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一一一一、、、、中文摘要中文摘要中文摘要中文摘要 

粒 子 群 最 佳 化 (Particle Swarm 

Optimization, PSO)是一種以群體搜尋為基礎

的最佳化演算法，其群體是由各自獨立的粒子

所組成。PSO 模擬空間中的粒子運動，以搜

尋空間(search space)表達出問題的解集合空

間(solution space)。每個搜尋空間中的位置

(position)對應到一個該問題解集合空間中的

解。粒子群於搜尋空間中(解集合空間中)合作

搜尋出最佳位置(最佳解)。PSO 最初應用於求

解連續性最佳化問題。然而近年來也被應用於

求解組合最佳化問題。 

多數與排程問題有關的研究都只探討如

何使單一目標最佳化，如：總完工時間、總延

遲成本、延遲工件數…等。在現實情況下，決

策者必需作出能夠將這些目標最佳化的決

策，卻又面臨這些目標之間互相衝突的問題。

若只追求單一目標的最佳化排程，則會造成另

一目標的損失。本研究的主要目的在架構出能

求解多目標排程問題之 PSO，幫助決策者在

面對如此複雜排程問題時能夠做出合理決策。 

本研究以三年時間分階段進行。第一年以

流程型排程問題(flow shop scheduling problem)

為研究對象；第二年以零工式排程問 

題(job shop scheduling problem)為研究對象；

第 三 年 以 開 放 型 排 程 問 題 (open shop 

scheduling problem)為研究對象。在這三種最

基本的排程問題中，  我們以完工時間

(makespan)、總流程時間(total flow time)、總

延遲時間(total tardiness)作為目標函數。本研

究所提出的 PSO，應用於標竿測試問題與過

去的啟發式演算法，在求解的速度與品質上有

較佳的表現。 

關鍵詞關鍵詞關鍵詞關鍵詞：：：：：：：：粒子群最佳化粒子群最佳化粒子群最佳化粒子群最佳化、、、、流程型排程流程型排程流程型排程流程型排程、、、、零工零工零工零工

型型型型排程排程排程排程、、、、開放型排程開放型排程開放型排程開放型排程、、、、多目標排程多目標排程多目標排程多目標排程 

Abstract 

Particle Swarm Optimization (PSO) is a 

population-based optimization algorithm. Each 

particle is an individual and the swarm is 

composed of particles. PSO mimics the particle 

movement in a space. In PSO, the problem 

solution space is formulated as a search space. 

Each position in the search space is a 

correlated solution of the problem. Particles 

cooperate to find out the best position (best 

solution) in the search space (solution space). 

The original intention of PSO is to solve 

continuous optimization problems. However, it 

has been implemented to solve many 

combinatorial optimization problems in recent 

years. 

In most previous research about scheduling, 
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there are only one objective function. For 

example, total complete time, total tardiness, 

and maximum makespan. In fact, the decision 

makers have to simultaneously optimize these 

objectives, but there are conflicts between these 

objectives. If we only optimize one of these 

objectives, we will loose another objective. In 

this research, we will construct a PSO to solve 

multi-objective scheduling problems. That can 

help decision makers to make a strategy to 

handle such complex scheduling problems. 

We will execute this research in three years. 

In the first year, we focus on the flow shop 

scheduling problem. In the second year, we 

focus on the job shop scheduling problem. In the 

third year, we focus on the open shop scheduling 

problem. In these three scheduling problems, the 

objective functions are maximum completion 

time, total weighted completion time, and total 

weighted tardiness. Moreover, we will add some 

constraints into the scheduling problems, such 

as limited intermediate storage and dependent 

setup time. 

Keywords: Particle swarm optimization, 

Multi-objective scheduling problem 

二二二二、、、、研究目的研究目的研究目的研究目的 

多數與排程問題有關的研究都只探討如

何使單一目標最佳化，如：總完工時間、總延

遲成本、延遲工件數…等。在現實情況下，決

策者必需作出能夠將這些目標最佳化的決

策，卻又面臨這些目標之間互相衝突的問題。

若只追求單一目標的最佳化排程，則會造成另

一目標的損失。 

大多數排程問題皆為 NP 問題，也就是

說，此問題無法在合理的計算時間內求出最佳

解。因此，學者們發展出各類型啟發式解法試

圖求出近似最佳解，而演化式計算(Evolution 

Computation)則是近十年來最被廣泛應用，也

是求解效率最佳的一種啟發式解法。在演化式

計算中又以粒子群最佳化 (Particle Swarm 

Optimization, PSO)為最新、且為近 3 年來最

被廣泛研究及討論的演算法。另於一般單目標

的排程問題中，我們已將PSO 應用於JobShop 

及 Open Shop 問題上。研究發現應用 PSO 求

解會得到比其它方法更好的結果(Sha & Hsu, 

2006a, 2006b)。因此，本研究的主要目的在架

構出能求解多目標排程問題之 PSO，幫助決

策者在面對此複雜的排程問題時能夠做出合

理的決策。 

因此本研究的主要目的是架構出適合求

解多目標排程問題的 PSO。除此之外，由於

PSO 原本是用來求解連續性最佳化問題

(continues optimization problems)，在組合最佳

化方面的應用尚未成熟，還有許多可供研究及

改良的空間。排程問題也是組合最佳化問題之

一，因此本研究所發展之 PSO 將為後續 PSO

應用於組合最佳化問題研究之基礎。我們也將

以本研究為基礎，將本研究所發展之 PSO 應

用於求解其它組合最佳化問題。 

三三三三、、、、粒子群粒子群粒子群粒子群演算法演算法演算法演算法相關文獻相關文獻相關文獻相關文獻 

粒 子 群 最 佳 化 (Particle Swarm 

Optimization, PSO) 由 Kennedy 和 Eberhart

於 1995 年提出。它是由模仿粒子於空間中運

動的行為，而發展出的最佳化方法。PSO 和

基因演算法(Genetic Algorithm,GA)相同，都是

以群體為基礎的(population-based)最佳化演算

法。在 PSO 中，群體(swarm)是由粒子(particle)

所組成。群體(swarm)和粒子(particle)的關係，

和 在 GA 中 母 體 (population) 和 染 色 體

(chromosome)的關係相似。 

PSO 以搜尋空間(search space)表達出問

題的解集合空間(solution space)。每個搜尋空

間中的位置(position)對應到一個該問題解集

合空間中的解。粒子群於搜尋空間中(解集合

空間中)合作搜尋出最佳位置(最佳解)。而其中

粒子運動主要受到三個因素影響：  慣性



3 

(inertia)、個體最佳位置(pbest position)、群體

最佳位置(gbest position)。慣性(inertia)為粒子

於上一循環 (iteration) 所殘留下來的速度

(velocity)，它能夠由慣性權重(inertia weight)

控制。慣性(inertia)的用意在於防止粒子停留

在同一範圍內，而能跳出區域最佳解(local 

optima)。個體最佳位置(pbest solution)為粒子

本身到目前為止所搜尋出的最佳位置(或最佳

解)，因此每個粒子有它自已的個體最佳位置

(pbest position)。群體最佳位置(gbest position)

則是到目前為止群體(swarm)所搜尋出的最佳

位置(最佳解)，而整個群體(swarm)只會有一個

群體最佳位置(gbest position)。 

在 PSO 中粒子速度(velocity)由一向量表

示，而在每個循環(iteration)中粒子根據它所擁

有的速度移動它的位置。在每個循環(iteration)

裡，粒子朝著個體最佳位置(pbest position)以

及群體最佳位置(gbest position)移動，而其速

度也是根據個體最佳位置(pbest position)及群

體最佳位置(gbest position)隨機求得。 

四四四四、、、、研究成果研究成果研究成果研究成果 

本研究已完成求解流程型排程問題

(Flow-shop Scheduling Problem)之 PSO，為了

證明所發展的 PSO 的適用性、求解品質與效

率 ，  我 們 將 本 研 究 的 PSO 與

TSP-GA(Ponnambalam, 2004)同時測試 21 個

問題進行比較。目標式有三個，分別為最小完

工時間(Makespan)、平均流程時間(Mean Flow 

Time)與機器閒置時間(Machine Idle Time)。運

算的結果顯示，以平均相對誤差而言，針對最

小完工時間，PSO 有 17 個問題表現優於

TSP-GA；平均流程時間，PSO 有 18 個問題

表現優於 TSP-GA；機器閒置時間，PSO 有

19 個問題表現優於 TSP-GA。綜合而言，PSO 

在 21 個案例中的 19 個，同時達到三個目標

且優於 TSP-GA 。此結果已發表於 The 38th 

International Conference on Computers and 

Industrial Engineering (2008). 

另一方面，亦將 PSO 與傳統的啟發式演

算法 CDS 與 NEH 進行比較。同樣以最小完

工時間(Makespan)、平均流程時間(Mean Flow 

Time)與機器閒置時間(Machine Idle Time)作

為目標式。此次共測試 161 個標竿問題，包

含 Rec01 至 Rec41，Tai20×5 至 Tai500×20。

求解的結果顯示 PSO 比傳統的啟發式演算法

CDS 與 NEH 具備明顯的優勢。結果發表於

The 9th Asia Pacific Industrial Engineering & 

Management Systems Conference (2008). 

PSO 應用於求解多目標流程型排程問題

的結果 已發表 於 International Journal of 

Advanced Manufacturing Technology Vol. 45, 

No. 7, pp. 749-762. Vol. 37, No. 2, pp. 

1065-1070, 2009 (SCI)(如附錄一). 

本研究已完成求解零工式排程問題

(Job-shop Scheduling Problem)之 PSO，同樣

的，我們選擇三個目標式，最小完工時間

(Makespan)、總延遲時間(Total Tardiness)與機

器閒置時間(Machine Idle Time)。比較的對象

則是 MOGA (Ponnambalam, 2001)，在 23 個

標竿問題中，PSO 在最小完工時間與總延遲

時間，完全領先 MOGA；至於機器閒置時間

則於 22 個問題中具競爭力。 

PSO 應用於求解多目標零工型排程問題

的 結 果 已 發 表 於 Expert Systems with 

Applications, Vol. 37, No. 2, pp. 1065-1070, 

2010 (SCI) (如附錄二). 

對於開放式排程問題，本研究亦完成 PSO

設計，我們以最小完工時間(Makespan)、總流

程時間 (Total Flow Time)與機器閒置時間

(Machine Idle Time) 作為目標式。由於開放式

排程問體文獻相對較少，本研究另外設計並撰

寫基因演算法作為比較，並以 Guéret and Prins 

(1999)標竿問題進行測試，求解結果顯示本驗

就提出的 PSO整體績效大於 GA。此結果已投

稿於 Journal of Industrial and Management 

Optimization. 
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Abstract The academic approach of single-objective flow-
shop scheduling has been extended to multiple objectives to
meet the requirements of realistic manufacturing systems.
Many algorithms have been developed to search for optimal
or near-optimal solutions due to the computational cost of
determining exact solutions. This paper provides a particle
swarm optimization-based multi-objective algorithm for
flowshop scheduling. The proposed evolutionary algorithm
searches the Pareto optimal solution for objectives by
considering the makespan, mean flow time, and machine
idle time. The algorithm was tested on benchmark problems
to evaluate its performance. The results show that the
modified particle swarm optimization algorithm performed
better in terms of searching quality and efficiency than
other traditional heuristics.

Keywords PSO .Multi-objective . Flowshop scheduling .

Pareto optimal

1 Introduction

Production scheduling in real environments has become a
significant challenge in enterprises maintaining their com-
petitive positions in rapidly changing markets. Flowshop

scheduling problems have attracted much attention in
academic circles in the last five decades since Johnson’s
initial research. Most of these studies have focused on
finding the exact optimal solution. A brief overview of the
evolution of flowshop scheduling problems and possible
approaches to their solution over the last 50 years has been
provided by Gupta and Stafford [5]. That survey indicated
that most research on flowshop scheduling has focused on
single-objective problems, such as minimizing completion
time, total flow time, or total tardiness. Numerous heuristic
techniques have been developed for obtaining the approx-
imate optimal solution to NP-hard scheduling problems. A
complete survey of flowshop scheduling problems with
makespan criterion and contributions, including exact
methods, constructive heuristics, improved heuristics, and
evolutionary approaches from 1954 to 2004, was offered by
Hejazi et al. [7]. Ruiz et al. [24] also presented a review and
comparative evaluation of heuristics and meta-heuristics for
permutation flowshop problems with the makespan criteri-
on. The NEH algorithm [17] has been shown to be the best
constructive heuristic for Taillard’s benchmarks [28] while
the iterated local search [27] method and the genetic
algorithm (GA) [23] are better than other meta-heuristic
algorithms.

Most studies of flowshop scheduling have focused on a
single objective that could be optimized independently.
However, empirical scheduling decisions might not only
involve the consideration of more than one objective, but
also require minimizing the conflict between two or more
objectives. In addition, finding the exact solution to
scheduling problems is computationally expensive because
such problems are NP-hard. Solving a scheduling problem
with multiple objectives is even more complicated than
solving a single-objective problem. Approaches including
meta-heuristics and memetics have been developed to
reduce the complexity and improve the efficiency of
solutions.
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Hybrid heuristics combining the features of different
methods in a complementary fashion have been a hot issue
in the fields of computer science and operational research
[15]. Ponnambalam et al. [19] considered a weighted sum
of multiple objectives, including minimizing the makespan,
mean flow time, and machine idle time as a performance
measurement, and proposed a multi-objective algorithm
using a traveling salesman algorithm and the GA for the
flowshop scheduling problem. Rajendran et al. [21]
approached the problem of scheduling in permutation
flowshop using two ant colony optimization (ACO)
approaches, first to minimize the makespan, and then to
minimize the sum of the total flow time. Yagmahan [30]
was the first to apply ACO meta-heuristics to flowshop
scheduling with the multiple objectives of makespan, total
flow time, and total machine idle time.

The literature on multi-objective flowshop scheduling
problems can divided into two groups: a priori approaches
with assigned weights of each objective, and a posteriori
approaches involving a set of non-dominated solutions
[18]. There is also a multi-objective GA (MOGA) called
PGA-ALS, designed to search non-dominated sequences
with the objectives of minimizing makespan and total flow
time. The multi-objective solutions are called non-
dominated solutions (or Pareto optimal solutions in the
case of Pareto optimality). Eren et al. [4] tackled a multi-
criteria two-machine flowshop scheduling problem with
minimization of the weighted sum of total completion time,
total tardiness, and makespan.

Particle swarm optimization (PSO) is an evolutionary
technique for unconstrained continuous optimization prob-
lems proposed by Kennedy et al. [10] The PSO concept is
based on observations of the social behavior of animals
such as birds in flocks, fish in schools, and swarm theory.
To minimize the objective of maximum completion time (i.
e., the makespan), Liu et al. [15] invented an effective PSO-
based memetic algorithm for the permutation flowshop
scheduling problem. Jarboui et al. [9] developed a PSO
algorithm for solving the permutation flowshop scheduling
problem; this was an improved procedure based on
simulated annealing. PSO was recommended by Tasgetiren
et al. [29] to solve the permutation flowshop scheduling
problem with the objectives of minimizing makespan and
the total flow time of jobs. Rahimi-Vahed et al. [22] tackled
a bi-criteria permutation flowshop scheduling problem
where the weighted mean completion time and the
weighted mean tardiness were minimized simultaneously.
They exploited a new concept called the ideal point and a
new approach to specifying the superior particle’s position
vector in the swarm that is designed and used for finding
the locally Pareto optimal frontier of the problem. Due to
the discrete nature of the flowshop scheduling problem,
Lian et al. [14] addressed permutation flowshop scheduling

with a minimized makespan using a novel PSO. All these
approaches have demonstrated the advantages of the PSO
method: simple structure, immediate applicability to prac-
tical problems, ease of implementation, quick solution, and
robustness.

The aim of this paper is to explore the development of
PSO for elaborate multi-objective flowshop scheduling
problems. The original PSO was used to solve continuous
optimization problems. Due to the discrete solution spaces
of scheduling optimization problems, we modified the
particle position representation, particle movement, and
particle velocity in this study.

The remainder of this paper is organized as follows.
Section 2 contains a formulation of the flowshop schedul-
ing problem with two objectives. Section 3 describes the
algorithm of the proposed PSO approach. Section 4 con-
tains the simulated results of benchmark problems. Sec-
tion 5 provides some conclusions and future directions.

2 Problem formulation

The problem of scheduling in flowshops has been the
subject of much investigation. The primary elements of
flowshop scheduling include a set of m machines and a
collection of n jobs to be scheduled on the set of machines.
Each job follows the same process of machines and passes
through each machine only once. Each job can be
processed on one and only one machine at a time, whereas
each machine can process only one job at a time. The
processing time of each job on each machine is fixed and
known in advance. We formulate the multi-objective flow-
shop scheduling problem using the following notation:

& n is the total number of jobs to be scheduled,
& m is the total number of machines in the process,
& t(i, j) is the processing time for job i on machine j (i=1,

2,…n) and (j=1,2,…m), and
& {π1, π2, …, πn} is the permutation of jobs.

The objectives considered in this paper can be calculated
as follows:

& Completion time (makespan) C p; jð Þ:
C p1; 1ð Þ ¼ t p1; 1ð Þ
C pi; 1ð Þ ¼ C pi�1; 1ð Þ þ t pi; 1ð Þi ¼ 2; . . . ; n

C p1; jð Þ ¼ C p1; j� 1ð Þ þ t p; jð Þj ¼ 2; . . . ;m

C pi; jð Þ ¼ max C pi�1; jð Þ;C pi; j� 1ð Þf g þ t pi; jð Þ
i ¼ 2; . . . ; n; j ¼ 2; . . . ;m

& Makespan, fCmax ¼ C pn;mð Þ,
& Mean flow time, fMFT ¼

Pn
i¼1

C pi;mð Þ
� ��

n,
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& Machine idle time, and
& fMIT ¼ fC p1; j� 1ð Þ þPn

i¼2
max C pi; j� 1ð Þ � C pi�1;ðff

jÞ; 0ggjj ¼ 2:::mg

3 Basic PSO concept

PSO is an evolutionary technique (Kennedy et al. [10]) for
solving unconstrained continuous optimization problems.
The PSO concept is based on observations of the social
behavior of animals. The population consisting of individ-
uals (particles) is assigned a randomized initial velocity
according each individual’s own movement experience and
that of the rest of the population. The relationship between
the swarm and the particles in PSO is similar to the
relationship between the population and the chromosomes
in the GA.

The PSO problem solution space is formulated as a
search space. Each position of the particles in the search
space is a correlated solution of the problem. Particles
cooperate to determine the best position (solution) in the
search space (solution space).

Suppose that the search space is D-dimensional and there
are m particles in the swarm. Each particle is located at
position Xi={xi1, xi2, …, xiD} with velocity Vi={vi1, vi2, …,
viD}, where i=1, 2,…, m. In the PSO algorithm, each particle
moves toward its own best position (pbest) denoted as
Pbesti={pbesti1, pbesti2,…, pbestin}. The best position of the
whole swarm (gbest) denoted as Gbest={gbest1, gbest2, …,
gbestn} with each iteration. Each particle changes its position
according to its velocity, which is randomly generated toward
the pbest and gbest positions. For each particle r and
dimension s, the new velocity vrs and position xrs of particles
can be calculated by the following equations:

vtrs ¼ w� vt�1rs þ c1 � rand1 � pbestt�1rs � xt�1rs

� �þ c2

� rand2 � gbestt�1s � xt�1rs

� � ð1Þ

xtrs ¼ xt�1rs þ vt�1rs ð2Þ

where t is the iteration number. The inertial weight w is
used to control exploration and exploitation. A large value
of w keeps particles at high velocity and prevents them
from becoming trapped in local optima. A small value of
w maintains particles at low velocity and encourages them
to exploit the same search area. The constants c1 and c2 are
acceleration coefficients that determine whether particles
prefer to move closer to the pbest or gbest positions. The
rand1 and rand2 are independent random numbers uni-
formly distributed between 0 and 1. The termination

criterion of the PSO algorithm includes the maximum
number of generations, the designated value of pbest, and
no further improvement in pbest. The standard PSO process
outline is as follows.

Step 1: initialize a population of particles with random
positions and velocities on D dimensions in the
search space.

Step 2: update the velocity of each particle according to
Eq. (1).

Step 3: update the position of each particle according to
Eq. (2).

Step 4: map the position of each particle into the solution
space and evaluate its fitness value according to
the desired optimization fitness function. Simulta-
neously update the pbest and gbest positions if
necessary.

Step 5: loop to Step 2 until an exit criterion is met, usually
a sufficient goodness of fitness or a maximum
number of iterations.

The original PSO was designed for a continuous solution
space. We modified the PSO position representation,
particle velocity, and particle movement as described in
the next section to make PSO suitable for combinational
optimization problems.

4 Formation of the proposed PSO

There are two different representations of particle position
associated with a schedule. Zhang [31] demonstrated that
permutation-based position representation outperforms
priority-based representation. While we have chosen to
implement permutation-based position representation, we
must also adjust the particle velocity and particle movement
as described in Sections 4.2 and 4.3. We have also included
the maintenance of Pareto optima and local search
procedures to achieve better performance.

4.1 Position representation

In this study, we randomly generated a group of particles
(solutions) represented by a permutation sequence that is an
ordered list of operations. The following example is a
permutation sequence for a six-job permutation flowshop
scheduling problem, where jn is the operation of job n.

Index : 1 2 3 4 5 6
Permutation : j4 j3 j1 j6 j2 j5

An operation earlier in the list has a higher priority of
being placed into the schedule. We used a list with a length
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of n for an n-job problem in our algorithm to represent the
position of particle k, i.e.,

X k ¼ xk1x
k
2 . . . x

k
n

� �
;

xki is the priority of ji in particle k:

Then, we convert the permutation list to a priority list.
Thexki is a value randomly initialized to some value between
(p–0.5) and (p + 0.5). This means xki  pþ rand� 0:5,
where p is the location (index) of ji in the permutation list,
and rand is a random number between 0 and 1. Conse-
quently, the operation with smaller xki has a higher priority
for scheduling. The permutation list mentioned above can
be converted to

X k ¼ 2:7 5:2 1:8 0:6 6:3 3:9½ �

4.2 Particle velocity

The original PSO velocity concept is that each particle
moves according to the velocity determined by the distance
between the previous position of the particle and the gbest
(pbest) solution. The two major purposes of the particle
velocity are to move the particle toward the gbest and pbest
solutions, and to maintain the inertia to prevent particles
from becoming trapped in local optima.

In the proposed PSO, we concentrated on preventing
particles from becoming trapped in local optima rather than
moving them toward the gbest (pbest) solution. If the
priority value increases or decreases with the present
velocity in this iteration, we maintain the priority value
increasing or decreasing at the beginning of the next
iteration with probability w, which is the PSO inertial
weight. The larger the value of w is, the greater the number
of iterations over which the priority value keeps increasing
or decreasing, and the greater the difficulty the particle has
returning to the current position. For an n-job problem, the
velocity of particle k can be represented as

Vk ¼ vk1 v
k
2 . . . v

k
n

� �
; vki 2 �1; 0; 1f g

where vki is the velocity of ji of particle k:

The initial particle velocities are generated randomly.
Instead of considering the distance from xki to pbestki ðgbestiÞ,
our PSO considers whether the value of xki is larger or
smaller than pbestki ðgbestiÞ If xki has decreased in the present
iteration, this means that pbestki ðgbestiÞ is smaller than xki ,
and xki is set moving toward pbestki ðgbestiÞ by letting
vki  �1. Therefore, in the next iteration, xki is kept
decreasing by one (i.e., xki  xki � 1) with probability w.
Conversely, if xki has increased in this iteration, this means
that pbestki ðgbestiÞ is larger than xki , and xki is set moving
toward pbestki ðgbestiÞ by letting vki  1. Therefore, in the

next iteration, xki is kept increasing by one (i.e. xki  xki þ 1)
with probability w.

The inertial weight w influences the velocity of particles
in PSO. We randomly update velocities at the beginning of
each iteration. For each particle k and operation ji, if vki is
not equal to 0, vki is set to 0 with probability (1–w). This
ensures that xki stops increasing or decreasing continuously
in this iteration with probability (1–w).

4.3 Particle movement

The particle movement is based on the insertion operator
proposed by Sha et al. [25, 26]. The insertion operator is
introduced to the priority list to reduce computational
complexity. We illustrate the effect of the insertion operator
using the permutation list example described above. If we
wish to insert j4 into the third location of the permutation
list, we must move j6 to the sixth location, move j1 to the
fifth location, move j2 to the fourth location, and then insert
j4 in the third location. The insertion operation comprising
these actions costs O(n/2) on average. However, the
insertion operator used in this study need only set xki  
3þ rand� 0:5 when we want to insert j5 in the third
location of the permutation. This requires only one step for
each insertion. If the random number rand equals 0.1, for
example, after j4 is inserted into the third location, then
X kbecomes X k ¼ 2:7 5:2 1:8 0:6 2:6 3:9½ �.

If we wish to insert ji into the pth location in the
permutation list, we could set xki  pþ rand� 0:5. The
location of operation ji in the permutation sequence of the
kth pbest and gbest solutions are pbestki and gbesti,
respectively. As particle k moves, if vki equals 0 for all ji,
then xki is set to pbestki þ rand� 0:5 with probability c1 and
set to gbesti + rand −0.5 with probability c2, where rand is
a random number between 0 and 1, c1 and c2 are constants
between 0 and 1, and c1 þ c2 � 1. We explain this concept
by assuming specific values for Vk, Xk, pbestk, gbest, c1,
and c2.

Vk ¼ �1 0 0 1 0 0½ �;
X k ¼ 2:7 5:2 1:8 0:6 6:3 3:9½ �;
pbestk ¼ 5 1 4 6 3 2½ �;
gbest ¼ 6 3 4 5 1 2½ �; c1 ¼ 0:8; c2 ¼ 0:1:

– For j1, since vk1 6¼ 0 and xk1  xk1 þ vk1, then xk1 ¼ 1:7.
– For j2, since vk2 ¼ 0, the generated random number

rand1=0.6. Since rand1 � c1, then the generated ran-
dom number rand2=0.3. Since pbestk2 � xk2, set v

k
2  

�1 and xk2  pbestk2 þ rand2 � 0:5, i.e., xk2 ¼ 0:8.
– For j3, since vk3 ¼ 0, the generated random number

rand1=0.93. Since rand1 > c1 þ c2, xk3 and vk3 do not
need to be changed.
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– For j4, since vk4 ¼ 1, then xk4  xk4 þ vk4, i.e., x
k
4 ¼ 1:6.

– For j5, since vk5 ¼ 0, the generated random number
rand1=0.85. Since c1 < rand1 � c1 þ c2, the generat-
ed random number rand2=0.7. Since gbest5 � xk5,
set vk5  �1. Then xk5  gbest5 þ rand2 � 0:5, i.e.,
xk5 ¼ 1:2.

– For j6, since vk6 ¼ 0, the generated random number
rand1=0.95. Since rand1 > c1 þ c2, xk6 and vk6 do not
need to be changed.

Therefore, after particle k moves, the Vk and Xk are

Vk ¼ ½�1 �1 0 1 �1 0�
X k ¼ ½1:6 0:8 1:8 1:7 1:2 3:9�
In addition, we use a mutation operator in our PSO

algorithm. After moving a particle to a new position, we
randomly choose an operation and then mutate its priority
value xki in accordance with vki . If x

k
i � ðn=2Þ, we randomly

set xki to a value between (n/2) and n, and set vki  1. If
xki > ðn=2Þ, we randomly set xki to a value between 0 and
(n/2), and set vki  �1.

4.4 Pareto optimal set maintenance

Real empirical scheduling decisions often involve not only
the consideration of more than one objective at a time, but
also must prevent the conflict of two or more objectives.
The solution set of the multi-objective optimization
problem with conflicting objective functions consistent
with the solutions so that no other solution is better than
all other objective functions is called Pareto optimal. A
multi-objective minimization problem with m decision
variables and n objectives is given below to describe the
concept of Pareto optimality.

Minimize F xð Þ ¼ f1 xð Þ; f2 xð Þ; . . . ; fn xð Þð Þ
where; x 2 <m;F xð Þ 2 <n

A solution p is said to dominate solution q if and only if

fk pð Þ � fk qð Þ 8k 2 1; 2; . . . ; nf g
fk pð Þ < fk qð Þ 9k 2 1; 2; . . . ; nf g
Non-dominated solutions are defined as solutions that

dominate the others but do not dominate themselves.
Solution p is said to be a Pareto optimal solution if there
exists no other solution q in the feasible space that could
dominate p. The set including all Pareto optimal solutions is
referred to as the Pareto optimal or Pareto optimalPareto
optimal set. A graph plotted using collected Pareto optimal
solutions in feasible space is referred to as the Pareto front.

The external Pareto optimal set is used to produce a
limited size of non-dominated solutions (Knowles et al.,
[11]; Zitzler et al. [32]). The maximum size of the archive

set is specified in advance. This method is used to avoid
missing fragments of the non-dominated front during the
search process. The Pareto optimal front is formed as the
archive is updated iteratively. When the archive set is
sufficiently empty and a new non-dominated solution is
detected, the new solution enters the archive set. As the
new solution enters the archive set, any solution already
there that is dominated by this solution will be removed.
When the maximum archive size reaches its preset value,
the archive set must decide which solution should be
replaced. In this study, we propose a novel Pareto archive
set update process to preclude losing non-dominated
solutions when the Pareto archive set is full. When a new
non-dominated solution is discovered, the archive set is
updated when one of the following situations occurs: either
the number of solutions in the archive set is less than the
maximum value, or if the number of solutions in the
archive set is equal to or greater than the maximum value,
then the one solution in the archive set that is most
dissimilar to the new solution is replaced by the new
solution. We measure the dissimilarity by the Euclidean
distance. A longer distance implies a higher dissimilarity.
The non-dominated solution in the Pareto archive set with
the longest distance to the newly found solution is replaced.
For example, the distance (dij) between X1 and X2 is
calculated as

X 1 ¼ 2:7 5:2 1:8 0:6 6:3 3:9½ �
X 2 ¼ 1:6 0:8 1:8 1:7 1:2 3:9½ �
dij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:7� 1:6ð Þ2þ 5:2� 0:8ð Þ2þ 0:6� 1:7ð Þ2þ 6:3� 1:2ð Þ2

q
¼ 6:91

The Pareto archive set is updated at the end of each
iteration in the proposed PSO.

4.5 Diversification strategy

If all the particles have the same non-dominated solutions,
they will be trapped in the local optimal. To prevent this, a
diversification strategy is proposed to keep the non-
dominated solutions different. Once any new solution is
generated by the particles, the non-dominated solution set is
updated according to one of three situations.

1. If the solution of the particle is dominated by the gbest
solution, assign the particle solution to gbest.

2. If the solution of the particle equals any solution in the
non-dominated solution set, replace the non-dominated
solution with the particle solution.

3. If the solution of the particle is dominated by the worst
non-dominated solution and not equal to any non-
dominated solution, set the worst non-dominated
solution equal to the particle solution.
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5 Computational results

The proposed PSO algorithm was verified by benchmark
problems obtained from the OR-Library that were contrib-
uted by Carlier [2], Heller [8], and Reeves [23]. The test
program was coded in Visual C++ and run 20 times on each
problem using an Intel Pentium 4 3.0-GHz processor with
1 GB of RAM running Windows XP. We used four swarm
sizes N (10, 20, 60, and 80) to test the algorithm during a
pilot experiment. A value of N=80 was best, so it was used
in all subsequent tests. The algorithm parameters were set
as follows: c1 and c2 were tested over the range 0.1–0.7 in
increments of 0.2, and the inertial weight w was reduced
from wmax to wmin during the iterations. Parameter wmax

was set to 0.5, 0.7, and 0.9 corresponding to wmin values of
0.1, 0.3, and 0.5. Settings of c1=0.7, c2=0.1, wmax=0.7,
and wmin=0.3 worked best.

The proposed PSO algorithm was compared with five
heuristic algorithms: CDS[1], NEH[17], RAJ[20], GAN-
RAJ[6] and Laha[13]. We also coded these methods in
Visual C++. The CDS heuristic [1] takes its name from its
three authors and is a heuristic generalization of Johnson’s
algorithm. The process generates a set of m−1 artificial
two-machine problems, each of which is then solved by
Johnson’s rule. In this study, we modified the original CDS
and compared the makespan, mean flow time, and machine
idle time of all m−1 generated problems. The non-
dominated solution was selected to compare with the
solutions obtained from our PSO algorithm. The other
comparison was based on solutions determined by the NEH
algorithm introduced by Nawaz et al. [17]. The NEH
investigates n(n+1)/2 permutations to find near-optimal
solutions. As we did for CDS, we modified the original
NEH and compared the three objectives of all n(n+1)/2

sequences. We compared the non-dominated solution from
these sequences with the solutions from our PSO.

The following two performance measures are used in
this study: average-relative percentage deviation (ARPD)
and maximum percentage deviation (MPD) where MS
stands for makespan, TFT represents total flow time, MIT
stands for machine idle time, H is the heuristic.

ARPDMS ¼ 100

10

X10
i¼1

MSH ;i � BestMSi
BestMSi

	 

ð3Þ

MPDMS ¼ MAXi¼1::10
MSH ;i � BestMSi

BestMSi

	 

� 100 ð4Þ

ARPDTFT ¼ 100

10

X10
i¼1

TFTH ;i � BestTFTi

BestTFTi

	 

ð5Þ

MPDTFT ¼ MAXi¼1::10
TFTH ;i � BestTFTi

BestTFTi

	 

� 100 ð6Þ

ARPDMIT ¼ 100

10

X10
i¼1

MITH ;i � BestMITi

BestMITi

	 

ð7Þ

MPDMIT ¼ MAXi¼1::10
MITH ;i � BestMITi

BestMITi

	 

� 100 ð8Þ

We tested our PSO on nine different problem sizes (n=
20, 50, 100 and m=5, 10, 20) from Taillard’s [28]
benchmarks. Table 1 compares the six methods using the

Table 1 Comparison of makespan(MS) for different heuristics

Problem size NEH [17] CDS [1] RAJ [20] GAN-RAJ [6] Laha [13] PSO

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD

20 5 1.84 0.25 0.76 0.15 0.44 0.12 0.63 0.14 1.55 0.2 0.00 0.00

10 1.78 0.23 0.71 0.12 0.85 0.17 0.83 0.14 1.50 0.20 0.00 0.00

20 1.27 0.17 0.44 0.06 0.88 0.14 0.82 0.12 1.06 0.15 0.00 0.00

50 5 1.24 0.17 0.83 0.14 0.26 0.05 0.37 0.08 1.29 0.22 0.02 0.02

10 1.28 0.19 0.59 0.08 0.48 0.09 0.53 0.10 1.29 0.18 0.01 0.01

20 1.08 0.17 0.07 0.02 0.35 0.07 0.39 0.07 1.02 0.16 0.06 0.03

100 5 1.04 0.19 0.46 0.12 0.36 0.07 0.23 0.07 1.05 0.16 0.07 0.07

10 0.28 0.06 0.47 0.07 0.29 0.06 0.24 0.04 0.89 0.13 0.01 0.01

20 0.65 0.11 0.16 0.04 0.21 0.05 0.18 0.04 0.72 0.10 0.01 0.01

NEH Nawaz et al. [17], CDS Campbell et al. [1], RAJ Rajendran C [20], GAN-RAJ Gangadharan and Rajendran [6], Laha Laha and Chakraborty
[12, 13], PSO proposed PSO)
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Table 2 Comparison of total flow time (TFT) for different heuristics

Problem size NEH [17] CDS [1] RAJ [20] GAN-RAJ [6] Laha [13] PSO

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD

20 5 0.65 0.17 1.71 0.27 1.70 0.31 1.88 0.34 4.43 0.61 1.28 0.20

10 0.70 0.10 1.43 0.18 1.29 0.19 1.47 0.23 3.43 0.51 0.95 0.12

20 0.59 0.14 1.23 0.18 1.27 0.21 1.31 0.24 2.29 0.30 0.82 0.12

50 5 0.11 0.07 2.48 0.56 2.56 0.51 2.58 0.53 5.86 0.94 2.48 0.44

10 7.87 7.53 11.33 9.62 10.91 9.24 11.27 9.50 14.49 10.87 10.78 9.19

20 0.39 0.09 1.55 0.20 1.58 0.20 1.60 0.19 3.18 0.40 1.44 0.17

100 5 0.27 0.27 2.24 2.24 3.59 3.59 3.00 3.00 5.56 5.56 2.60 2.60

10 0.87 0.87 1.86 1.86 1.91 1.91 1.80 1.80 4.02 4.02 1.93 1.93

20 1.39 1.39 1.65 1.65 1.73 1.73 1.65 1.65 2.83 2.83 1.59 1.59

(NEH Nawaz et al. [17], CDS Campbell et al. [1], RAJ Rajendran C [20], GAN-RAJ Gangadharan and Rajendran [6], Laha Laha and Chakraborty
[12, 13], PSO proposed PSO)

Table 3 Comparison of machine idle time (MIT) for different heuristics

Problem size NEH [17] CDS [1] RAJ [20] GAN-RAJ [6] Laha [13] PSO

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD

20 5 4.54 2.94 43.56 20.33 3.20 1.03 5.04 1.38 10.79 4.70 1.50 0.43

10 3.87 0.83 15.03 1.94 8.07 1.48 7.93 1.42 9.92 1.76 0.00 0.00

20 11.37 1.55 19.19 2.40 14.88 2.01 14.46 1.85 15.29 2.10 0.00 0.00

50 5 67.77 26.95 208.65 108.95 17.11 11.76 17.08 11.76 52.70 23.48 2.95 2.82

10 1.92 0.56 10.59 1.74 4.74 0.68 4.91 0.70 6.92 1.24 0.26 0.18

20 2.26 0.36 8.02 0.97 5.75 0.83 5.80 0.87 7.47 0.96 0.00 0.00

100 5 18.18 4.94 40.24 7.65 4.41 1.40 2.00 0.76 15.47 3.34 3.51 1.69

10 1.96 0.43 9.54 1.38 1.92 0.38 1.65 0.41 5.47 0.98 0.15 0.09

20 1.03 0.26 4.26 0.52 2.79 0.40 2.64 0.35 3.77 0.45 0.00 0.00

(NEH Nawaz et al. [17], CDS Campbell et al. [1], RAJ Rajendran C [20], GAN-RAJ Gangadharan and Rajendran [6], Laha Laha and Chakraborty
[12, 13], PSO proposed PSO)

Table 4 Summation of MS, TFT and MIT for different heuristics

Problem size NEH [17] CDS [1] RAJ [20] GAN-RAJ [6] Laha [13] PSO

n m ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD ARPD MPD

20 5 7.04 3.35 46.03 20.75 5.34 1.46 7.56 1.86 16.77 5.52 2.78 0.63

10 6.36 1.16 17.18 2.25 10.21 1.83 10.23 1.79 14.85 2.46 0.95 0.12

20 13.23 1.86 20.86 2.64 17.03 2.36 16.60 2.22 18.63 2.54 0.82 0.12

50 5 69.12 27.19 211.96 109.65 19.93 12.33 20.03 12.37 59.84 24.64 5.45 3.28

10 11.08 8.28 22.51 11.44 16.13 10.00 16.71 10.30 22.70 12.29 11.04 9.38

20 3.72 0.62 9.64 1.19 7.68 1.10 7.79 1.13 11.68 1.52 1.50 0.20

100 5 19.49 5.41 42.93 10.01 8.37 5.06 5.23 3.82 22.08 9.06 6.18 4.35

10 3.11 1.36 11.87 3.32 4.12 2.35 3.69 2.25 10.38 5.13 2.08 2.02

20 3.08 1.77 6.07 2.21 4.73 2.19 4.47 2.04 7.33 3.38 1.60 1.60

(NEH Nawaz et al. [17], CDS Campbell et al. [1], RAJ Rajendran C [20], GAN-RAJ Gangadharan and Rajendran [6], Laha Laha and Chakraborty
[12, 13], PSO proposed PSO)
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Table 5 Average CPU time (in seconds)

n m NEH CDS RAJ GANRAJ Laha [12] PSO

20 5 0.0016 0.0031 0.0047 0.0014 0.0012 1.6641

10 0.0015 0.0093 0.0094 0.0015 0.0015 2.0547

20 0.0047 0.0109 0.0094 0.0031 0.0047 2.8078

50 5 0.0140 0.0016 0.0156 0.0047 0.0047 4.4906

10 0.0234 0.0032 0.0297 0.0047 0.0063 5.3047

20 0.0500 0.0078 0.0539 0.0078 0.0062 7.1593

100 5 0.0860 0.0016 0.0844 0.0047 0.0047 11.9094

10 0.1750 0.0046 0.1750 0.0047 0.0078 13.4906

20 0.3750 0.0078 0.3656 0.0079 0.0141 17.0079

(NEH Nawaz et al. [17], CDS Campbell et al. [1], RAJ Rajendran C [20], GAN-RAJ Gangadharan and Rajendran [6], Laha Laha and Chakraborty
[12, 13], PSO proposed PSO)

Table 6 Comparison of total flow time (TFT) for different heuristics in ARPD

n m NEH CDS RAJ GANRAJ Laha LR SA H-1 H-2 PSO

20 5 0.65 1.71 1.70 1.88 4.43 0.24 1.17 0.16 0.20 1.28

10 0.70 1.43 1.29 1.47 3.43 0.09 0.72 0.01 0.01 0.95

20 0.59 1.23 1.27 1.31 2.29 0.15 0.66 0.12 0.07 0.82

50 5 0.11 2.48 2.56 2.58 5.86 0.56 1.78 0.55 0.54 2.48

10 7.87 11.33 10.91 11.27 14.49 8.06 1.24 7.97 7.89 10.78

20 0.39 1.55 1.58 1.60 3.18 0.15 1.10 0.08 0.09 1.44

100 5 0.27 2.24 3.59 3.00 5.56 0.43 1.59 0.43 0.43 2.60

10 0.87 1.86 1.91 1.80 4.02 0.04 1.24 0.03 0.03 1.93

20 1.39 1.65 1.73 1.65 2.83 0.08 1.13 0.01 0.02 1.59

NEH Nawaz et al. [17], CDS Campbell et al [1], RAJ Rajendran C [20], GAN-RAJ Gangadharan R, Rajendran C [6], Laha Laha and Chakraborty
[12, 13], LR Liu J, Reeves CR [16], SA Chakravarthy K, Rajendran C [3], H-1 and H-2 Laha D, Chakraborty UK [12, 13], PSO proposed PSO)

Table 7 Comparison of total flow time (TFT) for different heuristics in MPD

n m NEH CDS RAJ GANRAJ Laha LR SA H-1 H-2 PSO

20 5 0.17 0.27 0.31 0.34 0.61 0.12 0.21 0.11 0.12 0.20

10 0.10 0.18 0.19 0.23 0.51 0.01 0.12 0.00 0.01 0.12

20 0.14 0.18 0.21 0.24 0.30 0.05 0.12 0.05 0.05 0.12

50 5 0.07 0.56 0.51 0.53 0.94 0.25 0.38 0.25 0.25 0.44

10 7.53 9.62 9.24 9.50 10.87 7.92 0.19 7.87 7.82 9.19

20 0.09 0.20 0.20 0.19 0.40 0.04 0.16 0.04 0.04 0.17

100 5 0.27 2.24 3.59 3.00 5.56 0.43 1.59 0.43 0.43 2.60

10 0.87 1.86 1.91 1.80 4.02 0.04 1.24 0.03 0.03 1.93

20 1.39 1.65 1.73 1.65 2.83 0.08 1.13 0.01 0.02 1.59

NEH Nawaz et al. [17], CDS Campbell et al [1], RAJ Rajendran C [20], GAN-RAJ Gangadharan R, Rajendran C [6], Laha Laha and Chakraborty
[12, 13], LR Liu J, Reeves CR [16], SA Chakravarthy K, Rajendran C [3], H-1 and H-2 Laha D, Chakraborty UK [12, 13], PSO proposed PSO)

Int J Adv Manuf Technol



ARPD and MPD. Table 1 show that the proposed PSO
outperforms for almost all problem instances in the make-
span object. The comparison of TFT object is revealed in
Table 2. It shows the ARPD and MPD of six heuristics and
the Laha’s algorithm performs better. We have given the
comparison of MIT in Table 3 that indicates the proposed
PSO can get better solution. At last, we aggregate the
results of three objects in order to show the performance of
the proposed PSO to solve the multi-objectives problems.
We observed that the PSO performed better than other five
heuristics. Table 4 shows the superior performance of the
proposed PSO in terms of the three simultaneous objec-
tives. The computation cost is demonstrated on Table 5.
The proposed PSO spends more CPU time than other
construct heuristic because of the proposed PSO is an
evolutionary algorithm.

In addition, we compare TFT of benchmarks by more
algorithms—Liu and Reeves[16] (LR), Chakravarthy-
Rajendran [3], simulated annealing-bases approach (SA)
and Laha and Chakraborty [12] (H-1 and H-2). The results
are shown in Table 6 for ARPD and Table 7 for MPD. We
can observe that the H-1 and H-2 perform better than other
algorithms while only one object TFT is considered.

6 Conclusion

Many flowshop scheduling problem studies have been
conducted in the past. However, the objective of most of
these has been the minimization of the maximum comple-
tion time (i.e., the makespan). In the real world, there exist
other objectives, such as minimization of machine idle time
that might help improve efficiency and reduce production
costs. PSO, which was inspired by the behavior of birds
and fish, has certain advantages, including simple structure,
easy implementation, immediate accessibility, short search
time, and robustness. However, there has been limited study
of PSO to address the multiple objectives found in the
flowshop scheduling problem. We have therefore presented
a PSO method for solving a flowshop scheduling problem
with multiple objectives, including minimization of make-
span, mean flow time, and machine idle time.

PSO was originally proposed for continuous optimiza-
tion problems. We modified the representation of particle
position, particle movement, and particle velocity to make
PSO suitable for flowshop scheduling, which is a combi-
national problem. In addition, we used a mutation operator
in our PSO algorithm. We also incorporated the concept of
Pareto optimality to measure the performance of multiple
objectives rather than using a weighted fitness function.
Another necessary adjustment to the original PSO, required
to maintain the Pareto optimal solution, was the external
Pareto optimal set used to produce a limited size of non-

dominated solutions. We also used a diversification strategy
in our PSO algorithm. The results demonstrated that the
proposed PSO could produce more optimal solutions than
other heuristics (CDS, NEH, RAJ, GAN-RAJ, and Laha).
The ARPD and MPD of each problem scenario in our PSO
algorithm were less than those methods. The results of our
performance measurement also revealed that the proposed
PSO algorithm outperformed the heuristics in minimizing
the makespan, mean flow time, and total machine idle time.

In future research, we will attempt to apply our PSO to
other shop scheduling problems with multiple objectives.
Possible topics for further study include modification of the
particle position representation, particle movement, and
particle velocity. Issues related to Pareto optimality, such as
a solution maintenance strategy and performance measure-
ment, are also topics worthy of future study.
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Abstract 

Most previous research into the job-shop scheduling problem has concentrated on finding a single optimal 

solution (e.g., makespan), even though the actual requirement of most production systems requires 

multi-objective optimization. The aim of this paper is to construct a particle swarm optimization (PSO) for an 

elaborate multi-objective job-shop scheduling problem. The original PSO was used to solve continuous 

optimization problems. Due to the discrete solution spaces of scheduling optimization problems, the authors 

modified the particle position representation, particle movement, and particle velocity in this study. The 

modified PSO was used to solve various benchmark problems. Test results demonstrated that the modified PSO 

performed better in search quality and efficiency than traditional evolutionary heuristics. 
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Introduction 

The job-shop scheduling problem (JSP) has been studied for more than 50 years in both academic and industrial 

environments. Jain et al. provided a concise overview of JSPs over the last few decades and highlighted the 

main techniques [10]. The JSP is the most difficult class of combinational optimization. Garey et 

al. demonstrated that JSPs are non-deterministic polynomial-time hard (NP-hard) [7]; hence we cannot find an 

exact solution in a reasonable computation time. The single-objective JSP has attracted wide research attention. 

Most studies of single-objective JSPs result in a schedule to minimize the time required to complete all jobs, i.e., 

to minimize the makespan (Cmax). Many approximate methods have been developed to overcome the limitations 

of exact enumeration techniques. These approximate approaches include simulated annealing (SA) [17], tabu 

search [18][19][24] and genetic algorithms (GA) [1][9][12][27]. However, real-world production systems 

require simultaneous achievement of multiple objective requirements. This means that the academic 

concentration of objectives in the JSP must been extended from single to multiple. Recent related JSP research 

with multiple objectives is summarized as below. 

Ponnambalam has offered a multi-objective GA to derive optimal machine-wise priority dispatching rules 

for resolving job-shop problems with objective functions that consider minimization of makespan, total 

tardiness, and total machine idle time[20]. Ponnambalam’s multi-objective genetic algorithm (MOGA) has 

been tested with various published benchmarks, and is capable of providing optimal or near-optimal solutions. 

A Pareto front provides a set of best solutions to determine the tradeoffs between the various objects, and good 

parameter settings and appropriate representations can enhance the behavior of an evolution algorithm. 

Esquivel et al. studied the influence of distinct parameter combinations as well as different chromosome 

representations [5]. Initial results showed that:  

(i) larger numbers of generations favor the building of a Pareto front because the search process does not 

stagnate, even though it may be rather slow, 



(ii)  multi-recombination helps to speed the search and to find a larger set size when seeking the Pareto 

optimal set, and 

(iii)  operation-based representation is better than priority-list and job-based representation  selected for 

contrast under  recombination methods.  

The Pareto archived simulated annealing (PASA) method, a meta-heuristic procedure based on the SA 

algorithm, was developed by Suresh to find non-dominated solution sets for the JSP with the objectives of 

minimizing the makespan and the mean flow time of jobs[25]. The superior performance of the PASA can be 

attributed to the mechanism it uses to accept the candidate solution. Candido et al. addressed JSPs with numbers 

of more realistic constraints, such as jobs with several subassembly levels, alternative processing plans for parts 

and alternative resources of operations, and the requirement for multiple resources to process an operation [3]. 

The robust procedure worked well in all problem instances and proved to be a promising tool for solving more 

realistic JSPs. Lei first designed a crowding-measure-based multi-objective evolutionary algorithm (CMOEA) 

that makes use of the crowding measure to adjust the external population and assign different fitness for 

individuals [14]. Compared to the strength Pareto evolutionary algorithm, CMOEA performs well in job-shop 

scheduling with two objectives including minimization of makespan and total tardiness. 

One of the latest evolutionary techniques for unconstrained continuous optimization is particle swarm 

optimization (PSO) proposed by Kennedy et al. [11]. PSO has been successfully used in different fields due to 

its ease of implementation and computational efficiency. Even so, application of PSO to the combination 

optimization problem is rare. Coello et al. provided an approach in which Pareto dominance is incorporated into 

PSO to allow the heuristic to handle problems with several object functions [4]. The algorithm uses a secondary 

repository of particles to guide particle flight. That approach was validated using several test functions and 

metrics drawn from the standard literature on evolutionary multi-objective optimization. The results show that 

the approach is highly competitive. Liang et al. invented a novel PSO-based algorithm for JSPs[16]. That 



algorithm effectively exploits the capability of distributed and parallel computing systems, with simulation 

results showing the possibility of high-quality solutions for typical benchmark problems. Lei presented a PSO 

for the multi-objective JSP to minimize makespan and total job tardiness simultaneously [15]. Job-shop 

scheduling can be converted into a continuous optimization problem by constructing the corresponding 

relationship between a real vector and a chromosome obtained using the priority rule-based representation 

method. The global best position selection is combined with crowding-measure-based archive maintenance to 

design a Pareto archive PSO. That algorithm is capable of producing a number of high-quality Pareto optimal 

scheduling plans.  

Hybrid algorithms that combine different approaches to build on their strengths have led to another branch 

of research. Wang et al. combined GA with SA in a hybrid framework, in which the GA was introduced to 

present a parallel search architecture, and SA was used to increase the probability of escape from local optima at 

high temperatures [27]. Computer simulation results showed that the hybrid strategy was very effective and 

robust, and could find optima for almost all benchmark instances. Xia et al. developed an easily implemented 

approach for the multi-objective flexible JSP based on the combination of PSO and SA [28]. They demonstrated 

that their proposed algorithm was a viable and effective approach to the multi-objective flexible JSP, especially 

for large-scale problems. Ripon extended the idea in the jumping genes genetic algorithm, a hybrid approach 

capable of searching for near-optimal and non-dominated solutions with better convergence by simultaneously 

optimizing criteria [21]. 

Previous literature indicates that there has been little study of the JSP with multiple objectives. In this study, 

we use a new evolutionary PSO technique to solve the JSP with multiple objectives.  

 



Job-shop scheduling problem 

A typical JSP can be formulated as follows. There are n jobs to be processed through m machines. Each job must 

pass through each machine once and only once. Each job should be processed through the machines in a 

particular order, and there are no precedence constraints among the different job operations. Each machine can 

perform only one job at a time, and it cannot be interrupted. In addition, the operation time is fixed and known in 

advance. The objective of the JSP is to find a schedule to minimize the time required to complete all jobs, that is, 

to minimize the makespan Cmax. In this study, we attempt to attain the three objectives (i.e., minimizing 

makespan, machine idle time, and total tardiness) simultaneously. We formulate the multi-objective JSP using 

the following notation: 

n is the total number of jobs to be scheduled 

m is the total number of machines in the process 

t(i, j) is the processing time for job i on machine j (i=1,2,…n), (j=1,2,…m) 

Li is the lateness of job i 

{π1, π2, …, πn} is the permutation of jobs 

The objectives considered in this paper are formulated as follows: 

Completion time (makespan) ),( jC π  

  )1,()1,( 11 ππ tC =          (1) 
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PSO background 

PSO is based on observations of the social behavior of animals, such as birds in flocks or fish in schools, as well 

as on swarm theory. The population consisting of individuals or particles is initialized randomly. Each particle 

is assigned with a randomized velocity according to its own movement experience and that of the rest of the 

population. The relationship between the swarm and particles in PSO is similar to the relationship between the 

population and chromosomes in a GA.  

In PSO, the problem solution space is formulated as a search space. Each particle position in the search 

space is a correlated solution to the problem. Particles cooperate to determine the best position (solution) in the 

search space (solution space).  

Suppose that the search space is D-dimensional and there are ρ particles in the swarm. Particle i is located 

at position Xi={x1
i, x2

i, …, xD
i} and has velocity Vi={v1

i, v2
i, …, vD

i}, where i=1, 2, …,ρ. Based on the PSO 

algorithm, each particle move towards its own best position (pbest), denoted as Pbesti={pbest1
i, pbest2

i,…, 

pbestn
i}, and the best position of the whole swarm (gbest) is denoted as Gbest={gbest1, gbest2, …, gbestn} with 

each iteration. Each particle changes its position according to its velocity, which is randomly generated toward 

the pbest and gbest positions. For each particle r and dimension s, the new velocity vs
r and position xs

r of 

particles can be calculated by the following equations:  

)]1()1([)]1()1([)1()( 2211 −−−××+−−−××+−×= ττττττ r
s

r
s

r
s

r
s

r
s

r
s xgbestrandcxpbestrandcvwv  (8) 

)1()1()( −+−= τττ r
s

r
s

r
s vxx         (9) 



In Eqs. (8) and (9), τ is the iteration number. The inertial weight w is used to control exploration and exploitation. 

A large w value keeps the particles moving at high velocity and prevents them from becoming trapped in local 

optima. A small w value ensures a low particle velocity and encourages particles to exploit the same search area. 

The constants c1 and c2 are acceleration coefficients to determine whether particles prefer to move closer to the 

pbest or gbest positions. The rand1 and rand2 are two independent random numbers uniformly distributed 

between 0 and 1. The termination criterion of the PSO algorithm includes a maximum number of generations, a 

designated value of pbest, and lack of further improvement in pbest. The standard PSO process is outlined as 

follows:  

 

Step 1: Initialize a population of particles with random positions and velocities in a D-dimensional search space.  

Step 2: Update the velocity of each particle using Eq. (8).  

Step 3: Update the position of each particle using Eq. (9).  

Step 4: Map the position of each particle into the solution space and evaluate its fitness value according to the 

desired optimization fitness function. Simultaneously update the pbest and gbest positions if necessary.  

Step 5: Loop to Step 2 until the termination criterion is met, usually after a sufficient good fitness or a maximum 

number of iterations.  

 

The original PSO was designed for a continuous solution space. We must modify the PSO position 

representation, particle velocity, and particle movement so they work better with combinational optimization 

problems. These changes are described in next section.  



 

Proposed method 

There are four types of feasible schedules in JSPs, including inadmissible, semi-active, active, and non-delay. 

The optimal schedule is guaranteed to be an active schedule. We can decode a particle position into an active 

schedule employing Giffler and Thompson’s [8] heuristic. There are two different representations of particle 

position associated with a schedule. The results of Zhang [29] demonstrated that permutation-based position 

representation outperforms priority-based representation. While choosing to implement permutation-based 

position presentation, we must also adjust the particle velocity and particle movement. In addition, we also 

propose the maintenance of Pareto optima and a diversification procedure to achieve better performance.  

 

Position representation 

In this study, we randomly generated a group of particles (solutions) represented by a permutation sequence that 

is an ordered list of operations. For an n-job m-machine problem, the position of particle k can be represented by 

an m×n matrix, i.e., 
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 , where k

ijx  denotes the priority of operation ijo , which means the operation of job j 

that must be processed on machine i.  

The Giffler and Thompson (G&T) algorithm is briefly described below. 

 

Notation: 



(i,j) is the operation of job j that must be processed on machine i 

S is the partial schedule that contains scheduled operations 

Ω is the set of operations that can be scheduled 

s(i,j) is the earliest time at which operation (i,j) belonging to Ω can be started. 

p(i,j) is the processing time of operation (i,j). 

f(i,j) is the earliest time at which operation (i,j) belonging to Ω can be finished, f(i,j) = s(i,j) + p(i,j) . 

 

G&T algorithm: 

 

Step 1: Initialize φ=S ; Ω to contain all operations without predecessors. 

Step 2: Determine }{ min ),(),(
*

jiji ff Ω∈=  and the machine m* on which f* can be realized. 

Step 3:  

(1) Identify the operation set Ω∈′′ ) ,( ji  such that ) ,( ji ′′  requires machine m*, and *
),( fs ji <′′  

(2) Choose (i, j) from the operation set identified in Step 3(1) with the largest priority. 

(3) Add (i, j) to S. 

(4) Assign s(i,j) as the starting time of (i, j). 

Step 4: If a complete schedule has been generated, stop. Otherwise, delete (i, j) from Ω, include its immediate 

successor in Ω, and then go to Step 2. 

 

Table 1 shows the mechanism of the G&T algorithm using a 2×2 example. The position of particle k 

is 







=

21

12kX . 

 



Initialization 

Step 1: φ=S ; Ω={(1, 1), (2, 2)}. 

Iteration 1 

Step 2: s(1,1)=0, s(2,2)=0, f(1,1)=5, f(2,2)=4; f*=min{f(1,1),f(2,2)}=4, m*=2. 

Step 3: Identify the operation set {(2, 2)}; choose operation (2, 2) that has the largest priority, and add it 

into schedule S. 

Step 4: Update Ω={(1,1), (1,2)}; go to Step 2. 

Iteration 2 

Step 2: s(1,1)=0, s(1,2)=4, f(1,1)=5, f(1,2)=7; f*=min{f(1,1),f(1,2)}=5, m*=1. 

Step 3: Identify the operation set {(1, 1), (1, 2)}; choose operation (1, 2) that has the largest priority, and 

add it into schedule S. 

Step 4: Update Ω={(1, 1)}; go to Step 2. 

Iteration 3 

Step 2: s(1,1)=7, f(1,1)=12; f*=min{f(1,1)}=12, m*=1. 

Step 3: Identify the operation set {(1, 1)}; choose operation (1, 1) that has the largest priority, and add it 

into schedule S. 

Step 4: Update Ω={(2, 1)}; go to Step 2. 

Iteration 4 

Step 2: s(2,1)=12, f(2,1)=16; f*=min{f(2,1)}=16, m*=2. 

Step 3: Identify the operation set {(2, 1)}; choose operation (2, 1) that has the largest priority, and add it 

into schedule S. 

Step 4: A complete schedule has been generated, so stop the process. 

 



The proposed PSO differs from the original PSO in the information stored in the pbest and gbest solutions. 

While the original PSO keeps the best positions found so far, the proposed PSO maintains the best schedule 

generated by the G&T algorithm. In the previous example, the schedule Sk rather than the position Xk is retained 

in the pbest and gbest solutions, where Sk is 








12

12
. The movement of particles is modified in accordance with 

the representation of particle position based on the insertion operator. 

 

Particle velocity 

The original PSO velocity concept assumes that each particle moves according to the velocity determined by the 

distance between the previous position of the particle and the gbest (pbest) solution. The two major purposes of 

the particle velocity are to keep the particle moving toward the gbest and pbest solutions, and to maintain inertia 

to prevent particles from becoming trapped in local optima. 

In the proposed PSO, we concentrate on preventing particles from becoming trapped in local optima rather 

than moving them toward the gbest (pbest) solution. If the priority value is increased or decreased by the present 

velocity in the current iteration, we keep the priority value increasing or decreasing at the beginning of the next 

iteration with probability w, which is the inertial weight in PSO. The larger the value of w, the more the iteration 

priority value keeps increasing or decreasing, and the more the difficult it is for the particle to return to its 

current position. For an n-job problem, the velocity of particle k can be represented as 

 . particle of  of velocity  theis   where},1,0,1{ ], ...  [ 21 kjvvvvvV i
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k
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kkk −∈=  

The initial velocity of particles is generated randomly. Instead of considering the distance from k
ix  to 

)( i
k
i gbestpbest , our PSO considers whether the value of k

ix  is larger or smaller than )( i
k
i gbestpbest . If k

ix  

decreases in the present iteration, this mean that )( i
k
i gbestpbest  is smaller than kix  and k

ix  is set moving toward 



)( i
k
i gbestpbest  by letting k

iv � –1. Therefore, in the next iteration, kix is kept decreasing by one (i.e., 

k
ix �

k
ix  –1) with probability w. Conversely, if k

ix  increases in this iteration, then )( i
k
i gbestpbest  is larger than 

k
ix , and k

ix  is set moving toward )( i
k
i gbestpbest  by setting k

iv � 1. Therefore, in the next iteration, k
ix  is kept 

increasing by one (i.e., kix �
k
ix  + 1) with probability w. 

The inertial weight w influences the velocity of the particles in the PSO. We randomly update velocities at 

the beginning of the iteration. For each particle k and operation j i , if k
iv  does not equal to 0, kiv will be set to 0 

with probability (1–w). This forces k
ix  to stop increasing or decreasing continuously in this iteration with 

probability (1–w) while k
ix  keeps increasing or decreasing.  

 

Particle movement 

The particle movement is based on the swap operator proposed by Sha et al. [22][23].  

 

Notation: 

k
ix  is the schedule list at machine i of particle k. 

k
ipbest  is the schedule list at machine i of the kth pbest solution. 

igbest  is the schedule list at machine i of the gbest solution. 

c1 and c2 are constants between 0 and 1 such that 121 ≤+ cc . 

 

The swap procedure occurs as shown below. 

Step 1: Randomly choose a position ζ from k
ix . 

Step 2: Mark the job on position ζ of k
ix  by Λ1. 



Step 3: If the random number rand < c1 then seek the position of Λ1 in k
ipbest ; otherwise, seek the position 

of Λ1 in igbest . Denote the position that has been found in k
ipbest  or igbest  by ζ′, and the job in 

position ζ′ of k
ix  by Λ2. 

Step 4: If Λ2 has been denoted, 0
1

=k
iJv , and 0

2
=k

iJv , then swap Λ1 and Λ2 in k
ix , 1

1
←k

iJv . 

Step 5: If all the positions of kix  have been considered, then stop. If not, and if ζ < n, then ζ←ζ+1; 

otherwise, ζ←1. Go to Step 2. 

 

For example, consider the 6-job problem where k
ix =[4 2 1 3 6 5], k

ipbest =[1 5 4 2 6 3], igbest=[3 2 6 4 5 1], 

k
iv =[0 0 1 0 0 0], c1=0.6, and c2=0.2.  

Step 1: The position of kix  is randomly chosen: ζ=3. 

Step 2: The job in the 3rd position of k
ix  is job 1, i.e., Λ1=1. 

Step 3: A random number rand is generated; assume rand=0.7. Since rand > c1, we compare each position 

of igbest  with Λ1 and the matched position ζ′=6. The job in the 6th position of kix  is job 5, i.e., 

Λ2=5.  

Step 4: Since 04 =k
iv  and 05 =k

iv , swap jobs 1 and 5 in kix  so k
ix =[4 2 5 3 6 1]. Then let 14 ←k

iv  and 

k
iv =[0 0 1 1 0 0].  

Step 5: Let ζ←4 and go to Step 2. Repeat the process until all positions of k
ix  have been considered. 

 



Diversification strategy 

If all the particles have the same non-dominated solutions, they will be trapped in local optima. To prevent this 

from happening, a diversification strategy is proposed to keep the non-dominated solutions different. Once any 

new solution is generated by particles, the non-dominating solution set will be updated in these three situations: 

(i) If the solution of the particle dominates the gbest solution, assign the particle solution to the gbest.  

(ii)  If the solution of the particle equals to any solution in the non-dominated solution set, replace the 

non-dominated solution with the particle solution.  

(iii)  If the solution of the particle is dominated by the worst non-dominated solution and not equal to any 

non-dominated solution, set the worst non-dominated solution equal to the particle solution. 

 

Computational results 

The proposed multi-objective PSO (MOPSO) algorithm was tested on benchmark problems obtained from 

the OR-Library [2][26]. The program was coded in Visual C++ and run 40 times on each problem on a Pentium 

4 3.0-GHz computer with 1 GB of RAM running Windows XP. During the pilot experiment, we used four 

swarm sizes N (10, 30, 60, and 80) to test the algorithm. The outcome of N=80 was best, so that value was used 

in all further tests. Parameters c1 and c2 were tested at various values in the range 0.1–0.7 in increments of 0.2. 

The inertial weight w was reduced from wmax to wmin during iterations, where wmax was set to 0.5, 0.7, and 0.9, 

and wmin was set to 0.1, 0.3, and 0.5. The combination of c1=0.7, c2=0.1, wmax=0.7 and wmin=0.3 gave the best 

results. The maximum iteration limit was set to 60 and the maximum archive size was set to 80. 

The MOGA proposed by Ponnambalam et al. [19] was chosen as a baseline against which to compare the 

performance of our PSO algorithm. The objectives considered in the MOGA algorithm are minimization of 

makespan, minimization of total tardiness, and minimization of machine idle time. The MOGA methodology is 



based on the machine-wise priority dispatching rule (pdr) and the G&T procedure [8]. The each gene represents 

a pdr code. The G&T procedure was used to generate an active feasible schedule. The MOGA fitness function is 

the weighted sum of makespan, total tardiness, and total idle time of machines with random weights. 

The computation results showed that the relative error of the solution for Cmax and total idle time 

determined by the proposed MOPSO was better in 23 out of 23 problems than the MOGA. In 22 of the 23 

problems, the proposed PSO performed better for the solution considering total tardiness. Overall, the proposed 

MOPSO was superior to the MOGA in solving the JSP with multiple objectives.  

 

Conclusion 

While there has been a large amount of research into the JSP, most of this has focused on minimizing the 

maximum completion time (i.e., makespan). There exist other objectives in the real world, such as the 

minimization of machine idle time that might help improve efficiency and reduce production costs. PSO, 

inspired by the behavior of birds in flocks and fish in schools, has the advantages of simple structure, easy 

implementation, immediate accessibility, short search time, and robustness. However, few applications of PSO 

to multi-objective JSPs can be found in the literature. Therefore, we presented a MOPSO method for solving the 

JSP with multiple objectives, including minimization of makespan, total tardiness, and total machine idle time. 

The original PSO was proposed for continuous optimization problems. To make it suitable for job-shop 

scheduling (i.e., a combinational problem), we modified the representation of particle position, particle 

movement, and particle velocity. We also introduced a mutation operator and used a diversification strategy. 

The results demonstrated that the proposed MOPSO could obtain more optimal solutions than the MOGA. The 

relative error ratios of each problem scenario in our MOPSO algorithm were less than in the MOGA. The 



performance measure results also revealed that the proposed MOPSO algorithm outperformed MOGA in 

simultaneously minimizing makespan, total tardiness, and total machine idle time. 

We will attempt to apply MOPSO to other shop scheduling problems with multiple objectives in future 

research. Other possible topics for further study include the modification of the particle position representation, 

particle movement, and particle velocity. In addition, issues related to Pareto optimization, such as solution 

maintenance strategy and performance measurement, merit future investigation. 
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Appendices 

Pseudo-code of the PSO for the multi-objective JSP is as follows. 

 

Initialize a population of particles with random positions. 

for each particle k do  

 Evaluate Xk (the position of particle k) 

 Save the pbestk to optimal solution set S 

end for 

Set gbest solution equal to the best pbestk 

repeat 

 Updates particles velocities 

 for each particle k do  



  Move particle k 

Evaluate Xk 

Update gbest, pbest, and S 

 end for 

until maximum iteration limit is reached 
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Table 1 2×2 example 

Jobs Machine sequence Processing times 

1 1, 2 p(1,2)=5; p(2,1)=4 

2 2, 1 p(2,2)=4; p(1,2)=3 

 

Table 2 Comparison of MOGA and MOPSO with three objectives. 

Benchmark N m 
Makespan 
(MOGA) 

Makespan 
(MOPSO) 

% 
Deviation 

Machine 
 idle time 
(MOGA) 

Machine 
idle time 

(MOPSO) 

% 
Deviation 

Total 
tardiness 
(MOGA) 

Total 
tardiness 

(MOPSO) 

% 
Deviation 

abz5 10 10 1587 1338 0 8097 3978 0 1948 611 0 

abz6 10 10 1369 1046 0 7744 2937 0 1882 339 0 

ft06 6 6 76 56 0 259 100 0 31 3 0 

ft10 10 10 1496 1045 0 9851 1999 0 3459 1534 0 

orb01 10 10 1704 1181 0 11631 3909 0 3052 191 0 

orb02 10 10 1284 1029 0 7585 3539 0 1565 137 0 

orb03 10 10 1643 1114 0 11138 3788 0 4140 247 0 

orb04 10 10 1543 1122 0 9802 3921 0 4951 221 0 

orb05 10 10 1323 1013 0 8322 3727 0 2195 30 0 

orb06 10 10 1645 1144 0 10836 3478 0 2601 0 0 

orb07 10 10 583 302 0 3423 1381 0 699 0 0 

orb08 10 10 1340 1000 0 8840 3542 0 3498 253 0 

orb09 10 10 1462 1044 0 9439 4224 0 2029 0 0 

orb10 10 10 1382 1077 0 8271 4177 0 1806 0 0 

la01 10 5 1256 709 0 3431 571 0 3324 721 0 

la02 10 5 1066 713 0 2687 573 0 2081 425 0 

la03 10 5 821 671 0 1722 633 0 1926 373 0 

la04 10 5 861 631 0 1798 557 0 3194 673 0 

la05 10 5 893 593 0 2182 473 0 1716 736 0 



la16 10 10 1452 1040 0 9169 2718 0 1127 1417 0.25732 

la17 10 10 1172 889 0 7044 3365 0 1779 53 0 

la19 10 10 1251 938 0 7164 2796 0 1581 733 0 

la20 10 10 1419 985 0 8745 2883 0 1451 407 0 
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一、參加會議經過 

  第三十九屆計算機與工業工程國際研討會，主要是由國際期刊:計算機與工業工程委託

University of Technology of Troyes (UTT)舉辦。Troyes 是法國香檳區的一座古老城鎮，位於巴黎

東南方 150 公里處，以擁有 16 世紀的文化遺產聞名。在年中獲悉第三十九屆計算機與工業工程國際研

討會的訊息，便積極準備投稿，於截稿時間 1 月 31 日前，將論文全文投出，三月初收到接受通知。之

後即開始後續報名與行程安排。於 7 月 5 日搭機前往巴黎參加 CIE39 研討會。 

我們的報告歸類為 Operational Research / meta-heuristic 的 session, 在第三天下午 16:10 開始

報告，原本是在 break 之後的第二篇，但是由於第一篇的報告者未出席，因此我們的報告便提前。報

告十五分鐘，之後有與會學者提問，提問的內容皆相當有深度且有意義。主要是因為在這個 session

中的四篇論文，都是採用同樣的演算法為基礎，解決不同領域的問題，因此大家很容易得以產生共鳴，

並引發熱烈的討論。透過自己與其他學者的報告還有討論互動，可以充分了解我們的研究內容中仍可

進行修正之處，另一方面也了解到，我們所應用的最佳化演算法，在國際上研究的熱潮與主要研究的

方向。 

 

二、與會心得 
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  本屆計算機與工業工程國際會議，主題涵蓋近年來學術與產業界的研究與發展，包含的主軸

有：Applied Operations Research、Probabilistic and Statistical Models、Communications & Networking、

Data Mining, Knowledge Discovery and Computational Intelligence、Multi-Criteria Decision Making and 

Decision Analysis、System Simulation and Forecasting、Information Technology、Supply Chain Management 

& Logistics、Web-based Applications, E-Business and E-Commerce、Quality Management/Engineering, 

Reliability and Maintenance 、 Facilities Layout Design, Warehousing, Material Handling 、

Production/Manufacturing Systems and Processes; Agile Manufacturing; ERP/APS 、 Design for 

Manufacturing, Robust Design, Reverse Engineering、Group Technology & Cellular Manufacturing、

Environmentally Conscious Manufacturing、Human Factors, Industrial Ergonomics and Safety、Project 

Development & Management、Global Economy Engineering & IE、Manufacturing、 Technologies、Artificial 

Intelligence & Expert Systems、Industrial Engineering Education and E-learning、Systematic Innovation、

Ethics in IE Education Research & Practice。從上述的主題中不難發現，工業工程領域除了傳統的範疇之

外已逐步拓展到科技管理與服務業管理等非傳統工業工程的領域。 

此次會議中，針對每位演講者/論文發表者的講題，各場聽眾皆有相當熱烈的回應與討論，於

此當中，不僅瞭解目前國外學者的研究方向，亦學習到如何與國外聽眾作互動，同時也更深刻了解到

學術溝通的重要性。透過此次會議的參與，讓我吸收了許多寶貴的經驗，也藉由與國外學者的密切互

動，讓自己更加瞭解未來工業工程發展的趨勢，並對工業工程領域相關的學術研究有更全盤性的認識

與了解。 

 

三、攜回資料名稱及內容 

1.大會手冊一本   

2.大會論文摘要集一本  

3.大會論文光碟一片   

4.環保背包一只紀念品(雷射指引筆)一份   

5.與在場學者交流之名片 
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                                     日期：98 年 12 月 25 日    

一、參加會議經過 

  第十屆亞太工業工程與管理系統研討會，主要是由國際期刊:工業工程與管理系統與早稻田大

學(Waseda University)共同舉辦。APIEMS 主要提供工業工程與管理系統領域的學術與產業界的研究者與

工程師交換最新發展與異教交流的論壇。在年中獲悉第十屆工業工程與管理系統國際研討會的訊息，

便積極準備投稿，於摘要截稿時間 8 月 15 日前，將論文摘要投出，九月初收到接受通知，九月十五日

將論文全文投出，十月十五日收到全文接受通知。之後即開始後續報名與行程安排。於 12 月 13 日搭

機前往日本參加 APIEMS 研討會。 

我們的報告歸類為 Swarm Intelligience and Neural Network 的 session, 在第一天下午

16:30 開始報告，我們的報告是此 session 的第一篇。報告十五分鐘，之後有與會學者提問，提問的

內容皆相當有深度且有意義。主要是因為在這個 session 中的五篇論文，都是採用粒子群演算法為基

礎，解決不同領域的問題，因此引發熱烈的討論。透過自己與其他學者的報告還有問題討論的互動，

可以充分了解我們的研究內容中仍可進行修正之處，另一方面也了解到，我們所應用的最佳化演算法，

在國際上研究的熱潮與主要研究的方向。 

 

二、與會心得 
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本屆亞太工業工程與管理系統研討會，主題涵蓋近年來學術與產業界的研究與發展，包含的

主題有：Applied Statistics & Data Mining, CAD/CAM, Computational Intelligence in IE, Decision Making Models,  

Decision Support Systems, Enterprise Information Systems/ERP, Facilities Design and Location, Green 

Design/Green Manufacturing, Healthcare Management, Human Factors/Industrial Ergonomics, Human Resource 

Management, Industrial Engineering Education, Inventory Systems and Management, Lean Manufacturing/Logistics, 

Manufacturing/Industrial Automation, Operations Research/Optimization, Product Design/Development, Production 

Systems Design, Planning and Control, Productivity and Business Strategies, Project Management, Quality 

Engineering, Research Methods in IE, Safety Management, Service Systems and Management, Soft 

Computing/Meta-Heuristics, Supply Chain and Logistics, Systems Engineering and Management, Systems 

Simulation, Technology Management, Total Quality Management。除了工業工程的主題外，尚包括健康管理、

服務系統與管理、系統工程與管理、科技管理等領域。 

 透過參與此次會議，對於演講者/論文發表者的講題，不僅可以瞭解到目前國外學者的研

究方向，於此當中，亦強化與國外學者間的互動，同時也更深刻體認到學術交流的重要性，當然，參

與的場次中聽眾皆有相當熱烈的回應與討論。透過此次會議的參與，吸收了更多寶貴的經驗，也藉由

與國外學者的密切互動，讓自己更加瞭解未來工業工程與管理發展的趨勢。 

 

三、攜回資料名稱及內容 

1.大會手冊一本   

2.大會論文摘要集一本  

3.大會論文光碟一片   

4.環保背包一只 

5.與在場學者交流之名片 
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                                     日期：99 年 3月 26 日    

一、參加會議經過 

 2010 年 IAENG 工業工程國際會議，主要是由 IAENG（Interantional Association of Engineers）

非營利國際組織於香港舉辦。該研討會聚焦於工程理論與應用以及計算機科學領域的主題。2009 年的

會議吸引超過來自五十個國家及 1000 名學者專家與會。本次投稿於 1 月 12 日截止，於是便積極準備

於截止日前將投稿論文送出，二月份收到接受通知，於三月十七日前往香港參加開幕與報告。 

我們的報告被安排在第一天下午 15:45 開始報告，原本是在 break 之後的第二篇，但是由於第一

篇的報告者未出席，因此我們的報告便提前。報告十五分鐘，之後有與會學者提問，提問的內容皆相

當有深度且有意義。主要是因為在這個 session 中的幾篇論文，都是採用啟發式演算法，解決不同領

域的問題，因此大家很容易得以產生共鳴，並引發熱烈的討論。透過自己與其他學者的報告還有討論

互動，可以充分了解我們的研究內容中仍可進行修正之處，另一方面也了解到，我們所應用的最佳化

演算法，在國際上研究的熱潮與主要研究的方向。 

 

二、與會心得 

本年度國際工業工程會議，主題涵蓋近年來學術與產業界的研究與發展，包含的主軸 Engineering 

Physiology, Biomedical Instrumentation, Engineering Statistics, Quality Management Systems, Maintenance 

計畫編號 NSC96－2221－E－216－052－MY3 

計畫名稱 粒子群最佳化於多目標排程問題之應用 

出國人員

姓名 
沙永傑 

服務機構

及職稱 
中華大學工業工程與管理學系 

會議時間 
99 年 3 月 17 日至 
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(中文) 2010 IAENG International Conference on Industrial Engineering 

(英文)2010 年工業工程國際會議 
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(中文)一種於多目標開放型排程的修訂粒子群最佳化 

(英文) A Modified Particle Swarm Optimization for Multi-objective Open Shop Scheduling 
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Engineering, Reliability and Quality Control, Engineering Experimental Design, Integrated Product Engineering, 

Engineering Risk and Decision Analysis, Computer Supported Collaborative Engineering, Human Factors and 

Ergonomics, Computer-Aided Design, Computer Aided Manufacturing, Computer Simulation MethodsFacilities 

Design and Logistics, Manufacturing Processes and Methods, Information Systems for the Manufacturing, Quality 

and Productivity Management, Optimization Methods, Intelligent Engineering Systems, Engineering Management 

and Leadership 等。由於會議是由多領域組成，從上述的主題中不難發現，工業工程領域除了傳統的範

疇之外已逐步拓展到科技管理與服務業管理等非傳統工業工程的領域。 

此次會議中，針對每位演講者/論文發表者的講題，聽眾皆有相當熱烈的回應與討論，不僅能夠瞭

解目前國外學者的研究方向，亦學習到如何與國外聽眾作互動，同時也更深刻了解到學術溝通的重要

性。透過此次會議的參與，吸收了許多寶貴的經驗。 

 

三、攜回資料名稱及內容 

1.大會手冊一本   

2.大會論文摘要集一本  

3.大會論文光碟一片   

4.背包一只  

5.與在場學者交流之名片 
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