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Hedged Portfolio Value-at-Risk Estimation using a Time-varying 

Copula: An Illustration of Model Risk 

 

1. Introduction 

Value-at-risk (VaR) has become one of the most popular tools for risk 

measurement. However, it is subject to model risk, which involves the choice of 

models, parameters, and their implementation. Previous studies have generally 

discussed potential estimation biases and model risk in the VaR model (Jorion, 1996; 

Kupiec, 1999; Rich, 2003; Miller & Liu, 2006; Brooks & Persand, 2002). This paper 

assesses the potential loss of accuracy in hedged portfolio value–at-risk (HPVaR) due 

to estimation risk and shows that model risk in HPVaR can be attributed to 

inappropriate use of the correlation coefficient and normal joint distribution
1
. Jorion 

(1996) first indicated that VaR estimates was themselves affected by their sampling 

variation or “estimation risk”. Brooks and Persand (BP) (2002) investigated a number 

of statistical modeling issues in determining market-based capital risk requirements. 

They highlighted several potential pitfalls in commonly applied methodologies and 

concluded that model risk could be serious in VaR calculation
2
. The above analysis 

considered univariate distribution only. This study, however, addresses this issue for 

bivariate distributions. Similar to that of Christoffersen and Goncalves (CG) (2005), 

this study employs the bootstrap resampling technique to quantify ex ante the 

magnitude of estimation risk by constructing confidence intervals around point 

HPVaR estimates. 

This paper also reexamines whether a more accurate HPVaR estimate under the 

alternative copula-based joint distributions could be derived using the fifth percentile 

(5%) instead of the first percentile (1%), as currently adopted by the Basle 

Committee
3
. BP (2002) found that standard errors could be more severe for the first 

                                                      
1
 The correlation coefficient only measures the “degree” or “level” of dependence, which reflects the 

overall strength of the relation. However, it fails to model the “structure” of dependence, which 

describes the manner in which two assets are correlated. In addition, it is neither robust enough for 

heavily tailed distributions nor adequate for non-linear relationships. 

2
 They found that when the actual data is fat-tailed, using critical values from a normal distribution in 

conjunction with a parametric approach can lead to a substantially less accurate VaR estimate than 

using a nonparametric approach. 

3
 An important issue in risk management practice is the coverage rate that should be required by the 

minimum capital risk requirements (MCRRs). To ensure adequate coverage, the Basle Committee 

chose to focus on the first percentile (1%) of return distributions. In other words, risk managers are 
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percentile of normal return distribution. They suggested that the closer the quantile 

was to the mean of the distribution, the more accurately VaR could be estimated. Thus, 

to ensure covering virtually all probability losses, the use of a smaller coverage rate 

(say, 95% instead of 99%) combined with a larger multiple was preferred. If the 

estimation error under the 99 % coverage rate is larger than that of the 95% coverage 

rate, the BP argument is supported in our study. From the univariate VaR to the 

bivariate HPVaR, we inquire whether the superiority of 95% coverage rate is 

consistent and persistent. 

Copulas enable the modeler to construct flexible multivariate distributions 

exhibiting rich patterns of tail behavior, ranging from tail independence to tail 

dependence, and different kinds of asymmetry. For modeling financial risks, they are 

an alternative measure of correlation (Embrechts et al., 1999). This paper employs 

single-parameter conditional copula to represent the dependence between index 

futures and spot returns, conditional on historical information provided by a previous 

pair of index futures and spot returns. The parameter of the conditional copula, which 

is time-varying, depends on conditional information. This study also models the 

dependence structure as a mixture of different copulas with parameters changing over 

time. Using the hybrid copula, parametric or nonparametric marginals with quite 

different tail shapes
4
 can then be combined in a joint risk distribution to preserve the 

original characteristics of the marginals (Rosenberg & Schuermann, 2006)
5
. By 

applying a time-varying copula approach, our conditional HPVaR model easily passes 

associated criticisms and avoids a biased estimation in HPVaR.  

Based on the results of three backtests (unconditional and conditional coverage 

test, the dynamic quantile test, the distribution and tail forecast test), this study 

demonstrates that, under all significance levels (95% and 99%), the copula-based 

HPVaR model exhibits performance superior to the conventional constant conditional 

correlation (CCC) GARCH model (Bollerslve (1990)) and dynamic conditional 

correlation (DCC) GARCH model (Tse and Tsui (2002)). From the bootstrapped 

evidence, this study also finds that the closer the quantiles are to the mean of the 

distribution, the smaller the estimation error will be for both copula-based and 

conventional models. Our findings support and extend that of BP (2002), that is, the 

superiority under 95% coverage rate is confirmed for both univariate and multivariate 

VaR estimations. 

                                                                                                                                                        

required to hold sufficient capital to absorb all but 1 percent of expected losses, rather than the 5 

percent level used by Risk Metrics in the J.P. Morgan approach (1996). 

4
 In general, marginal distributions are estimated separately. 

5
 Mixtures of copulas are also copulas. See Nelsen (1999) for details. 
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2. Methodology 

2.1. Conditional copula model 

We assume that the marginal distribution for each portfolio asset return (index 

and its corresponding futures) is characterized by a GJR-GARCH(1,1)-AR(1)-t model 

since the asymmetric information impact is a well-known effect with financial assets
6
. 

Similar to the appendix in Patton (2006a), we perform a marginal distribution 

specification test. The test results suggest that the models for the conditional means of 

the spot and futures returns are AR(1). Let      and     
  denote asset i’s return (spot 

(s) or futures (f)) and its conditional variance for period  , respectively.      

denotes a previous information set. The GJR-GARCH(1,1)-AR(1)-t model for asset 

return i is defined by
7
: 

                        (1a) 

    
             

            
                  

   (1b) 

           
  

    
       

                      
  (1c) 

         

with          when        is negative and otherwise         .    is the degree 

of freedom. 

Cherubini et al. (2004) claimed that copula functions with upper (or lower) tail 

dependence are suggested in VaR applications, and a time-varying copula is quite 

capable of calculating portfolio VaR. We thus employ the Gaussian, the Gumbel and 

the Clayton copula for specification and calibration. The Gaussian copula is generally 

viewed as a benchmark for comparison, while the Gumbel and the Clayton copula are 

used to capture upper and lower tail dependence, respectively. The Clayton copula is 

especially pertinent because the evidence indicates that equity returns exhibit more 

joint negative extremes than joint positive extremes, leading to the observation that 

stocks tend to crash together but not boom together (Poon et al., 2004; Longin & 

                                                      
6
 The conditional densities of equity index returns are leptokurtic, and their variances are asymmetric 

functions of previous returns (Nelson, 1991; Engle and Ng, 1993; Glosten et al., 1993) 

7
 In Enders (2004), the Eq. (1c) can be alternatively expressed as              

       
  . 
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Solnik, 2001; Bae et al., 2003)
8
. Appendix A illustrates the bivariate copula densities 

used in this study.  

Since a portfolio with time-invariant dependences among its components seems 

unreasonable in reality, a conditional copula with a time-varying dependence 

parameter has become prevalent in the literature (Patton, 2006a,b; Bartram et al., 2007; 

Jondeau & Rochinger, 2006; Rodriguez, 2007). Following the studies of Patton 

(2006a) and Bartram et al.(2007), we assume that the dependence parameter is 

determined by previous information such as its previous dependence and the historical 

absolute difference between cumulative probabilities of portfolio asset returns
9
. A 

conditional dependence parameter can be modeled as an AR(1)-like process because 

autoregressive parameters over lag one are rarely different from zero (Bartram et al.
10

, 

2007; Samitas et al., 2007). The dependence process of a Gaussian copula is 

therefore: 

                           (2) 

where                    and                    in Appendix A. The 

conditional dependence,   , depends on its previous dependence,     , and historical 

absolute difference,            .    and    are two time-varying cumulative 

distribution functions of random variables, as defined in appendix A. This formulation 

captures both the persistence and the variation in the dependence process.      is 

defined as                     
 

 
   which is the modified logistic 

transformation to keep    in (-1,1) at all times (Patton, 2006a). Time-varying 

dependence processes for the Gumbel copula and the Clayton copula are described as 

Eq. (3) and (4), respectively. 

                           (3) 

                          (4) 

where          measures the degree of dependence in the Gumbel copula and has 

a lower bound equal to 1, indicating an independent relationship, whereas    

                                                      

8
 The general theory of copulas is described by Joe (1997) and Nelsen (1999) and finance applications 

are emphasized by Cherubini et al. (2004). Important conditional theory has been developed and 

applied to financial market data by Patton (2006a, b). 

9
 There are different ways of capturing possible time variation in a conditional copula. This paper 

assumes that the functional form of the copula remains fixed over the sample whereas the parameters 

vary according to some evolution equation, as in Patton (2006a). 

10
 Bartram et al. (2007) assumed that the time-varying dependence process follows an AR(2) model. 
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       measures the degree of dependence in the Clayton copula. Boundaries of 

parameters are set up in the estimation software. 

2.2. Hybrid method: A mixture of copulas 

To find the copula that best estimates the HPVaR, we also consider some 

possible mixtures of different copulas. As indicated by Rosenberg and Schuermann 

(2006), integrated risk management requires a method, such as a mixture of copulas, 

to incorporate realistic marginal distributions. Combining realistic marginal 

distributions enables us to capture essential empirical features of various risks (market, 

credit, and operational)11. Hu (2006) pointed out that empirical applications so far 

have been limited to using individual copulas; however, there is no single copula that 

applies to all situations. A mixed model is better able to generate dependence 

structures that do not belong to one particular existing copula family. By carefully 

choosing the component copulas in the mixture, a model that is simple yet flexible 

enough to generate most dependence patterns in financial data can be constructed12. 

Beyond Hu’s study, we propose a “time-varying mixture copula” (or conditional 

mixture copula) to generate more flexible dependence structures than existing copula 

families.  

To capture all possible dependence structures, our time-varying mixture copula is 

comprised of a conditional Gaussian copula, a conditional Gumbel copula, and a 

conditional Clayton copula. The mixture copula can be defined as 

  
                        

   
    

  
                 

     
                   

    
   

      
              (5) 

where   
    

 is the time-varying weight of the conditional Clayton copula, and 

  
    is the time-varying weight of the conditional Gumbel copula. Let 

  
    

,   
          and   

    
+   

     . These weights reflect the structures of 

                                                      
11

 Regardless of the initial risk source in financial collapses (such as the outbreaks of subprime 

markets), all portfolios composed of an index and its corresponding futures are subject to at least two 

types of risk: market, credit and operational risk. The distributional shape of each risk type varies 

considerably. Market risk typically generates portfolio value distributions that are nearly symmetric and 

often approximated as normal. Credit (and especially operational) risk generates more skewed 

distributions because of occasional extreme losses. 

12
 Hu (2006) suggests some implications for risk management. First, the use of multivariate normality 

and correlation coefficients to measure dependence may significantly underestimate the downside risk, 

while that computed using a mixed copula is much more realistic. Second, in risk measurement, the 

valuation model should include both the structure and the degree of dependence. 
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dependence and capture changes in tail dependence13. For instance, after an increase 

in   
    

, the copula assigns more probability mass to the left tail. Compared to the 

models of Hu (2006), Li (2000), and Lai et al. (2007), our mixture copula model is not 

restricted to static weights as theirs, but extends to a time-varying version to flexibly 

capture the dynamics of dependence structures. 

2.3. Data and HPVaR estimation with the time-varying copula 

The Monte Carlo simulation is widely used to generate draws from stochastic 

models. In particular, the copula framework makes it easy to simulate portfolio 

returns from a general multivariate distribution (Meneguzzo & Vecchiato, 2004). 

Given a chosen copula function and its estimated time-varying parameter in the 

previous section, the multivariate random variables        }can be generated. For 

each copula function, we generate 200 pairs of                 } conditional on 

dynamic dependence coefficients             . Therefore, at time t, conditional joint 

distributions such as             ,               and               can be obtained.  

The next step is to convert conditional uniform random variables 

                }, generated from conditional joint distributions, to portfolio 

component returns by constructing empirical distributions for each sample day. We 

use historical data from the previous sixty and ninety trading days and roll them over. 

Thus, given the estimated conditional joint distribution of asset returns, replicated 

samples can be drawn for the portfolio components.  

To demonstrate the application of this time-varying copula in HPVaR estimation, 

we constructed a hedged portfolio comprised of the S&P 500 index and its index 

futures. The sample period covers January1, 2004 to October 29, 2007, including the 

outbreak period of the U.S. subprime market collapse from August to October 2007. A 

total of 998 daily observations for the index and index futures are obtained. Hsu et al. 

(2008) proposed copula-based GARCH models for estimating optimal hedge ratio, 

and found that they perform more effectively than other dynamic hedging models. We 

intuitively employ copula-based GARCH models to form hedged portfolios since 

conditional joint distributions of portfolio components in this study are specified as 

the Gaussian, Gumbel and Clayton copulas. On the other hand, assuming the optimal 

weight of the hedged portfolio as its conditional minimum-variance hedge ratio keeps 

                                                      

13
 Hu (2006) defined these weights as shape parameters to reflect dependence structures. 
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all variables under a time-varying version
14

. In this way, the conditional 

variance-covariance matrix of residual series from             in (1a), is denoted by 

                     
    

      

         
  , 

The optimal conditional minimum-variance hedge ratio,    
         can then be 

defined as  

  
  

      

     
    (6) 

and 

                                          
 

  
          

 

  
  

where                  is a bivariate conditional joint density function of      and 

    .
15

 We therefore obtain the distributions of portfolio returns,       
  , conditional 

on dynamic hedge ratios. Using   quantile of the conditional portfolio distributions 

as the conditional HPVaR estimates, HPVaRs conditional on time-varying 

dependences between portfolio components are estimated for each sample day. 

3. Empirical results of HPVaR estimation 

3.1. Estimation results of the time-varying copula models 

Table 1 reports summary statistics for the S&P 500 index returns and its futures 

returns. Table 2 shows estimated parameters of the marginal distributions 

characterized by a GJR-GARCH(1,1)-AR(1)-t model given by Eq. (1). As Table 2 

indicates, most of the parameters are at least significant at the 5 percent level.  

The Inference Function for Margins (IFM) method is implemented by estimating 

the marginal distribution parameters prior to the copula function parameters to 

enhance estimation efficiency. Joe and Xu (1996) pointed out that the IFM method 

makes inference for many multivariate models computationally feasible. It allows one 

to compare models for the dependence structure and make a sensitivity analysis of the 

models. In addition, it is more robust against outliers or perturbations of the data than 

the maximum likelihood method. Given that the marginal distributions are estimated, 

the parameters of time-varying correlations in the Gaussian copula are calibrated and 

reported in Panel A of Table 3. Appendix B describes the parameter estimation of the 

conditional copula. In Eq. (2), the parameter   captures the degree of persistence in 

                                                      

14
 The minimum variance hedge ratio (MVHR), which is the ratio of futures contracts to a specific spot 

position that minimizes variance of hedged portfolio returns, has been broadly used as a futures 

hedging strategy. 

15
 According to the Sklar theorem, the joint distribution can be represented as a copula function.  
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the dependence and   captures the adjustment in the dependence process. Panels B 

and C in Table 3 report the estimated parameters of time-varying asymmetric 

dependences specified by the Gumbel and the Clayton copula, respectively. Equations 

(3) and (4) are their time-varying dependence processes. As suggested by Joe and Xu 

(1996), we apply the jackknife method to estimate the standard errors of the 

parameters. Appendix B describes the detail for implementing the IFM method with 

the jackknife for estimating standard errors.  

Table 4 reports summary statistics of the weight estimates of conditional mixture 

copulas. These weights are estimated by MLE according to Eq. (5). Panel A reports 

the weight estimates across the entire sample period, while Panel B focuses on the 

period of the U.S. subprime market crash from August to October 2007. The statistics 

of weight estimates in the conditional Clayton copula generally are only marginally 

higher than those in the conditional Gumbel and around four to five times higher than 

those in the conditional Gaussian copula, indicating the conditional mixture copulas 

allocate more weights on left tail dependence to reflect the fact that markets are more 

likely to crash together than to boom together, especially during the U.S. subprime 

market crash. Figure 1 depicts a time series plot of the time-varying weight estimates 

of conditional mixture copulas. 

3.2. Statistical results of conditional HPVAR estimates  

Implementing the Monte Carlo simulation generates replicated samples for the 

index and futures returns given the estimated parameters of the time-varying 

dependence models in each sample day. As the optimal weight of a hedge portfolio is 

assumed to be its conditional minimum-variance hedge ratio in Eq. (6), conditional 

distributions for portfolio returns are generated for each sample day. Furthermore, 1% 

and 5 % quantiles of the conditional portfolio distributions are used to estimate the 

conditional HPVaR. Table 5 summarizes the statistics of the conditional HPVaR 

across the sample period. D60 and D90 are the rolling horizons, and indicate that the 

empirical distributions are constructed using historical data from the previous sixty 

and ninety trading days, respectively16. Accordingly, 998 empirical distributions 

across sample period are obtained. As Table 5 shows, regardless of the significance 

level or the rolling horizon, the conditional HPVaR estimates specified by the Clayton 

copula are the most strict for each statistic, whereas the Gaussian copula produces the 

most tolerant estimates.  

A violation occurs if the actual portfolio return is worse than the HPVaR estimate. 

Violation numbers measure the frequency of violation, and mean violation refers to 

                                                      
16

 The empirical distributions are constructed by previous sixty and ninety trading days to convert 

uniform variables from marginal distributions to simulated index and futures returns. 
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the average loss in excess of the HPVaR estimates. The violation frequency is the 

largest in the Gaussian copula. Since the portfolio assets exhibit asymmetric 

dependence, especially for lower tail dependence, the stricter HPVaR estimate of the 

Clayton copula should be used. Table 5 shows that conditional HPVaR estimates from 

the Clayton copula have fewer violations and exceed by less than other copulas. The 

number of violations in the mixture copula is lowest, and its statistics are more 

modest than others. 

For comparison, Figure 2 shows the time series plots of conditional HPVaR 

estimates with different significance levels (99% and 95%) and different rolling 

horizons (60 and 90 trading days). In general, the conditional HPVaR estimates from 

the Clayton copula are more strict than others, as was quite evident during the U.S. 

subprime market crash period. Note that the time series for the HPVaR estimates of 

the mixture copula are also less volatile.  

4. Conclusion 

The conventional HPVaR estimation method commonly used in current practice 

exhibits considerable biases due to model specification errors. This study uses HPVaR 

estimation to illustrate that model risk is attributable to inappropriate use of the 

correlation coefficient and normal joint distribution. We improve the HPVaR 

estimation and reduce its model risk by relaxing the conventional assumption of 

normal joint distribution and developing an empirical model of time-varying HPVaR 

conditional on time-varying dependencies between portfolio components. To 

demonstrate the dynamic hedging version of time-varying HPVaR comparisons, both 

single-parameter conditional copulas and copula mixture models are applied to form 

flexible joint distributions.  

HPVaR estimates for optimal hedged portfolios are computed from various copula 

models, and backtesting diagnostics indicate that the copula-based HPVaR outperforms 

the conventional HPVaR estimator at the 99% and 95% significance level. Our results 

also demonstrate that estimation risk is more severe under nominal coverage 

probability of 99 percent than with 95 percent. In other words, due to estimation risk, 

the HPVaR point estimate with 99 percent coverage rate is quite uncertain. The 

copula-based model is acceptable even with estimation risk, whereas the GARCH 

models are absolutely invalid.  

Our findings have significant implications for regulators. First, the benefit of 

applying the copula model to HPVaR estimation is identified after considering model 

risk. Second, to reduce estimation risk, HPVaR estimation using a smaller nominal 

coverage rate (say, 95% instead of 99%) is preferred. 
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The conventional hedged portfolio value-at-risk (HPVaR) estimation method 

commonly used in current practice exhibits considerable biases due to model 

specification errors. This study improves HPVaR estimation by relaxing the 

conventional assumption of normal joint distribution and developing an empirical 

model of time-varying HPVaR that is conditional on time-varying dependences among 

portfolio components. 

 


