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Approximation of Controllable Set by 
Semidefinite Programming for Open-Loop 

Unstable Systems with Input Saturation 

 
Abstract—In order to test the efficiency of recently developed 

semidefinite programming (SDP), we apply SDP software 
package to the solution of our optimization problems.  And we 
compare the ease of programming and the execution time for 
solving the problem between the classical approach (which 
applies a nonlinear equation solver to the Kuhn-Tucker 
conditions) and the SDP approach (which exploits interior-point 
algorithms). It is also shown that, for certain types of 
optimization problems, SDP is indeed very efficient.  However, 
our examples show that SDP has limitations in solving 
non-convex optimization problems.  It is also shown that the 
controllable set approximated by SDP is very efficient, however, 
the resulting controllable set is somewhat smaller than the set 
approximated under Lyapunov descent criteion. 
 

Index Terms—Controllable Set, Semidefinite Programming 
(SDP), Lyapunov descent criterion, Kuhn-Tucker Theorem.   
 

I. INTRODUCTION 

Semidefinite programming (SDP) is an extension of linear 
programming (LP) with vector variables replaced by matrix 
variables and with vector elementwise non-negativity 
constraints replaced by matrix positive semidefiniteness 
constraints. Generally speaking, in semidefinite programming, 
one minimizes a linear function subject to the constraint that a 
linear combination of symmetric matrices be positive 
semmidefinite. A typical example of a semidefinite 
programming problem is  

0  )(      subject to
     min             

xF
xcT

                         (1) 

where x is a solution vector in  and c is a constant 
vector in  and 

nℜ
nℜ F  is linear with respect to x. We call 

0  )(xF  a linear matrix inequality because of linearity of 
F  with respect to x and is a square matrix. Here, )(xF

0  )(xF  means that is positive semidefinite. )(xF
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   Semidefinite programming has been developed both 
theoretically and practivally for the past few yew years, and 
has become a popular topic due to its efficiency in solving 
optimization problems with the use of interior-point 
methods.  
Semidefinite programming also unifies several standard 

problems (e.g., linear and quadratic programming) and can be 
applied to many engineering problems (see Boyd et al. [28]), 
and combinatorial optimizations (see Alizadeh [26], Goemans 
[27]).  Semidefinite programming is an important numerical 
tool for analysis and synthesis in control systems theory (see 
Vandenberghe and Boyd [29]), and many semidefinite 
programming problems can be solved very efficiently both in 
theory and practice (see [29], [26], [21], [22], and [23]). 

 In this paper, we applied semidefinite programming to the 
optimization problem of approximating the Lyapunov 
controllable set studied in our previous works, [32], and 
compare the controllable set by applying semidefinite 
programming software: SDPpack.  
 Our results show that the controllable set found by SDP 
is slightly smaller than the Lyapunov controllable set found by 
our previous work, but the commands usage are only about 
half of the commands written for the Lagrangian technique. 
Furthermore, the execution time by SDP is shorter. 

II. LINEAR MATRIX INEQUALITY 
Many problems in control and systems theory can be 
formulated as optimization problems in terms of linear matrix 
inequalities (LMIs), i.e., constraints of the form 
 

,0    )( 110 mm FxFxFxF +++Δ               (2) 

where is the variable, and the matrices   
are given symmetric constant 

matrices, and the inequality 

mx ℜ∈
,,,0 , miFF nnT

ii =ℜ∈= ×

0  )(xF represents the 
requirement that be positive semidefinite. There are 
several equivalent definitions for the function of . 

)(xF
)(xF

 
Lemma 2.1 The following statements are equivalent for a 
symmetric real matrix  .nnF ×ℜ∈
1. F is positive semidefinite. 
2.  .,0 nT zFzz ℜ∈∀≥
3.  All the eigenvalues of F are positive or zero. 
4. There exists a real matrix such that nnM ×ℜ∈
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.MMF T=  
  The LMI (2) is a convex constraint on x , i.e., the set 

}0  )( | { xFx is convex. The LMI can represent a wide variety 
of convex constraints on x, e.g., linear inequalities, certain 
forms of quadratic inequalities, matrix norm inequalities, 
constraints arising in control theory, such as Lyapunov and 
convex quadratic matrix inequalities. Many conditions can be 
cast in the form of LMI. 
 

III. Semidefinite Programming 
 
We consider the optimization problem of minimizing a linear 
function of variable subject to an LMI: mx ℜ∈

0  )(      subject to
     min             

xF
xcT

                   (3) 

where is a constant vector in and is defined as in 
(1). Then we call the optimization problem (3) a semidefinite 
program (SDP). A semidefinite program is a conver 
optimization problem since the objective and constraints are 
convex: if 

c nℜ )(xF

0  )(xF and 0  )(yF , then, for allλ , ,10 ≤≤ λ  
  0.  )()1()())1(( yFxFyxF λλλλ −+=−+  
There are many similarities between semidefinite programs 
and linear programs both in theory and practice, e.g., in 
duality theory, the role of complementary slackness, and 
availability of efficient solution techniques using interior-point 
methods. Foe instance, consider the following linear program 
(LP): 

   
,0      subject to

     min             
≥+ bAx

xcT

in which the inequality denotes a componentwise inequality.  
A vector is nonnegative, , if and only if the matrix 

 is positive semidefinite 
v 0≥v

)(vdiag 0  )(vdiag . Therefore, we 
can express the LP as a semidefinite program with the linear 
matrix inequality , i.e., )()( bAxxF += diag
   ,,,1   ),(   ),(0 miaFbF ii === diagdiag
where  .],,[ 1

mn
maaA ×ℜ∈=

 A convex quadratic constraint 
, where , can be 

written as 
0)()( ≤−−++ dxcbAxbAx TT mx ℜ∈

   .0  
)( ⎥

⎦

⎤
⎢
⎣

⎡
++
+

dxcbAx
bAxI

TT            (4) 

The left-hand side of equation (4) depends affinely on vector x, 
and hence it can be expressed as a linear matrix inequality, 
  0,  )( 110 mm FxFxFxF +++=  
where 
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 Therefore, a general (convex) quadratically constrained 
quadratic program (QCQP) problem in , mx ℜ∈
    

             (5) 
,,,2,1   ,0)(      subject to

)(     min             0

kixf
xf

i =≤

where each kif i ,,0 , = , is a convex quadratic function of 
the form 

,)()()( i
T
iii

T
iii dxcbxAbxAxf −−++=          (6) 

or equivalently a general quadratically constrained quadratic 
program problem in , 1),( +ℜ∈ mtx
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can be written as  
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We then can put the above QCQP in the SDP form: 

∑
=

+++=
m

i
mii tFFxFxtF

t

1
10 ,0  ),(      subject to

     min             

     (8) 

where the variables are and . mx ℜ∈ ℜ∈t
 For a non-convex optimization problem of the form,  

             (9) 
,,,2,1   ,0)(      subject to

)(     min             0

kixf
xf

i =≤

where , and the 
matrices may be indefinite, it has been proposed by Shor 
and others that the lower bounds for the minimum value of 

for (9) can be obtained by solving the semidefinite 
programming (with variables 

kicxbxAxtf i
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We can easily verify that this semidefinite program yields a 
lower bound for the minimum value of of (10). 
Suppose that 

)(0 xf
x satisfies the constraints in the non-convex 

problem (9), i.e., 

    0,  
1
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for ki ,,1 = , and that kt ττ ,,, 1 satisfy the constraints in 
the semidefinite program (10). Then  
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Therefore, t is indeed a lower bound for the minimum value 
of in (9). )(0 xf

 
IV. SOFTWARE PACKAGES FOR SEMIDEFINITE 

PROGRAMMING 
Several software packages have been developed for the past 
few years for solving the semidefinite program. Here we give 
a brief introduction for one of the software packages applied 
in this paper: 
 
1. SDPPACK 
This is a software package for Matlab 5.0 and is made by 
Alizadeh et al. [20]. 
Semidefinite-Quadratic-Linear Program (SQLP) 
This package solves the primal mixed 
semidefinite-quadratic-linear program of the form 

,0       ,0      ,0                      

,,,1 ,)()()(   subject to

min             

≥≥

==++•

++•

LQS

kL
T
kLQ

T
kQSS

L
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XXX

mkbXAXAXA

XCXCXC

 

where is a block diagonal symmetric matrix variable, 
with block sizes respectively, each greater 
than or equal to two; is a block vector variable, with 

block sizes respectively, each greater than or 

equal to two; and is a vector of length . The quantities 
and , are also vectors. The quantity 

is the trace inner product , i.e., 

. See [20]. 
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V. FINDING ELLIPSOIDAL CONTROLLABLE SETS BY 

SEMIDEFINITE PROGRAMMING 
Consider a linear time-invariant continuous-time system with 
input saturation 

)()()( tButAxtx +=                          (11) 
)),(()( tKxsattu −=                          (12) 

where  is a given constant matrix,  is a 
given constant matrix,  is the state vector, 

is the control vector, with 
and denotes the saturation 

function. The one-dimensional version of the saturation 
function is defined by  

nnA ×ℜ∈ mnB ×ℜ∈
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and we componentwise extend its definition to the 
multi-dimensional version: 
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Here we assume that A is not necessarily asymptotically stable.  
We also assume that the system  is linearly stabilizable.  
In other words, it is assumed that, without saturation, the 
system would be stabilizable. 

),( BA

Hence there exists at least one matrix K such that  
 )()()()()( txBKAtBKxtAxtx −=−=  
is asymptotically stable.  Actually it is possible to select the 
location of the system eigenvalues (i.e., the eigenvalues of 
A-BK) arbitrarily.  Hence we assume that matrix K has been 
selected so as to place the system eigenvalues in the desired 
location.  Since BKAA −=

~  is Hurwitz, for every positive 
definite matrix Q~ , there exists an unique satisfying nnP ×ℜ∈

  ,~~~ QAPPAT −=+  
and .  Our goal is first to find an inner approximation 0>P

)(PΩ  of the controllable set  of our system (1) and (2) 

based on the quadratic Lyapunov function , and 
then to maximize the approximate controllable set 

*Ω

ξξξ PV T=)(
)(PΩ  by 

varying the approximation parameter P in such a way that the 
resulting matrix )~~(~ APPAQ T +−= remains positive definite. 

We denote the i-th row of matrix K by :,...,1, miki =  
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   We now consider the case of a single input. Define 
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Define )).(()(~ txVtV = Taking derivative of )(~ tV along the 
trajectory , we obtain the following cases: )(tx
Case 1.  :)( 0Htx ∈  unsaturated case, i.e., )()( tKxtu −=  
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Case 2.  :)( +∈Htx  positively saturated case, i.e., 1)( =tu  
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where 

).( PAPAQ T +−=
Δ

                            (19) 
and  
   . BB =+

Case 3.   negatively saturated case, i.e., 
 

:)( −∈Htx
1)( −=tu

,)()()()(
)()()()()(

))(()()())((

))(()()())(()(~

−−

−−

−−

−−−=
−−+=
−+−=

+=

PBtxtPxBtQxtx
PBtxtPxBtxPAPAtx

BtAxPtxtPxBtAx

txPftxtPxtxftV
dt
d

TTT

TTTT

TT

TT

          (20) 

where Q is defined as in (19) and . BB −=−

Inspired by the right-hand sides (17), (18) and (20) for 

)(~ tV
dt
d , we define 
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Combining these three functions into one function, we 
obtain 
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Observe that 
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d
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 We want to find the maximum level set 
of the Lyapunov function 

that is contained in the descent region 
} )( : {)( rPVrL Tn ≤=ℜ∈= ξξξξ

V
} 0)( : { n ≤ℜ∈Δ ξξ gRg in which the time derivative of the 

Lyapunov function is negative, i.e., 
r r L r R gg

n* { ( ) { : ( ) }}= ⊂ = ∈ℜ ≤max  |  ξ ξ 0 .  

   We note that, in Case 1 0~
>Q because P is selected so that 

0~
>Q .  In other words, because we use only those P that will 

make 0)~~(~
>+−= APPAQ T , the right-hand side for )(~ tV

dt
d  

is negative: 0. ,0)(0 ≠∀≤ ξξg Hence ,0)( <ξg  

}.0{0 −∈∀ Hξ Therefore, the equilibrium point is locally 
asymptotically stable in .  However, in Case 2 and Case 3, 
since the open-loop system may be unstable, matrix A may not 
be Hurwitz.  Given a positive definite matrix P that will 
make

0H

0~
>Q , the Q defined by (9) may or may not be positive 

definite. 
In order to satisfy the Lyapunov descent condition 

0)( <ξg for a given ,ξ we require that for each ,0≠ξ  there 
exists at least one control value ν satisfying 1  ≤

∞
ν and  

  .02)( <±−= νξξξξ PBQg TT

Then the state space can be divided into the following 
regions: 

nℜ

(a) { }. 0
~
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(d) { }.0 +− ∪∪−ℜ RRRn  If { },0 +− ∪∪−ℜ∈ RRRnξ  
then it is not possible to find ],1,1[−∈ν  such that .0)( <ξg  

The approach for finding the maximal level set 
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The above optimization problem with Lyapunov descent 
criterion can be solve by Kuhn-Tucker Theorem, see Wang 
and Mukai [32].  

We now apply SDP to the above optimization problem (23). 
Since P > 0 , we can find P  such that P P= P .  

Therefore,V ( )ξ can be put in the format of (6).  But Q may 
not be positive definite, and thus we may not be able to 
decompose Q into its square roots. 

Note that the optimization problem (23) is exactly in the 
formulation of QCQP as in (5) and (6), except the inequality 
constraint.  We now attempt to rewrite the above 
optimization problem in the QCQP format (5) and (6) 
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We note that Q is indefinite, we need to apply the 
non-convex optimization technique to the optimization 
problem (5) and (6) to the form of (9) and (10). Recall that for 
a non-convex optimization problem of the form,  
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matrices can be indefinite. The lower bounds for the 
minimum value of for the above optimization problem 
can be obtained by solving the semidefinite programming 
(with variables 
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Therefore, we rewrite the optimization problem (24) into the 
form  
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VI. EXAMPLE 

We now demonstrate the techniques for finding the 
controllable sets with a practical example which has been 
studied several times in the past [33] [34]. 
 
Example 1. Consider the double integrator, a single input 
plant of the form 
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Here, we note that the eigenvalues of the open-loop systems 
are found to be 0, 0. Since there are two open-loop zeros for 
the system, the system is open-loop unstable. Suppose that the 
desired eigenvalues ωσλ i+−=′1 and  for the 
closed-loop system are as follows: 

ωσλ i−−=′2
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Technique 1. Maximize the set inside the Lyapunov descent 
region. 
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Technique 2. Approximate the set by semidefinite 
programming. 

.0 
1

2
1

2
10

                      

0
  

0
0

    subject to

 max             

2

1

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

⎥
⎦

⎤
⎢
⎣

⎡
−

−
+⎥

⎦

⎤
⎢
⎣

⎡
−

K

K

PB
PBQ

t
P
t

T

T

τ

τ
 

Figure 1 shows the sets of two approximations for the 
controllable set of case (i). The outer ellipse (solid line) is the 

Lyapunov controllable set approximated by Technique 1, in 
which the area is found as  while the outer ellipse 
(chained line) is the controllable set obtained from the 
non-convex optimization technique of SDP (Technique 2), in 
which the area is found as  
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    Figure 1: Comparison of two approximations for case (i) 
 
Figure 2 shows the sets of two approximations for the 
controllable set of case (ii). The outer ellipse (solid line) is the 
Lyapunov controllable set approximated by Technique 1, in 
which the area is found as  while the outer ellipse 
(chained line) is the controllable set obtained from the 
non-convex optimization technique of SDP (Technique 2), in 
which the area is found as  
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Figure 2: Comparison of two approximations for case (ii) 

 
    VII. CONCLUSION 

In this paper, we applied SDP to the problems of 
approximating the controllable set for the open-loop unstable 
system with input saturation.  Even with the efficiency of 
SDP in solving the optimization problems, our example 
showed that there is a limitation for applying the SDP to the 
problem of approximating the Lyapunov controllable set. 
Therefore, an inner approximation of the Lyapunov 
controllable set was devised.  The example in this paper gave 



  
 
a better insight into the task of approximating the controllable 
set: in the two-dimensional example, as we applied SDP to 
solve the optimization problem, the area of inner 
approximation was off by about 30% of the Lyapunov 
controllable set; however, the command usage and executing 
time for the inner approximation of the Lyapunov controllable 
set solved by SDP were far superior to those of the 
conventional way of finding the Lyapunov controllable set 
using the Lagrangian technique.  
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