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The dynamic dependence between the Chinese market and the 

international stock markets: A copula approach 

1. Introduction 

The dependence between financial markets has always been an important issue for 

both financial economists and investment practitioners (Bartram and Dufey, 2001). 

Researches on the market dependence typically gained wide responses in the literature 

because of its implications for international diversification and market integration. 

Recent studies have demonstrated evidence of contagion in equity markets (Ane and 

Labidi, 2006; Jondeau and Rockinger, 2006; Bekaert et al., 2005; Poon et al., 2004; 

Longin and Solnik, 2001; Forbes and Rigobon, 2002). However, these studies usually 

emphasized the developed economies such as the United States, the United Kingdom, 

Germany, France, and Japan. Few studies have investigated the role of China regarding 

her increasing integration into the international markets (Lane, 2006).  

Between the beginning of 1991 and the end of 2006, the total market 

capitalization in China realized a remarkable increase from US$2,028 million to 

US$786 billion, making China the largest of all emerging markets and fourth in the 

world. By the end of September 2007, a total of 1,517 companies had been listed in her 

stock markets. According to a 2009 IMF report,
1
 China has replaced Germany as the 

world‟s third largest economy. The dramatic growth in China has attracted many 

international speculators and investors, despite worries about the market crash due to 

price bubbles which may affect other markets. 

A recent incident shows the possible dependences between markets in China 

and other major markets in the world. On February 27, 2007, the Shanghai Stock 

Exchange‟s Composite Index dropped 8.8% unexpectedly, the largest 1-day decline in 

10 years. Later in the same day, the Dow Jones Industrial Average tumbled 3.3% and the 

NASDAQ declined 3.9%, the sharpest declines since the 911 crisis. Other European and 

Asian markets experienced similar responses. There is no doubt that an event in China 

might trigger international reactions around the world due to China‟s market 

integration with other markets. Bekaert et al. (2005) and Goetzmann et al. (2005) 

reported positive causality between market integration and market dependence. Campa 
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 Global Economic Outlook 2009, IMF. 
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and Fernandes (2006) found country risks smaller for markets integrated more with 

international markets. In particular, Chan et al. (2007) illustrated how China's financial 

market has emulated and integrated over time with developed markets. Sun et al. (2008) 

pointed out that China‟s increased integration mainly came from the opening up of her 

markets to foreign investor and the cross-border listings. In this study, we inquire 

whether China‟s financial market becomes more interdependent with those of the rest 

of the world‟s and, if so, whether her country risk declines as her degree of financial 

integration increases. 

Furthermore, as China‟s economy has attracted huge foreign speculators, a 

crash in her stock market may prompt abrupt withdrawals, and financial contagion could 

erupt consequently. A particular aim of our study is to examine the time-varying 

dependence structures between the Chinese market and other major markets of the 

world. The nature of this dependence is of great importance in understanding the 

market co-movements between China and other countries. The dynamic relationship 

between these markets certainly provides essential implications for portfolio 

diversification, risk management and international asset allocation.  

To assess these changing dependence structures over time, we estimate the 

time-varying copula models between indices of these stock markets. The parameters in 

the copula functions are considered as dynamic processes conditional on available 

information to account for non-linear and time-dependent relationships. 

Compared with existing literature, our study provides two contributions. First, 

few studies have focused on the co-movement of Chinese market with other 

international markets despite her noticeable growth and increasing integration with 

other major markets,. Some were confined to China‟s regional roles (Cheng and 

Glascock, 2005, 2006; Baur, 2007; Chang et al., 2000). As China‟s production and trade 

also have significant global influence
2
, we purport that the regional role should be 

extended worldwide.  

The second contribution is the demonstration of how a conditional copula model 

can be applied which will benefit portfolio diversification and active asset allocation 

for investors interested in Chinese markets. A copula-based measure can specify the 

structures of dependence and take the non-linear property into account without the 

constraint of normality. In particular, using an extended time-varying copula model with 

the conditional joint distribution, we can obtain conditional means, variances, and 

correlations, as well as the time paths of other dependence measurements such as rank 

                                                      

2
 Chan et al. (2008) pointed out that the trade between China and the rest of the world has become more 

direct in recent years. 
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correlation or tail dependence (Patton, 2006a). Our copula model investigates both 

conditional dependence structures and conditional tail dependences between the stock 

market of China and other major stock markets
3
. This forward-looking assessment can 

provide useful information to actively diversify the international portfolios and manage 

the assets worldwide. 

Specifically, the daily stock indices for Morgan Stanley Capital International 

(MSCI) China, MSCI Japan, MSCI United States, MSCI Europe, MSCI emerging 

markets, MSCI World, and MSCI AcWorld are collected over the period 2002–2007. 

We consistently find that, with markets in Japan, in the Pacific, and in the emerging 

countries, the Chinese market experiences not only a higher degree of dependence but 

also a higher variation of dependence, implying that the probability of joint crashes 

will be high for markets in these areas once bubbles burst in China. Portfolio managers 

should become more alert to take into account this co-movement.  

The remainder of this paper is structured as follows: Section 2 presents our 

empirical methodology of a time-varying copula model. Data and summary statistics 

are reported in Section 3. Empirical results are discussed and analyzed in Section 4, 

and conclusion is provided in Section 5. 

2. Empirical methodology 

Multivariate normality is not suitable for measuring the dependence structure of 

equity returns (Longin and Solnik, 2001; Poon et al., 2004). Researchers are concerned 

about the methodology used to specify their co-movements or contagion effects, 

especially for the asymmetric parts, between the stock markets. Longin and Solnik 

(2001) and Poon et al. (2004) have suggested the extreme value theory (EVT) for the 

study of the dependence structure between international equity markets. However, 

choosing an optimal threshold to identify the extreme values may be difficult.
4
 The 

                                                      

3
 Patton (2006a) was the first to apply a time-varying copula to exchange rate dependence. Bartram et al. 

(2007) and Ane and Labidi (2006) used the same method to examine the Euro and European financial 

market dependence, but they did not explore any time-varying tail dependence. 

4
 Choosing a high threshold value leads to few observations of return exceedances and implies inefficient 

parameter estimates with large standard errors. On the other hand, choosing a low threshold value can 

provide many observations of return exceedances, but induce biased parameter estimation. Hence, Longin 

and Solnik (2001) applied Monte Carlo simulation to determine the optimal threshold values. 
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dependence function used for estimating the threshold may not be well defined.
5
 

Furthermore, the main difficulty with EVT is that it is constrained by a static measure. 

Using EVT in a dynamic setting is only true if the explanatory variables are exogenous. 

If they are endogenous, the difficulty mentioned by Forbes and Rigobon (2002) 

emerges. 

Kroner and Ng (1998), Engle (2002), and Cappiello et al. (2006) have developed 

generalized autoregressive conditional heteroskedasticity (GARCH) models with 

time-varying covariances and correlations. Engle (2002) provided a univariate GARCH 

model that allows for conditional asymmetries in both volatilities and correlations. 

Cappiello et al. (2006) extended Engel‟s (2002) model to two-dimensional 

environments. Both Engle (2002) and Cappiello et al. (2006) contribute a computational 

advantage over multivariate GARCH models by providing a two-step estimation 

procedure, the univariate GARCH estimation followed by the correlation estimation. 

Intuitively, the aim is to separate the modeling of variances from that of correlations. 

Hyde et al. (2007) applied an asymmetric generalized dynamic conditional correlation 

GARCH (AG-DCC-GARCH) model to investigate the correlation dynamics among 

Asia–Pacific, European Union, and U.S. stock returns. 

Recently, the copula method has been emphasized because of its capacity for 

modeling the contemporaneous interdependence between either univariate time series or 

innovations of univariate parametric time series models. The copula method is becoming 

more and more popular because it allows the analysis of dependence structure beyond 

linear correlation and a higher degree of flexibility in estimation by separating marginal 

and joint distributions. Furthermore, the method can be extended to a time-varying 

specification to capture the dynamics in the dependence structure. Patton (2006a,b) 

introduced the method of time-varying copula and applied it to measure conditional 

asymmetries in the exchange rate dependences. Bartram et al. (2007) and Ane and 

Labidi (2006) employed the copula model to measure dependences between some 

European stock indices. Following their settings, our empirical time-varying copula is 

modeled as demonstrated below. 

2.1. The models for the marginal distribution 

We assume that the marginal distribution for each index return is characterized by 

a GJR-GARCH(1,1)-AR(1)-t model because the impact of asymmetric information is 

                                                      

5
 Typically, logistic function is used to make this estimation, although this solution is not good. 
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well known for financial assets.
6
 Let 𝑅𝑖 ,𝑡  and ℎ𝑖 ,𝑡  denote index i‟s return and its 

conditional variance for period 𝑡 , respectively, and Ω𝑡−1  denotes the previous 

information set. The GJR-GARCH(1,1)-AR(1)-t  model for the index return is 

𝑅𝑖 ,𝑡 = 𝑢𝑖 + ∅𝑖𝑅𝑖 ,𝑡−1 + ε𝑖 ,𝑡                        (1a) 

ℎ𝑖 ,𝑡 = 𝜔𝑖 + 𝛽𝑖ℎ𝑖 ,𝑡−1 + α𝑖 ,1ε𝑖 ,𝑡−1
2 + α𝑖 ,2𝑠𝑖,𝑡−1ε𝑖 ,𝑡−1

2                       (1b) 

𝑧𝑖 ,𝑡|Ω𝑡−1 =  
𝑑𝑓 𝑖

ℎ𝑖 ,𝑡 𝑑𝑓 𝑖−2 
𝜀𝑖 ,𝑡       𝑧𝑖 ,𝑡~𝑖𝑖𝑑 𝑡𝑑𝑓 𝑖

  (1c) 

with 𝑠𝑖 ,𝑡−1 = 1 when ε𝑖 ,𝑡−1 is negative, and 𝑠𝑖 ,𝑡−1 = 0 otherwise. 𝑑𝑓𝑖  is the degree 

of freedom. 

Fisher (1932) and Rosenblatt (1952) demonstrated that random variable 

𝑈𝑖 ,𝑡 = 𝐹𝑖 ,𝑡 z𝑖 ,𝑡|Ω𝑡−1  has Uniform(0,1) distribution, regardless of its original 

distribution. Thus, the value of the random variable from conditional marginal 

distribution 𝐹𝑖 ,𝑡 z𝑖 ,𝑡|Ω𝑡−1  should be between zero and 1. Typically, the technique of 

“probability integral transform”
7
 for conditional random variables, z𝑖 ,𝑡|Ω𝑡−1, can be 

applied to satisfy this requirement.  

2.2. The models for the copula 

Equity returns have behaved in the manner of exhibiting more joint negative 

extremes than joint positive extremes, leading to the observation that stocks tend to 

crash together but not to boom together (Poon et al., 2004; Longin and Solnik, 2001; 

Bae et al., 2003). Accordingly, dependence structure should be examined in either tail 

of the return distribution. We therefore employ the Gaussian, the Gumbel, and the 

rotated Gumbel copulas for specification and calibration, all with and without time 

variation. The Gaussian copula is generally viewed as a benchmark for comparison, 

whereas the Gumbel and the rotated Gumbel copulas are used to capture the upper and 

lower tail dependences, respectively. 

The conditional Gaussian copula function is the density of joint standard uniform 

variables 𝑢𝑡 , 𝑣𝑡 , as the random variables are bivariate normal with a time-varying 

correlation, ρ𝑡 . Moreover, let 𝑥𝑡 = Φ−1(𝑢𝑡)  and 𝑦𝑡 = Φ−1(𝑣𝑡)  , where Φ−1( .) 

                                                      

6
 The conditional densities of equity index returns are leptokurtic, and its variances are asymmetric 

functions of previous returns (Nelson, 1991; Engle and Ng, 1993; Glosten et al., 1993). 

7
 𝑢 𝑖 ,𝑡 = 𝐹  𝑖 𝑥𝑖 ,𝑡 =

1

𝑇+1
 𝐼 𝑥𝑖 ,𝑗 < 𝑥𝑖 ,𝑡             ∀t, i=1,…,n𝑇
𝑗=1 , where I{.} is an indicator function. 
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denotes the inverse of the cumulative density function of the standard normal 

distribution. The density of the time-varying Gaussian copula can be illustrated as  

𝑐𝑡
Gau  𝑢𝑡 , 𝑣𝑡 |ρ𝑡 =

1

 1−ρ𝑡
exp  

2ρ𝑡𝑥𝑡𝑦𝑡−𝑥𝑡
2−𝑦𝑡

2

2 1−ρ𝑡
2 

+
𝑥𝑡

2+𝑦𝑡
2

2
  (2) 

Tail dependence captures the behavior of random variables during extreme events. 

In our study, it measures the probability of a simultaneous market crash in various 

countries, given that the bubbles in Chinese stock markets have been pricked. The 

Gumbel and the rotated Gumbel copulas can efficiently capture the tail dependence 

arising from the extreme observations caused by asymmetry. The density of the 

time-varying Gumbel copula is  

𝑐𝑡
Gum  𝑢𝑡 ,𝑣𝑡 |δ𝑡

𝑈 =
 − ln𝑢𝑡 

δ𝑡
𝑈−1 − ln 𝑣𝑡 

δ𝑡
𝑈−1

𝑢𝑡𝑣𝑡
  exp  –   − ln𝑢𝑡 

δ𝑡
𝑈−1 +  − ln 𝑣𝑡 

δ𝑡
𝑈−1 

1

𝛿𝑡
𝑈
  

 −   − ln𝑢𝑡 
δ𝑡
𝑈−1 +  − ln 𝑣𝑡   δ𝑡

𝑈−1 
 

1−δ𝑡
𝑈

𝛿𝑡
𝑈  

2

+  δ𝑡
𝑈 − 1   − ln𝑢𝑡 

δ𝑡
𝑈−1 +  − ln 𝑣𝑡 

δ𝑡
𝑈−1 

 
1−2δ𝑡

𝑈

𝛿𝑡
𝑈  

  (3) 

where δ𝑡
𝑈 ∈ [1,∞) measures the degree of dependence between 𝑢𝑡 and 𝑣𝑡 . δ𝑡

𝑈 = 1 

implies an independent relationship and δ𝑡
𝑈 → ∞ represents perfect dependence. The 

Gumbel family has upper tail dependence, with λ𝑡
𝑈 = 2 − 21/δ𝑡

𝑈
. The rotated Gumbel 

copula has a similar density function to that of the Gumbel copula and its time-varying 

version is  

𝑐𝑡
R.Gum   1 − 𝑢𝑡 , 1 − 𝑣𝑡 |δ𝑡

𝐿 = 

 − ln(1 − 𝑢𝑡) 
δ𝑡
𝐿−1 − ln(1 − 𝑣𝑡) δ𝑡

𝐿−1

(1 − 𝑢𝑡)(1 − 𝑣𝑡)
  exp  –   − ln(1 − 𝑢𝑡 )

δ𝑡
𝐿−1 +  − ln(1 − 𝑣𝑡) 

δ𝑡
𝐿−1 

1

𝛿𝑡
𝐿
  

 −   − ln(1 − 𝑢𝑡) 
δ𝑡
𝐿−1 +  − ln(1 −𝑣𝑡  ) 

δ𝑡
𝐿−1 

 
1−δ𝑡

𝐿

𝛿𝑡
𝐿  

2

+  δ𝑡
𝐿 − 1   − ln(1 − 𝑣𝑡) 

δ𝑡
𝐿−1 +  − ln(1 −

𝑣𝑡) 
δ𝑡
𝐿−1 

 
1−2δ𝑡

𝐿

𝛿𝑡
𝐿   

  (4) 

The lower tail dependence measured by the rotated Gumbel copula is λ𝑡
𝐿 = 2 − 21/δ𝑡

𝐿
 

2.3. Parameterizing time-varying copula model 

Assuming time-invariant dependence between two index returns seems 

unreasonable in reality. So, a conditional copula with a time-varying dependence 

parameter is prevalent (Patton, 2006a,b; Bartram et al., 2007; Jondeau and Rochinger, 

2006; Rodriguez, 2007; Ane and Labidi, 2006). Following the studies of Patton (2006a) 

and Bartram et al. (2007), we assume that the dependence parameter is determined by 
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past information, such as its previous dependence and the historical absolute difference 

between cumulative probabilities of two index returns. 

For a time-varying Gaussian copula, its conditional dependence parameter can be 

modeled as an AR(1)-like process because autoregressive parameters over lag 1 are 

rarely different from zero (Bartram et al., 2007;
8

 Samitas et al., 2007). The 

dependence process of the Gaussian copula is, therefore, 

ρ𝑡 = Λ(βρρ𝑡−1 + ωρ + γρ 𝑢𝑡−1 − 𝑣𝑡−1 ) (5) 

The conditional dependence, ρ𝑡  , depends on its previous dependence, ρ𝑡−1 , and 

historical absolute difference, |𝑢𝑡−1 − 𝑣𝑡−1|. Thus, the persistence and the variation in 

the dependence process can both be captured
9
. Λ 𝑥  is defined as  1 − 𝑒−𝑥  1 +

𝑒−𝑥 = tanh  
𝑥

2
 , which is the modified logistic transformation to keep ρ𝑡  in (-1,1) at 

all times (Patton, 2006a). The coefficient, βρ , captures the degree of persistence, and 

γρ  captures the adjustment in the dependence process. The estimation of copula 

parameters, θ𝑐 =  βρ ,ωρ , γρ 
′
, will be discussed in Section 2.4. 

 Both conditional Gumbel dependence and rotated Gumbel dependence are 

assumed to follow an AR(1)-like process as well. We propose the time-varying 

dependence process for the Gumbel copula and the rotated Gumbel copula as follows: 

δ𝑡
𝑈 = β𝑈δ𝑡−1

𝑈 + ω𝑈 + γ𝑈|𝑢𝑡−1 − 𝑣𝑡−1|  (6) 

δ𝑡
𝐿 = β𝐿δ𝑡−1

𝐿 + ω𝐿 + γ𝐿|𝑢𝑡−1 − 𝑣𝑡−1| (7) 

where δ𝑡
𝑈 ∈ [1,∞) measures the degree of dependence in the Gumbel copula and has a 

lower bound equal to 1, indicating an independent relationship, whereas δ𝑡
𝐿 ∈ [1,∞) 

measures the degree of dependence in the rotated Gumbel copula. After estimation of 

the Gumbel copula parameters θ𝑐 =  β𝑈 ,ω𝑈 , γ𝑈 
′ , the conditional upper tail 

dependence coefficients, {λ𝑡
𝑈|δ𝑡

𝑈}, are obtained by 

λ𝑡
𝑈 = Ψ(2 − 2

1

𝛿𝑡
𝑈

),  (8) 

                                                      

8
Bartram et al. (2007) assumed that the time-varying dependence process follows an AR(2) model. 

9
 Unlike Patton (2006a,2006b) and Bartram et al. (2007), Ane and Labidi (2006) characterized their 

conditional dependence coefficients as a pure AR(1), which means that only the persistence in the 

dependence process is emphasized. 
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where Ψ ≝  1 + 𝑒−𝑥 −1 is the logistic transformation to keep λ𝑡
𝑈  in (0,1) at all times. 

Similarly, the conditional lower tail dependence coefficients, {λ𝑡
𝐿|δ𝑡

𝐿}, are obtained by 

the same method.  

2.4. Estimating and calibrating copula models 

The calibration of copula parameters using real market data has attracted much 

interest in recent statistical literature (Meneguzzo and Vecchiato, 2004; Mashal and 

Zeevi, 2002; Breymann et al., 2003; Galiani, 2003). The exact maximum likelihood 

method (EML) is a well-known parametric method for estimation. However, the EML 

must estimate the parameters of the marginals and the copula functions simultaneously. 

As the power of a copula model is to express a joint distribution by separating the 

marginal distributions from their dependence, the estimations for copula models are 

naturally decomposed into two steps: the first for the marginals and the second for the 

copula, which is the concept of the inference function for margins method (IFM). The 

IFM improves EML because the latter is computationally intensive, especially for 

estimations of higher dimensions. IFM can be performed by estimating parameters of 

marginal distributions, θ 𝑖𝑡 , prior to those of copula functions,  θ 𝑐𝑡 . Efficiency is 

therefore enhanced through Eqs. (9) and (10).  

θ 𝑖𝑡 = arg max ln𝑓𝑖𝑡(z𝑖 ,𝑡|Ω𝑡−1,θ𝑖𝑡)𝑇
𝑡=1         (9) 

𝜃 𝑐𝑡 = arg max ln 𝑐𝑡 𝐹1𝑡 z1,𝑡 Ω𝑡−1 ,𝐹2𝑡 z2,𝑡 Ω𝑡−1 ,…𝐹𝑛𝑡  z𝑛 ,𝑡 Ω𝑡−1 , θ𝑐𝑡 ,θ 𝑖𝑡 
𝑇
𝑡=1  (10) 

3. Data and summary statistics 

The daily stock indices provided by MSCI were obtained from the Datastream 

database over the period from January 1, 2002, to June 30, 2007. A total of 1,434 daily 

observations for each index were collected. To control the non-synchronous trading 

problems, MSCI index returns were calculated as rolling averages of 2-day returns 

suggested by Forbes and Rigobon (2002). Maghyereh (2004) noted the reasons why 

the MSCI indices are better than other local stock indices. For each country‟s level, the 

MSCI China, MSCI United States, and MSCI Japan indices are selected. To specify 

which regional stock market is better correlated with China‟s, possibly as a result of 

their geographic ties or trade relationships, we use the MSCI Europe and MSCI Pacific. 

To detect whether emerging markets have experienced higher dependences than 
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developed markets, both the MSCI world index and the MSCI emerging markets index 

were collected. The MSCI world index contains the market indices of 23 developed 

countries, whereas the MSCI emerging markets index includes the market indices of 25 

emerging countries. Moreover, the MSCI AcWorld index, which combines the market 

indices of 48 developed and developing countries, was collected to measure the 

worldwide-level dependence. 

The summary statistics of each index return are reported in Table 1. Table 2 

illustrates Pearson‟s, Spearman‟s, and Kendall‟s correlations for each index return 

paired with China‟s index return. Pearson‟s correlation is a measurement of linear 

association, which implies that it is neither robust for heavily tailed distributions nor 

adequate for a non-linear relationship. However, the nonparametric rank correlations, 

such as Kendall‟s τ and Spearman‟s ρ, are less sensitive to the observations in the tails. 

As illustrated in Table 2, no matter which measurement is used, the China–emerging 

pair has the greatest correlation, followed by the China–Pacific pair and the 

China–Japan pair.  

The parameters of the marginal distribution for each index return are estimated 

and presented in Table 3. The parameters are assumed to be characterized by a 

GJR-GARCH(1,1)-AR(1)-t model given by Eq. (1). As illustrated in Table 3, most 

parameters are significant at the 5% level at least. Furthermore, we test whether the 

transformed series are Unif(0,1) using the Kolmogorov–Smirnov test, and the residual 

series pass the goodness-of-fit test for all index returns.    

[Insert Table 1 here] 

[Insert Table 2 here] 

[Insert Table 3 here] 

4. Empirical results 

4.1. Unconditional copula models 

For comparison, the results of unconditional copula models are presented in Table 

4. The estimated parameters and results of goodness-of-fit test for static Gaussian, 

rotated Gumbel, and Gumbel copula functions are reported. As shown in Table 4A, all 

copula functions have positive parameters, indicating that the index return of China 

positively correlates with all index returns considered in the current study. We 

consistently find that, irrespective of the assumed copula functions, the dependence 
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between the index return of the emerging markets and that of China is the highest, 

followed by the China–Pacific pair and the China–Japan pair. Bekaert et al. (2005) and 

Goetzmann et al. (2005) claimed that capital market integration and increased trade are 

embedded with a prediction about the dependence between markets. Therefore, the 

dependence of the Chinese market with emerging markets is relatively higher than her 

dependence with developed markets, implying limited portfolio diversification 

opportunities. This may be attributed to high trade frequencies between these emerging 

countries and China because they are usually China‟s key suppliers for energy, 

minerals, crops, and various commodities. When the growth of the Chinese economy 

unexpectedly slows, emerging markets may suffer severely. The high degree of 

dependence between China and the Pacific or between China and Japan may be a result 

of their geographic ties. This is similar to the results of Evans and McMillan (2006), 

who reported that there is more evidence of upward correlations within regional groups. 

We further infer that these dependences will be more evident as China proposes to join 

the ASEAN Free Trade Area (AFTA) in 2010 to strengthen their cooperative and 

competitive abilities through eliminating tariffs and non-tariff barriers. 

The value of the Akaike information criterion (AIC)
10

 is applied for the 

goodness-of-fit test from the maximized log-likelihood values (lnL) in Table 4A. We 

compute the AIC for each copula and then rank the copula models accordingly. Table 4B 

contains the AIC values for three chosen copulas. Except for China–World, 

China–AcWorld, and China–U.S. pairs, the lowest AIC value from the rotated Gumbel 

copula indicates that it is the best fitting model and the lower tail dependence exists for 

Europe, Japan, Pacific, and emerging pairs. This finding is consistent with the 

literature that equity returns have exhibited more joint negative extremes than joint 

positive extremes, leading to the observation that stocks tend to crash, but not to boom, 

together. However, the use of AIC may not be sufficient. We will apply the likelihood 

ratio test conducted in Section 4.4 for further comparison of the models and discuss 

their significance levels.  

[Insert Table 4 here] 

4.2. Conditional copula models 

The estimated parameters of time-varying dependences in the Gaussian copula are 

reported in Table 5A. The time-varying dependence model in Eq. (5) is estimated and 

                                                      

10AIC = −2𝐿 θ  ; 𝑥 + 2𝑞, where q is the number of parameters needed to be estimated in each specific 

model.  
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calibrated for each pair of index returns. The parameter βρ , represents the degree of 

persistence, and γρ  captures the adjustment in the dependence process. Table 5A 

demonstrates that the emerging markets, the Pacific, and the Japanese markets all 

experience higher degrees of dependences with the Chinese market. Meanwhile, the 

log-likelihood functions for these areas are higher than for other areas. Additional 

statistics such as conditional mean and conditional standard deviation of estimated 

time-varying dependence in each copula model are summarized in Table 5. Significant 

variations in dependences between markets over time are evident, especially for the 

China-Europe, China–Pacific, the China–Japan, and the China–emerging-markets pairs. 

They not only demonstrate greater conditional dependences, but also have higher 

variations in dependences, which provide useful insights into active risk management 

for portfolios. Fig. 1 illustrates the implied time path of conditional dependence for 

each pair of index returns across the sample period. 

[Insert Table 5 here] 

4.3. Conditional tail dependence 

Table 5B and C report the estimated parameters of time-varying tail dependence 

specified by the rotated Gumbel and the Gumbel copulas, respectively. Time-varying 

upper tail dependences can be calculated through the use of Eq. (8), where estimated 

conditional dependences, δ𝑡
𝑈 , is from Eq. (6). Time-varying lower tail dependences 

can be similarly obtained. We can demonstrate that the emerging markets, the Pacific, 

and the Japanese markets show higher degrees of dependences in both tails with the 

Chinese market. Furthermore, the tail dependences in both tails are more volatile for 

the China–Europe, China–Pacific, China–Japan, and China–emerging markets pairs, 

whereas the China–U.S. pair is the most stable. In addition, the conditional means of 

the estimated time-varying tail dependences from rotated Gumbel copula are generally 

higher than those from the Gumbel copula, indicating that all pairs seem to have a 

tendency toward left tail dependence. The emerging, the Pacific, and the Japanese 

markets especially experience higher degrees of lower tail dependences with the 

Chinese market, which may induce a higher probability of a joint market crash in these 

regions if the bubbles in Chinese stock markets burst. Figs. 2 and 3 present the plots of 

conditional dependences for lower and upper tails specified by the time-varying rotated 

Gumbel and Gumbel copula models, respectively.  

[Insert Fig. 1 here] 

[Insert Fig. 2 here] 
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[Insert Fig. 3 here] 

4.4.  Goodness-of-fit test and comparisons 

The evaluation of multivariate density models becomes prominent as the 

development of the multivariate conditional distributions grows dramatically 

(Christoffersen, 1998; Rivers and Vuong, 2002; Granger et al., 2006; Chen and Fan, 

2006; Patton, 2006a). Chen and Fan (2006) proposed a pseudo-likelihood ratio test for 

model selection between two semiparametric copula-based multivariate dynamic 

models. Patton (2006a) conducted a likelihood ratio test for his purely parametric 

copula-based dynamic model. The difference between the two approaches is whether 

the marginal distributions of the standardized innovations are specified.
11

 For the 

purpose of empirical applications of copulas in forecasting, it is more common to 

employ purely parametric models to fit the data and compare the results from different 

models. Therefore, we apply the bivariate “hit” tests
12

 proposed by Patton (2006a) to 

evaluate our models. 

Patton (2006a) decomposed the density model into a set of “region” models.
13

 

Each region model should be correctly specified under the null hypothesis that the 

density for the entire region is correctly specified. The intuition is to compare the 

number of observations in each region with what would be expected under the null 

hypothesis.  

Table 6 contains the results from the joint hit test for the competing copula models. 

For the China–emerging pair, the conditional Gaussian and all constant copula models 

are rejected at the 5% significance level. Additionally, the constant Gaussian and 

Gumbel copula models fail the joint test for the China–Japan pair. However, the 

goodness-of-fit tests seem to have difficulty in rejecting the other pairs. Thus, we infer 

that model specification, except conditional Gumbel and conditional rotated Gumbel 

copulas, tends to reject the pair with not only a higher degree of dependence but also a 

higher variation of dependence. It is found that conditional Gumbel and conditional 

                                                      

11
Parametric marginal distributions should be specified in Patton‟s model, whereas non-parametric 

marginal distributions are assumed in Chen and Fan‟s model.  

12
Patton (1996a) extends Christoffersen‟s evaluation model (1998) for interval forecasting to a bivariate 

model. 

13
Regions 1 and 2 correspond to the lower and upper joint 10% tail for each variable. Regions 3 and 4 

indicate that bivariate variables belong to the 10th and 25th or 75th and 90th quantiles, respectively. 

Region 5 is the median region. Regions 6 and 7 are extremely asymmetric if one variable is in the 75th 

quantile, whereas the other is in the 25th quantile. 
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rotated Gumbel copulas outperform the other competing copula models, especially for 

describing a higher degree as well as a higher variation in dependence structure. 

5. Conclusions  

Knowledge of the multivariate conditional distribution, especially for fat tails and 

asymmetric dependence, is essential in many important financial applications such as 

portfolio selection, asset pricing models, risk management, and forecasting (Chen and 

Fan, 2006). In addition, studies on international dependence mainly focused on 

developed markets. Relatively few studies investigated the role of China, despite the 

noticeable growth in her capital markets and her increasing integration into the global 

economy. In this paper, we emphasize the dynamic dependence between the Chinese 

stock market and other related markets of the world. Using the time-varying copula 

models to study the relationship between these stock markets, we provide a 

comprehensive analysis of their dynamic dependences. As China‟s economic 

prominence has increased, estimation and measurement of this time-varying nature in 

dependences enable us to capture the changes in market risk and identify the 

co-movement between markets. 

We demonstrate significant variations in dependences between markets over time. 

Regardless of the assumed copula functions, we consistently find that the Chinese 

market experiences not only a higher degree of dependence but also a higher variation 

of dependence with markets in Japan, in the Pacific, and in emerging countries. This 

high dependence may be attributed to geographic ties and a close trading relationship. 

The implication of this finding is that the probability of joint crashes will be high for 

markets in these areas once bubbles burst in China, and portfolio managers should 

become more alert to take into account this co-movement. Furthermore, a higher 

dynamic dependence during bear markets implies that opportunities for portfolio 

diversification are reduced. Finally, the goodness-of-fit test indicates that the 

conditional Gumbel and conditional rotated Gumbel copulas outperform the competing 

copula models. Taking into account this understanding, decisions related to 

international diversification, portfolio allocation, and risk management based on static 

models should be carefully reconsidered. 
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Table 1  

Summary statistics 

 Mean Standard 

Deviation 

Skewness Kurtosis 

China 0.09216 1.01541 -0.21493 1.23572 

World 0.02256 0.60362 0.20303 3.51581 

U.S. 0.01845 0.67593 -0.06452 3.86734 

Europe 0.02040 0.75475 -0.26697 4.78451 

Japan 0.03761 0.81159 -0.23544 0.78285 

AcWorld 0.02528 0.59691 -0.23345 3.29451 

Pacific 0.03852 0.68303 -0.28850 0.81628 

Emerging 0.07067 0.64482 -0.56044 1.41661 

This table shows summary statistics of the percentage log returns of the MSCI China, MSCI World, MSCI 

U.S., MSCI Europe, MSCI Japan, MSCI AcWorld, MSCI Pacific and MSCI Emerging Markets. The 

sample period covers 1 January 2002 to 30 June 2007. 1434 daily observations for each index are 

collected. 

 

Table 2  

Association measurement 

China 

versus 

Pearson 

Correlation 

Spearman 

Correlation 

Kendall 

Correlation 

World 0.38112 0.39577 0.27122 

U.S. 0.26940 0.28123 0.19036 

Europe 0.34003 0.35419 0.24172 

Japan 0.46423 0.43358 0.30066 

AcWorld 0.40684 0.42094 0.28950 

Pacific 0.52958 0.49915 0.34944 

Emerging 0.70161 0.67168 0.48863 

This table shows the Pearson‟s, Spearman‟s, and Kendall‟s correlations for each index return paired with 

China‟s index return. 
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Table 3 

Estimated parameters for GJR-GARCH(1,1)-AR(1)-t marginal distributions 

 AR(1) GARCH 

constant 

Lagged 

variance 

Lagged 

residual 

Asymmetric 

residual 

Degree of 

freedom 

China 0.5280 

(0.0000) 

0.03847 

(0.0000) 

0.81488 

( 0.0000) 

0.07434 

(0.0000) 

0.05149 

(0.0013) 

11.17649 

World 0.5554 

(0.0000) 

0.00299 

(0.0000) 

0.91221 

(0.0000) 

0.00802 

(0.0457) 

0.10636 

(0.0000) 

18.23378 

U.S. 0.4696 

(0.0000) 

0.00400 

(0.0000) 

0.91955 

(0.0000) 

-0.00010 

(0.9615) 

0.12090 

(0.0000) 

40.22710 

Europe 0.5051 

(0.0000) 

0.00472 

(0.0000) 

0.91581 

(0.0000) 

-0.01622 

(0.0008) 

0.14610 

(0.0002) 

19.23516 

Japan 0.5087 

(0.0000) 

0.01123 

(0.0000) 

0.86290 

(0.0000) 

0.06881 

(0.0000) 

0.06032 

(0.0004) 

15.55969 

AcWorld 0.5619 

(0.0000) 

0.00322 

(0.0000) 

0.90604 

(0.0000) 

0.01215 

(0.0056) 

0.10567 

(0.0000) 

18.03765 

Pacific 0.5100 

(0.0000) 

0.01026 

(0.0000) 

0.85278 

(0.0000) 

0.05984 

(0.0000) 

0.08125 

(0.0000) 

15.90558 

Emerging 0.5912 

(0.0000) 

0.01181 

(0.0000) 

0.84651 

(0.0000) 

0.04107 

(0.0000) 

0.09134 

(0.0000) 

17.64657 

This table reports the estimated parameters of the marginal distributions for each index return. They are 

assumed to be characterized by a GJR-GARCH(1,1)-AR(1)-t model given by Eq. (1). The numbers in 

brackets are p-values, and 0.0000 means that the value is less than 0.00005. 
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Table 4 

Parameter estimations and goodness-of-fit test for unconditional copula models  

Unconditional Copula Model 

Paired China v.s. 

Indices World  U.S. Europe Japan AcWorld Pacific Emerging 

Panel A: Copula estimation 

Gaussian 

𝜌 
0.2990 

(0.0406) 

0.1293 

(0.1156) 

0.2644 

(0.0473) 

0.4413 

(0.0248) 

0.3289 

(0.0361) 

0.4811 

(0.0222) 

0.6449 

(0.0147) 

𝑙𝑛 𝐿 66.0864 11.8772 51.1207 153.1985 80.8102 186.3193 381.6740 

rotated Gumbel 

𝛿𝐿 
1.2167 

(0.0416) 

1.0778 

(0.1180) 

1.1978 

(0.0467) 

1.4001 

(0.0241) 

1.2474 

(0.0368) 

1.4421 

(0.0220) 

1.7964 

(0.0144) 

𝜆𝐿  0.2322 0.0976 0.2163 0.3594 0.2569 0.3828 0.5291 

𝑙𝑛 𝐿 63.4087 11.5079 52.1291 161.6842 78.0483 188.4437 394.6650 

Gumbel  

𝛿𝑈  
1.1903 

(0.05112) 

1.0599 

(0.1555) 

1.1740 

(0.0561) 

1.3827 

(0.0254) 

1.2192  

(0.0445) 

1.3927 

(0.0259) 

1.7550 

(0.0152) 

𝜆𝑈  0.2098 0.0768 0.1953 0.3491 0.2343 0.3550 0.5157 

𝑙𝑛 𝐿 44.8848 7.5171 38.3428 147.7156 56.6800 142.7179 361.4705 

Panel B: Goodness-of-fit test (AIC) 

Gaussian -130.1728 -21.7544 -100.2414 -304.3970 -159.6204 -370.6386 -761.3480 

R.Gumbel -124.8174 -21.0158 -106.2582 -325.3684 -158.0967 -378.8873 -791.3300 

Gumbel -87.7696 -13.0342 -74.6856 -293.4312 -111.3600 -283.4358 -720.9410 

This table reports the estimated results of unconditional copula models in Panel A.  𝜌 is the correlation 

parameter of the Gaussian copula, and 𝛿𝑈  and 𝛿𝐿 are dependence parameters of the Gumbel and the 

rotated Gumbel copula, respectively. 𝜆𝑈  is the coefficient of upper tail dependence, while 𝜆𝐿  is the 

coefficient of lower tail dependence. Relevant results of goodness-of-fit test for static Gaussian, rotated 

Gumbel and Gumbel copula functions are shown in Panel B. 𝐴𝐼𝐶 = −2𝐿 𝜃  ; 𝑥 + 2𝑞, where q is the 

number of parameters to be estimated in each specific model. The numbers in brackets are p-values. 
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Table 5 

Estimated parameters of time-varying dependences in the chosen copulas  

Panel A: Gaussian copula 

Parameters 𝛽𝜌  𝜔𝜌  𝛾 𝜌  LLF(c) Mean Std 

World 0.87748 

(0.0000) 

0.08955 

(0.0000) 

-0.14708 

(0.0000) 69.21843 0.30945 0.05199 

U.S. 0.80710 

(0.0000) 

0.05510 

(0.0000) 

-0.08661 

(0.0000) 13.10273 0.14192 0.03547  

Europe 0.99990 

(0.0000) 

0.04363 

(0.0000) 

-0.11279 

(0.0000) 59.92437 0.30850 0.08259 

Japan 0.95110 

(0.0000) 

0.14060 

(0.0000) 

-0.31562 

(0.0000) 171.46440 0.45911 0.09974 

AcWorld 0.93441 

(0.0000) 

0.07665 

(0.0000) 

-0.14619 

(0.0000) 84.83814 0.34028 0.05626  

Pacific 0.99990 

(0.0000) 

0.12485 

(0.0000) 

-0.31447 

(0.0000) 200.66860 0.49227  0.08746 

Emerging 0.99990 

(0.0000) 

0.20857 

(0.0000) 

-0.45495 

(0.0000) 393.58340 0.64097 0.06905 

Panel B: rotated Gumbel copula 

Parameters 𝛽𝐿 𝜔𝐿 𝛾𝐿 LLF(c) Mean Std 

World 0.66313 

(0.0000) 

0.44087 

(0.0000) 

-0.10643 

(0.0000) 64.13394 0.23612  0.02621  

U.S. 0.01405 

(0.40461) 

1.00000 

(0.0000) 

0.17598 

(0.0000) 13.83956 0.08579  0.04480  

Europe 0.95406 

(0.0000) 

0.09944 

(0.0000) 

-0.15074 

(0.0000) 66.88846 0.26423  0.12725  

Japan 0.85215 

(0.0000) 

0.30147 

(0.0000) 

-0.37054 

(0.0000) 180.25030 0.37059  0.10986  

AcWorld 0.87166 

(0.0000) 

0.18787 

(0.0000) 

-0.09819 

(0.0000) 80.49725 0.26486  0.03796  

Pacific 0.86878 

(0.0000) 

0.26978 

(0.0000) 

-0.33145 

(0.0000) 199.66960 0.38982  0.08834  

Emerging 0.95187 

(0.0000) 

0.15197 

(0.0000) 

-0.34045 

(0.0000) 422.21120 0.53811  0.09827  

Panel C: Gumbel copula 

Parameters 𝛽𝑈  𝜔𝑈  𝛾𝑈  LLF(c) Mean Std 

World 0.86920 

(0.0000) 

0.18787 

(0.0000) 

-0.11095 

(0.0000) 48.38166 0.09827 0.04789 

U.S. 0.03353 

(0.02286) 

1.00000 

(0.00006) 

0.07426 

(0.08507) 7.99380 0.07468 0.01969 

Europe 0.96746 

(0.0000) 

0.08413 

(0.0000) 

-0.16819 

(0.0000) 52.45853 0.23435 0.14705 

Japan 0.96244 

(0.0000) 

0.09404 

(0.0000) 

-0.16640 

(0.0000) 169.06830 0.36948 0.11664 

AcWorld 0.91072 

(0.0000) 

0.13891 

(0.0000) 

-0.10694 

(0.0000) 61.43713 0.24539 0.05377 

Pacific 0.96037 

(0.0000) 

0.09163 

(0.0000) 

-0.15040 

(0.0000) 157.58980 0.36936 0.08872 

Emerging 0.96157 

(0.0000) 

0.11886 

(0.0000) 

-0.26828 

(0.0000) 387.11070 0.52388 0.09621 

This table shows the estimated parameters of time-varying dependences in the chosen copulas. The 

time-varying dependence models in Eqs. (5), (6), (7) are estimated and calibrated for each pair of index 

returns. The parameters 𝛽𝜌 , 𝛽𝐿 ,𝛽𝑈 , capture the degrees of persistence in their dependence processes and  

𝛾𝜌 ,  𝛾𝐿 , 𝛾𝑈 , capture their adjustments. LLF(c) is the maximum of the copula component of the 

log-likelihood function.  Conditional means and conditional standard deviations of estimated 
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time-varying dependences in each copula models are also reported in the last two columns. The numbers 

in brackets are p-values, and 0.0000 means that the value is less than 0.00005. 

 

 
Table 6 

Joint hit test for the copula models 

 Conditional 

Gaussian 
Conditional 

Gumbel 

Conditional 

R. Gumbel 

Constant 

Gaussian 

Constant 

Gumbel 

Constant 

R.Gumbel 

World 0.98472 0.98917 0.98337 0.95026 0.94930 0.97891 

U.S. 0.83290 0.73519 0.74702 0.91240 0.81528 0.87273 

Europe 0.12784 0.18948 0.17074 0.07009 0.10765 0.11981 

Japan 0.09176 0.15191 0.11742 0.05018* 0.05032* 0.11133 

AcWorld 0.93580 0.96153 0.94551 0.78478 0.91568 0.90593 

Pacific 0.73842 0.86484 0.83016 0.51797 0.88744 0.86330 

Emerging 0.00001* 0.09739 0.09970 0.04440* 0.04203* 0.00143* 

The p-values of joint hit tests are reported if the models are correctly specified in all „regions‟. A p-value 

less than 0.05 indicates a rejection of the null hypothesis that the model is well specified. 

 * denotes the significance at 5% level. 
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The solid lines in this figure show the time-varying conditional correlations for all index return pairs 

across the sample period. The dotted lines show their unconditional correlations as estimated in Table 4. 

Fig. 1. Conditional correlation estimation from the Gaussian copula. 
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The solid lines in this figure show the time-varying conditional lower tail dependences for all index 

return pairs across the sample period. The dotted lines show their unconditional lower tail dependences 

as estimated in Table 4. 

Fig. 2. Conditional lower tail dependence estimation from the rotated Gumbel copula 
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The solid lines in this figure show the time-varying conditional upper tail dependences for all index 

return pairs across the sample period. The dotted lines show their unconditional upper tail dependences 

as estimated in Table 4. 

Fig. 3. Conditional upper tail dependence estimation from the Gumbel copula 
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