFEZ Lo P B ATIF R B R 6 F VR B E o A i hen

X AP R I EEGLFEETE- SR E B LA NP g A P HA %

2 PG C whiE R > BRE- HRAFREEY o

	A particle swarm optimization for multi-objective flowshop scheduling
	Abstract
	Introduction
	Problem formulation
	Basic PSO concept
	Formation of the proposed PSO
	Position representation
	Particle velocity
	Particle movement
	Pareto optimal set maintenance
	Diversification strategy

	Computational results
	Conclusion
	References

