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Understanding driving behavior is a complicated researching topic. To describe accurate speed,
flow and density of a multiclass users traffic flow, an adequate model is needed. [Helbing, 2001,
Hoogendoorn and Bovy, 2000, Lo, 2002] - User’s classes are determined by types of vehiclesin
previous studies. However, considering all drivers with the same type of vehicles have the same
behavior is too rough for traffic flow study. Conventionaly, classifying driving behaviors is
obtained by inquiring from door to door. It takes a lot of cost and may produce bias because of
the different agreement among the inquirers, drivers and researchers. Therefore, a new method,
which is based on data mining technique, is proposed to classify driving behavior in multiclass
user traffic flow. In this study, driving behaviors are assumption to be in the form of Gaussian
distribution [Helbing, 2001]. According to the assumption, expectation-maximization method is
employed to train and classify different driving behaviors. By the method, a cost saving and
automatic way for traffic data processing and parameter extracting is obtained.

Keyword : data mining, expectation-maximization, Gaussian mixture, multiclass user, traffic

flow model.
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Classification of Driving Behavior by Pattern Recognition in
Multiclass Users Traffic Flow

Shih-Ching Lo

Department of Transportation Technology and Logistics Management, Chung Hua University,
No. 707, Sec. 2, WuFu Rd., Hsinchu, 300, Taiwan

Abstract. Understanding driving behavior is a complicated researching topic. To describe accurate speed, flow and
density of a multiclass users traffic flow, an adequate model is needed. Mostly, user’s classes are determined by types of
vehicles. However, it is unredlistic to consider drivers with the same type of vehicles have the same driving behavior.
Conventionally, classifying driving behavior is obtained through tracking trace of individua vehicles, experimenting by
driving simulator or inquiring by questionnaire. It costs alot and may produce bias because of the design of questionnaire
or experiment. Therefore, a new method, which is based on pattern recognition technique, is proposed to classify driving
behavior in multiclass user traffic flow. In this study, driving behavior, which performs as speed distributions, is assumed
to be Gaussian distributions. According to the assumption, the expectation-maximization algorithm is employed to train
and classify different driving behavior. With the method, a economical and automatic way for traffic data processing and
parameter extracting is obtained.

Keywords: traffic flow, pattern recognition, classification, multiclass users traffic flow..
PACS: 05.20.Dd, 51.10.+y, 89.40.-a, 89.40.Bb.

INTRODUCTION

With the rising demand of automobile and highway usage in recent years, traffic congestion in metropolitans
causes great economical loss and pollution. Traffic flow theory provides the description of the fundamental traffic
flow characteristics and analytical techniques to draw up control strategies so as to improve the performance of road
systems. In the real world, traffic flow is heterogeneous; that is, there are different types of vehicles and different
driving behavior on aroad. In order to improve traffic conditions on roads, gaining a clear insight into the behavior
of the heterogeneous traffic flow is important [1-6]. For convenience’s sake, driving behavior is defined as users’
classes, which are determined by types of vehicles, such as buses, trucks, cars or motorcycles. However, drivers with
the same types of vehicles may have different driving behavior in reality. On the other hand, driving behavior is
studied through inquiring drivers by interview, telephone, mail or web page, investigating by driving simulator or
tracking trace of individual vehicles. It costs a lot and is time-consuming. Also, it may produce perceptual bias
because of the design of questionnaire or experiment. Therefore, a pattern recognition based technique is proposed
to classify driving behavior in multiclass traffic flow in this study.

Pattern recognition is based on the observation of past experience or knowledge. Today, useful applications of
automatic pattern recognition are prevalent. As computers and the methods of automatic pattern recognition progress,
more and more fascinating applications are being discovered in fields as broad as finance, manufacturing, and
medicine. Generally, speed distribution of a road is considered as the performance of driving behavior and is
examined as a Gaussian distribution empirically [7-8]. Based on the assumption, speed distribution of a multiclass
users traffic flow can be considered as mixture of multiple Gaussian distributions [9-11]. If we can recognize how
many Gaussian distributions are included in the mixture speed distribution, we can identify the number of user-class
on the road. Therefore, an expectation-maximization based pattern recognition method for multiclass traffic flow is
proposed in this study. According to the method, users’ classes are identified by speed data successfully.



PATTERN RECOGNITION

In this study, expectation-maximum agorithm (EM algorithm) based pattern recognition method is proposed.
With the method, parameters of multiclass traffic flow model can be obtained by collected speed data directly.
Firstly, we assume the speed datais denoted as v = fy }* . According to Helbing [7-8], the equilibrium speed of each

user-class can be considered as a Gaussian distribution, which is

T — exp[vi_u;]' )

e, 20,

]

where f; is equilibrium distribution of user-class j, v; is individual speed, ug is mean speed of user-classj, and ©; is
speed variance of user-classj. Thus, the whole speed distribution of traffic flow is given by

M
Fv)=Y o, f(x,vi,t\ej)' 2
j=1
wheref; in Eq. (1) is parameterized by 0, o isthe weight of user-class of the mixture and Yo, -Lij=1,...,M

Thelog likelihood of the parametersis written as
V)= ilogia)jf(x,vi,t‘wj,@j)' &
i=1 j=1

By the maximum likelihood principle, the best model of the data has the parameters that maximize |(9‘V).
Unfortunately, '(GN) cannot be easily maximized because it involves a logarithms of a sum. Therefore, another
parameter z is introduced to replace 0, and w; S0 asto simplify the problem. z indicates that the speed data
belongs to which user-class. Let z={z}", where z (21,2012 and z, =1 iff v; belongs to user-class j. The
new data set is denoted as V, = {V,Z} and the new log likelihood function is rewritten as

LoV, z)= Zi)iz, loglo, f (x v,2,1), )ﬁiz’ loglo, f (x.v,,12,6, ) (z.6,)] (4)

which does not involve a logarithms of a sum. However, Z is unknown, I(ov,z) cannot be utilized directly. We
replace 1(oV,2) with its expectation Y(Q‘gk). According to previous studies [9-11], I.(v,z) can be maximized by
the following two steps:

(1) E-step:  v(glp, )=E[1. (V. 2)X.6, ] ©)
(Q M-step: g, = argmaxY(6]6, ) (6)
where argmax denotes finding the parameter 9 that maximize Y(g\gk). The E-step calculates the expectation of the

speed data log likelihood, and the M-step finds the parameters that maximize this likelihood. These two steps form
the basis of the EM algorithm for mixture model. From Egs (1), (3)~(6), let ¢ = (Uv@), the explicit form of likelihood

function is written as

_3% 1 1 _ Y url (7)
1.(6V,z)= i:l;zij Iog{ 2|ogZ7r 2|og®j 20 (v uq)z}
The expectation of E-stepis
Ot 1 1 1 : (8)
Y(0]6,) = .Z:;;E[Z” V,B{ZIOQ 2z —Elog 0, - 20 (v, - uq)z}

In Eq. (8), E[z”_ V.6, is unknown. Therefore, the problem is simplified to solve the unknown term E[z”_ V.6, ]
Let hy = E[Zj
hp is computed by

Vﬂk] be the probability of ith speed, which belongs to the jth Gaussian distribution in the pth iteration.

hf = fj(v‘ui”,Gf)/ZM: f(v‘uﬁ’,@lp)' v

=1

Next, the M-step is computed by



oE[l (0
o[l (0

where ... < u and .. < AP /S,
ap =3 /3 Y oSty -upF Sy

i=1

V,ZV.0,] /ou; =0, (10)
V. Z)v.0,1/00, =0 (11)

According to the EM algorithm, we can obtain the weight of each Gaussian distribution and the number of
user-class.

NUMERICAL RESULTSAND DISCUSSION

Two numerical examples are employed to verify the method. The speed data of case 1 is generated by single
Gaussian distribution and case 2 is generated by mixing two Gaussian distributions stochastically. Case 1 includes
160 data points and case 2 includes 320 data points. The simulated scenario and results are given in Table 1.

Incase 1, Pand M are given as 5 and 2, respectively. Figure 1 (a) illustrates the generated speed and (b) is the
comparison of GMM-1 and the generated data. By the procedure presented in previous section, GMM-1 fits the
generated data well. From Table 1, GMM-1 has a good agreement with the generated data. Both mean speeds are
almost the same while variances have a little difference. At the same time, the R-square of GMM-1 and GMM-2 is
0.98, that is, there is no significant difference between GMM-1 and GMM-2. Thus, we can conclude that only one
user-classin case 1, which is the same as the generated distribution.

In case 2, Pand M are given as 5 and 3, respectively. Figure 2 (a) illustrates the generated speed and (b) is the
comparison of GMM-1 and the generated data. Figure 2 (c) shows the comparison of GMM-2 and the generated data.
In this case, GMM-3 fits the generated data best. However, the R-square of GMM-2 and GMM-3 is 0.99; that is,
there is no significant difference between GMM-2 and GMM-3. Also, GMM-2 has a good agreement with the
generated data according to Table 1. The mean speed of GMM-2 is ailmost the same as the generated data while
variance and weight of GMM-2 have a little difference. Hence, we can conclude that there are two user-classes in
case 2, which is the same as the generated distribution.

Table 1. Simulated scenario and classified results
mean variance weight

Casel 95 25 -
GMM -1 94.98 22.18 -
GMM -2, distribution 1 92.25 15.65 0.504
GMM -2, distribution 2 97.76 13.49 0.496
Case 2, distribution 1 80 4 0.5
Case 2, distribution 2 90 36 0.5
GMM -1 85.06 43.21 -
GMM -2, distribution 1 80.41 5.02 0.558
GMM -2, distribution 2 90.94 29.58 0.442
GMM -3, distribution 1 80.13 4.17 0.525
GMM -3, distribution 2 93.63 21.07 0.271
GMM -3, distribution 3 86.37 11.12 0.204
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FIGURE 1. () speed data generated by single Gaussian distribution; (b) comparison of generated data (denoted by random
number) and GMM-1 (denoted by Gaussian distribution).
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FIGURE 2. (a) speed data generated by two Gaussian distributions; (b) comparison of generated data (denoted by random
number) and GMM-1 (denoted by Gaussian distribution); (c) comparison of generated data and GMM-2.

CONCLUSIONS AND PERSPECTIVES

In this study, an EM algorithm based pattern recognition method for multiclass traffic flow is presented and
verified by two numerical examples. This method can extract parameters of multiclass users by speed data directly,
which saves time and money. Since speed data, which can be collected by traffic surveillance systems, is the only
necessary input, it is possible to classify user-class and extract parameters automatically. Furthermore, the method
takes computational complexity of traffic flow simulation into account by setting threshold of weight and
comparison of GMM models. The two considerations minimize the number of user-class without losing feasibility.
Therefore, an integrated multiclass traffic control system is achieved by coupling our method with a multiclass
traffic flow model.
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The Effect of Driving Behavior on Multiclass Users Traffic
Flow
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Abstract. Complex traffic system seems to be simulated successfully by cellular automaton (CA) models. Various
models are developed to understand single-lane traffic, multilane traffic, lane-changing behavior and network traffic
situations based on the basic CA rules proposed by Nagdl et a. In this paper, a multi-class user traffic flow CA modd is
proposed to investigate the influence of driving behavior in traffic flow. Slow down possibility and maximal speed are
two main variables, which determine driving behavior. Simulation scenario shows that the diversity of driving behavior
will induce unstable traffic flow even chaos phenomena. Traffic controlling and management strategies are aso discussed
in this study. According to the results, optimal strategies may be devel oped and maximize traffic flow.

Keywords: traffic flow, multiclass users traffic flow, driving behavior, cellular automation.
PACS: 89.40.-a, 89.40.Bb, 02.60.Cb

INTRODUCTION

Today, there are many indications of the complexity of living in the world. One of them is the road using
behavior. As the trend of increasing travel demand, planning, design, prediction, control and management of the
transportation system become more and more important. Traffic flow theory provides the description of the
fundamental traffic flow characteristics and analytical techniques. In the research of traffic flow, simplified models
have been proposed and these models still capture the essentials of the dynamics of the transportation system.
Cellular automation (CA) is one of these models. Although the concept of CA isfirst proposed long ago[1], CA has
begun to receive wide attention of statistical physics community only after the simple formulation by Nagel and
Schreckemberg [2]. In CA, aroad is represented as a string of cells, which are either empty or occupied by exactly
one vehicle. Movement takes place by hopping between cells.

Due to the simplicity of computation, CA has been generalized to signalized intersection, multilane multiclass
traffic flow [3-7], inhomogeneous mixed traffic flow [8] and large traffic networks. Nagel [3] compared the other
models with CA and made some conclusions as follow:

(1) Robust computing: CA isknown to be numerically robust especially in complex geometries.

(2) University: Intuitively, a relatively ssimple microscopic model should be able to show the essential
features of traffic jams. One might even speculate that the critical exponents of traffic jam formation are
universal.

(3) Towards minimal models: The present results show that close-up vehicle-following behavior is not the
most important aspect to traffic model. The important crucial aspect isto model deviations from the optimal
(smooth) behavior and the ways in which they lead to jam formation. Another important aspect is the
acceleration behavior, that mostly determines the maximum flow out of ajam.

(4) Traffic dynamics: Fast running and easy to implement CA can be very useful in interpreting
measurements.

(5) Microscopic simulation: CA is inherently microscopic, which allows one to add individual properties to
each vehicle.

(6) Stochastic and fluctuations. Last but not least, CA is stochastic in nature; thus, different results may be
produced by using different random seeds even when the simulation is starting from identical initial



conditions. The traffic system is inherently stochastic and the variance of the outcomes is an important
variableitself.

The simulation results were compared with data extracted from real traffic system in the USA and Germany [5-6].
Verification of CA-models on German and American motorways and urban traffic networks shows fairly realistic
results on a macroscopic scale. In this study, we proposed a modified CA procedure and applied the procedure to
multiclass users traffic flow. Furthermore, analysis of multiclass users traffic flow is presented based on the
simulation results.

CELLULAR AUTOMATION OF MULTICLASSUSERS TRAFFIC FLOW

CA-models describe the traffic system as a lattice of cells of equal size (typically 7.5m). A CA-model describes
the movements of vehicles from cell to cell in a discrete way [3-4]. The size of the cell is chosen to be equal to the
velocity of vehicle that moves forward one cell during one time step. The vehicle’s velocity can only assume a
limited number of discrete values ranging from zero to vmax. The process can be split-up into four steps:

(1) Acceleration. If time step is less than total simulation time, let each vehicle with velocity be smaller than its

maximum velocity vmax, accelerate to a higher velocity, i.e. v = min (vmax, v+1).

(2) Deceleration. If the velocity is smaller than the distance gap d to the preceding vehicle (v’), the vehicle will

decelerate: v = min (v, d).
(3) Dawdling. With given slow-down probability p, the velocity of a vehicle decreases spontaneously: v=max
(v1,0).

(4) Propagation. Let each vehicle move forward v cells and let time step increase one. Then, repeat the procedure:

acceleration, deceleration, dawdling and propagation.

In this study, we assume that if the velocity is larger than the distance gap to the preceding vehicle and the
velocity is larger than the velocity of the preceding vehicle, the following vehicle will decelerate to keep the velocity
of the preceding vehicle (i.e., v = v’). Otherwise, the following vehicle will keep its velocity. Therefore, step (2)
should be modified as (2’) and an additional step (3-1) should be inserted between steps (3) and (4). The modified
processis given as

(2°) Deceleration. If v > d, then check if v > v’ or not. If the answer is no, keep the velocity the same. If the

answer isyes, letv=v".

(3-1) Deceleration: Repeat step (2°).

According to the process, driving behavior is determined by two parameters, vmax and p; that is, maximum
velocity and slow-down probability. Different behavior can be simulated by different vmax and p.

RESULTSAND DISCUSSION

The rules proposed previously will be used throughout the paper, with different smulated scenario. Typically,
the length of a cell was taken as 7.5 m, time step is 1 second, vmax is 5 (i.e., 135 km/h). In Taiwan, the upper speed
limit of No. 1 National Freeway is 100 km/h. Therefore, the length of a cell is considered as 7 m, the maximum
vmax is 4 (i.e., 100.8 knvh). All smulations are performed in a single lane circle of length 1.5km (i.e., 214 cells).
Density is estimated every 30 seconds. 3,600 steps are simulated. Simulated number of vehicles on the road varies
from 10 to 190, vmax varies from 1 to 4 (i.e., 25.2 km/h to 100.8 km/h), slow-down probability (p) varies from 0.1
to 0.9. Single user traffic flow is ssmulated first. Parts of the results are illustrated in Figs. 1 and 2. The ssimulated
numbers of vehicles, which is denoted by N, are 30, 110 and 190, which imply the average normalized densities on
the whole road are 0.15 (free flow), 0.51 (intermediate flow) and 0.883 (congested flow). Figures 1 and 2 show the
variation of density and volume with vmax, respectively. The data point is the mean of one hour. Therefore, density
looks smooth. The variation can be observed by variance of density. Since volume is equal to density multiply to
speed, the fluctuation of speed is similar to the fluctuation of volume while density is smooth. According to the
figures and the results, when traffic is in the regime of free flow (N is small), the variation of density and volume
increase with vmax and p increase. Larger vmax alows higher speed and larger p implies more vehicles may
decelerate in free flow; i.e., large vmax and p induce unstable traffic in free flow regime. Since larger vmax allows
higher speed, it also induces larger volume in free flow regime. On the other hand, the same phenomena cannot be
observed in intermediate and congested flow. Because drivers cannot drive freely when the number of vehicles on
the road increases. Interaction among vehicles decrease the mean speed and volume, whereas increases density on
the road. This result can be observed obviously in Fig. 1 (b) and 2 (b). Figures 1 (c) and 2 (c) present an interesting
result; i.e., if driving behavior is stable (p is small), the volume on the road is still high. This observation gives a



good reason to develop an automatic highway system. Generally, the mean density is not sensitive to vmax and p as
speed and volume are. While traffic isin free flow regime, speed and volume are dominated by vmax and p. On the
other hand, speed and volume are dominated by p while traffic is in intermediate and congested regime. Most of the
CA traffic simulation considered p to be a constant (mostly p = 0.25). However, in this study we found p should
depend on density. That is, when density is high, the slow-down probability is large and vice versa. According to the
results, p is suggested to be equal to reciprocal of normalized density (or so-called dimensionless density, denoted by
k”). The comparing result of fixed p = 0.2 and p =k’ areillustrated in Fig. 3. The speed-density relation simulated by
CA issimilar to real data[5-6]. By Fig. 3, the trends of both curves are the same and the variance, which determined
by p are different. p = 0.2 shows a uniform variance of speed-density relation. p = k’ shows the intermediate flow
has the largest variance and the variance of the congested flow is relative small. Therefore, p = k’ is more realistic
than given p as a constant.

Driver behavior is assumed to be determined by vmax and p in this study. Each class of users moves forward by
the rules mentioned above. vmax in multiclass users traffic flow cellular automation simulation is considered as the
minimum of desired speed of each class and speed limit of the road. p is assumed to be close to 1/k’ and different
class of user may have different p. In this study, a two-class userstraffic flow is simulated. Firstly, we keep vmax the
same and vary p. If most of the drivers have large p and the others have small p, density increases, whereas speed
and volume decreases. Then, we keep p the same and vary vmax. If difference of vmax between two kinds of drivers
is large, density increases, whereas speed and volume decreases. In both cases, the multiclass users traffic flow
becomes unstable and is dominated by slow vehicles. The influence of vmax is larger than p in free-flow regime.
According to the results, the proportion of each user class is also an important factor. If the proportion of slow
vehiclesislarge, the speed and volume will be much less than single user traffic flow.

Mostly, speed is dominated by the slowest vehicles, especialy in free and intermediate flow. Different driving
behavior may increase variance and decrease level of service. Since vmax, p and proportion of each user class are
three factors of multiclass users traffic flow, severa strategies can be applied to stable traffic flow. A long-term
strategy is to enhance driving training and education so as to unify driving behavior. Setting lower speed limit is also
a control strategy to stabilize traffic flow. Of course, developing the automatic highway system or the automatic
vehicle control system can ensure the driving behavior being unified.

CONCLUSION

In multiclass users traffic flow, vmax, p and the proportion of each class users are three dominated factors.
Variances of speed and volume in multiclass users traffic flow are larger than variances of speed and volume in
single user traffic flow. These results are interesting. However, before final conclusions can be stated, a lot more
work has to be done to confirm these results, such as more simulation and comparison of simulation results and
empirical data. In addition, there are till other factors, which influence multicalss users traffic flow, such as
speed-up probability, acceleration and deceleration ability. These will be left for further studies.
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